Precipitation Trends in the Ganges-Brahmaputra-Meghna River Basin, South Asia: Inconsistency in Satellite-Based Products
The Ganges-Brahmaputra-Meghna (GBM) river basin is the world’s third largest. Literature show that changes in precipitation have a significant impact on climate, agriculture, and the environment in the GBM. Two satellite-based precipitation products, Precipitation Estimation from Remotely Sensed Inf...
Ausführliche Beschreibung
Autor*in: |
Muna Khatiwada [verfasserIn] Scott Curtis [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Atmosphere - MDPI AG, 2011, 12(2021), 9, p 1155 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2021 ; number:9, p 1155 |
Links: |
---|
DOI / URN: |
10.3390/atmos12091155 |
---|
Katalog-ID: |
DOAJ005125995 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ005125995 | ||
003 | DE-627 | ||
005 | 20240412161152.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/atmos12091155 |2 doi | |
035 | |a (DE-627)DOAJ005125995 | ||
035 | |a (DE-599)DOAJ6439ddb91ba84e809d90af1ab0540037 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC851-999 | |
100 | 0 | |a Muna Khatiwada |e verfasserin |4 aut | |
245 | 1 | 0 | |a Precipitation Trends in the Ganges-Brahmaputra-Meghna River Basin, South Asia: Inconsistency in Satellite-Based Products |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The Ganges-Brahmaputra-Meghna (GBM) river basin is the world’s third largest. Literature show that changes in precipitation have a significant impact on climate, agriculture, and the environment in the GBM. Two satellite-based precipitation products, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) and Multi-Source Weighted-Ensemble Precipitation (MSWEP), were used to analyze and compare precipitation trends over the GBM as a whole and within 34 pre-defined hydrological sub-basins separately for the period 1983–2019. A non-parametric Modified Mann-Kendall test was applied to determine significant trends in monsoon (June–September) and pre-monsoon (March–May) precipitation. The results show an inconsistency between the two precipitation products. Namely, the MSWEP pre-monsoon precipitation trend has significantly increased (<i<Z</i<-value = 2.236, <i<p</i< = 0.025), and the PERSIANN-CDR monsoon precipitation trend has significantly decreased (<i<Z</i<-value = −33.071, <i<p</i< < 0.000). However, both products strongly indicate that precipitation has recently declined in the pre-monsoon and monsoon seasons in the eastern and southern regions of the GBM river basin, agreeing with several previous studies. Further work is needed to identify the reasons behind inconsistent decreasing and increasing precipitation trends in the GBM river basin. | ||
650 | 4 | |a Ganges-Brahmaputra-Meghna (GBM) | |
650 | 4 | |a pre-monsoon | |
650 | 4 | |a monsoon | |
650 | 4 | |a Modified Mann–Kendall | |
653 | 0 | |a Meteorology. Climatology | |
700 | 0 | |a Scott Curtis |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Atmosphere |d MDPI AG, 2011 |g 12(2021), 9, p 1155 |w (DE-627)657584010 |w (DE-600)2605928-9 |x 20734433 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2021 |g number:9, p 1155 |
856 | 4 | 0 | |u https://doi.org/10.3390/atmos12091155 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6439ddb91ba84e809d90af1ab0540037 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4433/12/9/1155 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4433 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2021 |e 9, p 1155 |
author_variant |
m k mk s c sc |
---|---|
matchkey_str |
article:20734433:2021----::rcpttotediteagsrhaurmgnrvraisuhsanoss |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QC |
publishDate |
2021 |
allfields |
10.3390/atmos12091155 doi (DE-627)DOAJ005125995 (DE-599)DOAJ6439ddb91ba84e809d90af1ab0540037 DE-627 ger DE-627 rakwb eng QC851-999 Muna Khatiwada verfasserin aut Precipitation Trends in the Ganges-Brahmaputra-Meghna River Basin, South Asia: Inconsistency in Satellite-Based Products 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Ganges-Brahmaputra-Meghna (GBM) river basin is the world’s third largest. Literature show that changes in precipitation have a significant impact on climate, agriculture, and the environment in the GBM. Two satellite-based precipitation products, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) and Multi-Source Weighted-Ensemble Precipitation (MSWEP), were used to analyze and compare precipitation trends over the GBM as a whole and within 34 pre-defined hydrological sub-basins separately for the period 1983–2019. A non-parametric Modified Mann-Kendall test was applied to determine significant trends in monsoon (June–September) and pre-monsoon (March–May) precipitation. The results show an inconsistency between the two precipitation products. Namely, the MSWEP pre-monsoon precipitation trend has significantly increased (<i<Z</i<-value = 2.236, <i<p</i< = 0.025), and the PERSIANN-CDR monsoon precipitation trend has significantly decreased (<i<Z</i<-value = −33.071, <i<p</i< < 0.000). However, both products strongly indicate that precipitation has recently declined in the pre-monsoon and monsoon seasons in the eastern and southern regions of the GBM river basin, agreeing with several previous studies. Further work is needed to identify the reasons behind inconsistent decreasing and increasing precipitation trends in the GBM river basin. Ganges-Brahmaputra-Meghna (GBM) pre-monsoon monsoon Modified Mann–Kendall Meteorology. Climatology Scott Curtis verfasserin aut In Atmosphere MDPI AG, 2011 12(2021), 9, p 1155 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:12 year:2021 number:9, p 1155 https://doi.org/10.3390/atmos12091155 kostenfrei https://doaj.org/article/6439ddb91ba84e809d90af1ab0540037 kostenfrei https://www.mdpi.com/2073-4433/12/9/1155 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 9, p 1155 |
spelling |
10.3390/atmos12091155 doi (DE-627)DOAJ005125995 (DE-599)DOAJ6439ddb91ba84e809d90af1ab0540037 DE-627 ger DE-627 rakwb eng QC851-999 Muna Khatiwada verfasserin aut Precipitation Trends in the Ganges-Brahmaputra-Meghna River Basin, South Asia: Inconsistency in Satellite-Based Products 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Ganges-Brahmaputra-Meghna (GBM) river basin is the world’s third largest. Literature show that changes in precipitation have a significant impact on climate, agriculture, and the environment in the GBM. Two satellite-based precipitation products, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) and Multi-Source Weighted-Ensemble Precipitation (MSWEP), were used to analyze and compare precipitation trends over the GBM as a whole and within 34 pre-defined hydrological sub-basins separately for the period 1983–2019. A non-parametric Modified Mann-Kendall test was applied to determine significant trends in monsoon (June–September) and pre-monsoon (March–May) precipitation. The results show an inconsistency between the two precipitation products. Namely, the MSWEP pre-monsoon precipitation trend has significantly increased (<i<Z</i<-value = 2.236, <i<p</i< = 0.025), and the PERSIANN-CDR monsoon precipitation trend has significantly decreased (<i<Z</i<-value = −33.071, <i<p</i< < 0.000). However, both products strongly indicate that precipitation has recently declined in the pre-monsoon and monsoon seasons in the eastern and southern regions of the GBM river basin, agreeing with several previous studies. Further work is needed to identify the reasons behind inconsistent decreasing and increasing precipitation trends in the GBM river basin. Ganges-Brahmaputra-Meghna (GBM) pre-monsoon monsoon Modified Mann–Kendall Meteorology. Climatology Scott Curtis verfasserin aut In Atmosphere MDPI AG, 2011 12(2021), 9, p 1155 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:12 year:2021 number:9, p 1155 https://doi.org/10.3390/atmos12091155 kostenfrei https://doaj.org/article/6439ddb91ba84e809d90af1ab0540037 kostenfrei https://www.mdpi.com/2073-4433/12/9/1155 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 9, p 1155 |
allfields_unstemmed |
10.3390/atmos12091155 doi (DE-627)DOAJ005125995 (DE-599)DOAJ6439ddb91ba84e809d90af1ab0540037 DE-627 ger DE-627 rakwb eng QC851-999 Muna Khatiwada verfasserin aut Precipitation Trends in the Ganges-Brahmaputra-Meghna River Basin, South Asia: Inconsistency in Satellite-Based Products 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Ganges-Brahmaputra-Meghna (GBM) river basin is the world’s third largest. Literature show that changes in precipitation have a significant impact on climate, agriculture, and the environment in the GBM. Two satellite-based precipitation products, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) and Multi-Source Weighted-Ensemble Precipitation (MSWEP), were used to analyze and compare precipitation trends over the GBM as a whole and within 34 pre-defined hydrological sub-basins separately for the period 1983–2019. A non-parametric Modified Mann-Kendall test was applied to determine significant trends in monsoon (June–September) and pre-monsoon (March–May) precipitation. The results show an inconsistency between the two precipitation products. Namely, the MSWEP pre-monsoon precipitation trend has significantly increased (<i<Z</i<-value = 2.236, <i<p</i< = 0.025), and the PERSIANN-CDR monsoon precipitation trend has significantly decreased (<i<Z</i<-value = −33.071, <i<p</i< < 0.000). However, both products strongly indicate that precipitation has recently declined in the pre-monsoon and monsoon seasons in the eastern and southern regions of the GBM river basin, agreeing with several previous studies. Further work is needed to identify the reasons behind inconsistent decreasing and increasing precipitation trends in the GBM river basin. Ganges-Brahmaputra-Meghna (GBM) pre-monsoon monsoon Modified Mann–Kendall Meteorology. Climatology Scott Curtis verfasserin aut In Atmosphere MDPI AG, 2011 12(2021), 9, p 1155 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:12 year:2021 number:9, p 1155 https://doi.org/10.3390/atmos12091155 kostenfrei https://doaj.org/article/6439ddb91ba84e809d90af1ab0540037 kostenfrei https://www.mdpi.com/2073-4433/12/9/1155 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 9, p 1155 |
allfieldsGer |
10.3390/atmos12091155 doi (DE-627)DOAJ005125995 (DE-599)DOAJ6439ddb91ba84e809d90af1ab0540037 DE-627 ger DE-627 rakwb eng QC851-999 Muna Khatiwada verfasserin aut Precipitation Trends in the Ganges-Brahmaputra-Meghna River Basin, South Asia: Inconsistency in Satellite-Based Products 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Ganges-Brahmaputra-Meghna (GBM) river basin is the world’s third largest. Literature show that changes in precipitation have a significant impact on climate, agriculture, and the environment in the GBM. Two satellite-based precipitation products, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) and Multi-Source Weighted-Ensemble Precipitation (MSWEP), were used to analyze and compare precipitation trends over the GBM as a whole and within 34 pre-defined hydrological sub-basins separately for the period 1983–2019. A non-parametric Modified Mann-Kendall test was applied to determine significant trends in monsoon (June–September) and pre-monsoon (March–May) precipitation. The results show an inconsistency between the two precipitation products. Namely, the MSWEP pre-monsoon precipitation trend has significantly increased (<i<Z</i<-value = 2.236, <i<p</i< = 0.025), and the PERSIANN-CDR monsoon precipitation trend has significantly decreased (<i<Z</i<-value = −33.071, <i<p</i< < 0.000). However, both products strongly indicate that precipitation has recently declined in the pre-monsoon and monsoon seasons in the eastern and southern regions of the GBM river basin, agreeing with several previous studies. Further work is needed to identify the reasons behind inconsistent decreasing and increasing precipitation trends in the GBM river basin. Ganges-Brahmaputra-Meghna (GBM) pre-monsoon monsoon Modified Mann–Kendall Meteorology. Climatology Scott Curtis verfasserin aut In Atmosphere MDPI AG, 2011 12(2021), 9, p 1155 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:12 year:2021 number:9, p 1155 https://doi.org/10.3390/atmos12091155 kostenfrei https://doaj.org/article/6439ddb91ba84e809d90af1ab0540037 kostenfrei https://www.mdpi.com/2073-4433/12/9/1155 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 9, p 1155 |
allfieldsSound |
10.3390/atmos12091155 doi (DE-627)DOAJ005125995 (DE-599)DOAJ6439ddb91ba84e809d90af1ab0540037 DE-627 ger DE-627 rakwb eng QC851-999 Muna Khatiwada verfasserin aut Precipitation Trends in the Ganges-Brahmaputra-Meghna River Basin, South Asia: Inconsistency in Satellite-Based Products 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Ganges-Brahmaputra-Meghna (GBM) river basin is the world’s third largest. Literature show that changes in precipitation have a significant impact on climate, agriculture, and the environment in the GBM. Two satellite-based precipitation products, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) and Multi-Source Weighted-Ensemble Precipitation (MSWEP), were used to analyze and compare precipitation trends over the GBM as a whole and within 34 pre-defined hydrological sub-basins separately for the period 1983–2019. A non-parametric Modified Mann-Kendall test was applied to determine significant trends in monsoon (June–September) and pre-monsoon (March–May) precipitation. The results show an inconsistency between the two precipitation products. Namely, the MSWEP pre-monsoon precipitation trend has significantly increased (<i<Z</i<-value = 2.236, <i<p</i< = 0.025), and the PERSIANN-CDR monsoon precipitation trend has significantly decreased (<i<Z</i<-value = −33.071, <i<p</i< < 0.000). However, both products strongly indicate that precipitation has recently declined in the pre-monsoon and monsoon seasons in the eastern and southern regions of the GBM river basin, agreeing with several previous studies. Further work is needed to identify the reasons behind inconsistent decreasing and increasing precipitation trends in the GBM river basin. Ganges-Brahmaputra-Meghna (GBM) pre-monsoon monsoon Modified Mann–Kendall Meteorology. Climatology Scott Curtis verfasserin aut In Atmosphere MDPI AG, 2011 12(2021), 9, p 1155 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:12 year:2021 number:9, p 1155 https://doi.org/10.3390/atmos12091155 kostenfrei https://doaj.org/article/6439ddb91ba84e809d90af1ab0540037 kostenfrei https://www.mdpi.com/2073-4433/12/9/1155 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 9, p 1155 |
language |
English |
source |
In Atmosphere 12(2021), 9, p 1155 volume:12 year:2021 number:9, p 1155 |
sourceStr |
In Atmosphere 12(2021), 9, p 1155 volume:12 year:2021 number:9, p 1155 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Ganges-Brahmaputra-Meghna (GBM) pre-monsoon monsoon Modified Mann–Kendall Meteorology. Climatology |
isfreeaccess_bool |
true |
container_title |
Atmosphere |
authorswithroles_txt_mv |
Muna Khatiwada @@aut@@ Scott Curtis @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
657584010 |
id |
DOAJ005125995 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ005125995</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412161152.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/atmos12091155</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ005125995</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6439ddb91ba84e809d90af1ab0540037</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC851-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Muna Khatiwada</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Precipitation Trends in the Ganges-Brahmaputra-Meghna River Basin, South Asia: Inconsistency in Satellite-Based Products</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Ganges-Brahmaputra-Meghna (GBM) river basin is the world’s third largest. Literature show that changes in precipitation have a significant impact on climate, agriculture, and the environment in the GBM. Two satellite-based precipitation products, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) and Multi-Source Weighted-Ensemble Precipitation (MSWEP), were used to analyze and compare precipitation trends over the GBM as a whole and within 34 pre-defined hydrological sub-basins separately for the period 1983–2019. A non-parametric Modified Mann-Kendall test was applied to determine significant trends in monsoon (June–September) and pre-monsoon (March–May) precipitation. The results show an inconsistency between the two precipitation products. Namely, the MSWEP pre-monsoon precipitation trend has significantly increased (<i<Z</i<-value = 2.236, <i<p</i< = 0.025), and the PERSIANN-CDR monsoon precipitation trend has significantly decreased (<i<Z</i<-value = −33.071, <i<p</i< < 0.000). However, both products strongly indicate that precipitation has recently declined in the pre-monsoon and monsoon seasons in the eastern and southern regions of the GBM river basin, agreeing with several previous studies. Further work is needed to identify the reasons behind inconsistent decreasing and increasing precipitation trends in the GBM river basin.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ganges-Brahmaputra-Meghna (GBM)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pre-monsoon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">monsoon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modified Mann–Kendall</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Meteorology. Climatology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Scott Curtis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Atmosphere</subfield><subfield code="d">MDPI AG, 2011</subfield><subfield code="g">12(2021), 9, p 1155</subfield><subfield code="w">(DE-627)657584010</subfield><subfield code="w">(DE-600)2605928-9</subfield><subfield code="x">20734433</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:9, p 1155</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/atmos12091155</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6439ddb91ba84e809d90af1ab0540037</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4433/12/9/1155</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4433</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2021</subfield><subfield code="e">9, p 1155</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Muna Khatiwada |
spellingShingle |
Muna Khatiwada misc QC851-999 misc Ganges-Brahmaputra-Meghna (GBM) misc pre-monsoon misc monsoon misc Modified Mann–Kendall misc Meteorology. Climatology Precipitation Trends in the Ganges-Brahmaputra-Meghna River Basin, South Asia: Inconsistency in Satellite-Based Products |
authorStr |
Muna Khatiwada |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)657584010 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC851-999 |
illustrated |
Not Illustrated |
issn |
20734433 |
topic_title |
QC851-999 Precipitation Trends in the Ganges-Brahmaputra-Meghna River Basin, South Asia: Inconsistency in Satellite-Based Products Ganges-Brahmaputra-Meghna (GBM) pre-monsoon monsoon Modified Mann–Kendall |
topic |
misc QC851-999 misc Ganges-Brahmaputra-Meghna (GBM) misc pre-monsoon misc monsoon misc Modified Mann–Kendall misc Meteorology. Climatology |
topic_unstemmed |
misc QC851-999 misc Ganges-Brahmaputra-Meghna (GBM) misc pre-monsoon misc monsoon misc Modified Mann–Kendall misc Meteorology. Climatology |
topic_browse |
misc QC851-999 misc Ganges-Brahmaputra-Meghna (GBM) misc pre-monsoon misc monsoon misc Modified Mann–Kendall misc Meteorology. Climatology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Atmosphere |
hierarchy_parent_id |
657584010 |
hierarchy_top_title |
Atmosphere |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)657584010 (DE-600)2605928-9 |
title |
Precipitation Trends in the Ganges-Brahmaputra-Meghna River Basin, South Asia: Inconsistency in Satellite-Based Products |
ctrlnum |
(DE-627)DOAJ005125995 (DE-599)DOAJ6439ddb91ba84e809d90af1ab0540037 |
title_full |
Precipitation Trends in the Ganges-Brahmaputra-Meghna River Basin, South Asia: Inconsistency in Satellite-Based Products |
author_sort |
Muna Khatiwada |
journal |
Atmosphere |
journalStr |
Atmosphere |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Muna Khatiwada Scott Curtis |
container_volume |
12 |
class |
QC851-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Muna Khatiwada |
doi_str_mv |
10.3390/atmos12091155 |
author2-role |
verfasserin |
title_sort |
precipitation trends in the ganges-brahmaputra-meghna river basin, south asia: inconsistency in satellite-based products |
callnumber |
QC851-999 |
title_auth |
Precipitation Trends in the Ganges-Brahmaputra-Meghna River Basin, South Asia: Inconsistency in Satellite-Based Products |
abstract |
The Ganges-Brahmaputra-Meghna (GBM) river basin is the world’s third largest. Literature show that changes in precipitation have a significant impact on climate, agriculture, and the environment in the GBM. Two satellite-based precipitation products, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) and Multi-Source Weighted-Ensemble Precipitation (MSWEP), were used to analyze and compare precipitation trends over the GBM as a whole and within 34 pre-defined hydrological sub-basins separately for the period 1983–2019. A non-parametric Modified Mann-Kendall test was applied to determine significant trends in monsoon (June–September) and pre-monsoon (March–May) precipitation. The results show an inconsistency between the two precipitation products. Namely, the MSWEP pre-monsoon precipitation trend has significantly increased (<i<Z</i<-value = 2.236, <i<p</i< = 0.025), and the PERSIANN-CDR monsoon precipitation trend has significantly decreased (<i<Z</i<-value = −33.071, <i<p</i< < 0.000). However, both products strongly indicate that precipitation has recently declined in the pre-monsoon and monsoon seasons in the eastern and southern regions of the GBM river basin, agreeing with several previous studies. Further work is needed to identify the reasons behind inconsistent decreasing and increasing precipitation trends in the GBM river basin. |
abstractGer |
The Ganges-Brahmaputra-Meghna (GBM) river basin is the world’s third largest. Literature show that changes in precipitation have a significant impact on climate, agriculture, and the environment in the GBM. Two satellite-based precipitation products, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) and Multi-Source Weighted-Ensemble Precipitation (MSWEP), were used to analyze and compare precipitation trends over the GBM as a whole and within 34 pre-defined hydrological sub-basins separately for the period 1983–2019. A non-parametric Modified Mann-Kendall test was applied to determine significant trends in monsoon (June–September) and pre-monsoon (March–May) precipitation. The results show an inconsistency between the two precipitation products. Namely, the MSWEP pre-monsoon precipitation trend has significantly increased (<i<Z</i<-value = 2.236, <i<p</i< = 0.025), and the PERSIANN-CDR monsoon precipitation trend has significantly decreased (<i<Z</i<-value = −33.071, <i<p</i< < 0.000). However, both products strongly indicate that precipitation has recently declined in the pre-monsoon and monsoon seasons in the eastern and southern regions of the GBM river basin, agreeing with several previous studies. Further work is needed to identify the reasons behind inconsistent decreasing and increasing precipitation trends in the GBM river basin. |
abstract_unstemmed |
The Ganges-Brahmaputra-Meghna (GBM) river basin is the world’s third largest. Literature show that changes in precipitation have a significant impact on climate, agriculture, and the environment in the GBM. Two satellite-based precipitation products, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) and Multi-Source Weighted-Ensemble Precipitation (MSWEP), were used to analyze and compare precipitation trends over the GBM as a whole and within 34 pre-defined hydrological sub-basins separately for the period 1983–2019. A non-parametric Modified Mann-Kendall test was applied to determine significant trends in monsoon (June–September) and pre-monsoon (March–May) precipitation. The results show an inconsistency between the two precipitation products. Namely, the MSWEP pre-monsoon precipitation trend has significantly increased (<i<Z</i<-value = 2.236, <i<p</i< = 0.025), and the PERSIANN-CDR monsoon precipitation trend has significantly decreased (<i<Z</i<-value = −33.071, <i<p</i< < 0.000). However, both products strongly indicate that precipitation has recently declined in the pre-monsoon and monsoon seasons in the eastern and southern regions of the GBM river basin, agreeing with several previous studies. Further work is needed to identify the reasons behind inconsistent decreasing and increasing precipitation trends in the GBM river basin. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
9, p 1155 |
title_short |
Precipitation Trends in the Ganges-Brahmaputra-Meghna River Basin, South Asia: Inconsistency in Satellite-Based Products |
url |
https://doi.org/10.3390/atmos12091155 https://doaj.org/article/6439ddb91ba84e809d90af1ab0540037 https://www.mdpi.com/2073-4433/12/9/1155 https://doaj.org/toc/2073-4433 |
remote_bool |
true |
author2 |
Scott Curtis |
author2Str |
Scott Curtis |
ppnlink |
657584010 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/atmos12091155 |
callnumber-a |
QC851-999 |
up_date |
2024-07-04T02:24:08.737Z |
_version_ |
1803613475952394240 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ005125995</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412161152.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/atmos12091155</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ005125995</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6439ddb91ba84e809d90af1ab0540037</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC851-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Muna Khatiwada</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Precipitation Trends in the Ganges-Brahmaputra-Meghna River Basin, South Asia: Inconsistency in Satellite-Based Products</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Ganges-Brahmaputra-Meghna (GBM) river basin is the world’s third largest. Literature show that changes in precipitation have a significant impact on climate, agriculture, and the environment in the GBM. Two satellite-based precipitation products, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) and Multi-Source Weighted-Ensemble Precipitation (MSWEP), were used to analyze and compare precipitation trends over the GBM as a whole and within 34 pre-defined hydrological sub-basins separately for the period 1983–2019. A non-parametric Modified Mann-Kendall test was applied to determine significant trends in monsoon (June–September) and pre-monsoon (March–May) precipitation. The results show an inconsistency between the two precipitation products. Namely, the MSWEP pre-monsoon precipitation trend has significantly increased (<i<Z</i<-value = 2.236, <i<p</i< = 0.025), and the PERSIANN-CDR monsoon precipitation trend has significantly decreased (<i<Z</i<-value = −33.071, <i<p</i< < 0.000). However, both products strongly indicate that precipitation has recently declined in the pre-monsoon and monsoon seasons in the eastern and southern regions of the GBM river basin, agreeing with several previous studies. Further work is needed to identify the reasons behind inconsistent decreasing and increasing precipitation trends in the GBM river basin.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ganges-Brahmaputra-Meghna (GBM)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pre-monsoon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">monsoon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modified Mann–Kendall</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Meteorology. Climatology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Scott Curtis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Atmosphere</subfield><subfield code="d">MDPI AG, 2011</subfield><subfield code="g">12(2021), 9, p 1155</subfield><subfield code="w">(DE-627)657584010</subfield><subfield code="w">(DE-600)2605928-9</subfield><subfield code="x">20734433</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:9, p 1155</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/atmos12091155</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6439ddb91ba84e809d90af1ab0540037</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4433/12/9/1155</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4433</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2021</subfield><subfield code="e">9, p 1155</subfield></datafield></record></collection>
|
score |
7.401326 |