Design and analysis of bidirectional driven float-type wave power generation system
Abstract The dynamic model for a bidirectional driven float-type wave power generation system design is presented in this paper. The gravity, buoyancy and drag force acting on the wave energy converter (WEC) are all analyzed. The analytical expression of the torque applied on the rotor is given base...
Ausführliche Beschreibung
Autor*in: |
Hongwei FANG [verfasserIn] Yue TAO [verfasserIn] Shuai ZHANG [verfasserIn] Zhaoxia XIAO [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Modern Power Systems and Clean Energy ; 6(2017), 1, Seite 50-60 volume:6 ; year:2017 ; number:1 ; pages:50-60 |
---|
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1007/s40565-017-0289-9 |
---|
Katalog-ID: |
DOAJ005162599 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ005162599 | ||
003 | DE-627 | ||
005 | 20230502114733.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40565-017-0289-9 |2 doi | |
035 | |a (DE-627)DOAJ005162599 | ||
035 | |a (DE-599)DOAJ9714e80515444ecc93e7e0d2db325d19 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1001-1841 | |
050 | 0 | |a TJ807-830 | |
100 | 0 | |a Hongwei FANG |e verfasserin |4 aut | |
245 | 1 | 0 | |a Design and analysis of bidirectional driven float-type wave power generation system |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The dynamic model for a bidirectional driven float-type wave power generation system design is presented in this paper. The gravity, buoyancy and drag force acting on the wave energy converter (WEC) are all analyzed. The analytical expression of the torque applied on the rotor is given based on a linear model of the switched reluctance generator (SRG). The SRG usually rotates with low velocity in the WEC system. In this situation, current chopping control (CCC) is adopted with fixed turn-on angle and turn-off angle control mode to have a quick response for SRG. Further, in order to make the float keep in phase with the wave so as to improve the power generation efficiency, the reference current is dynamically adjusted according to the wave motion at all working stages. Then maximum power point tracking (MPPT) of system is achieved. A simulation model is developed in MATLAB for the bidirectional driven float-type wave power generation system with real wave statistical characteristics taken into account. Simulation results show that the WEC can output desired torque periodically with high efficiency and good adaptability. Therefore, the feasibility of applying a SRG in a WEC is also verified. | ||
650 | 4 | |a Wave energy converter | |
650 | 4 | |a Force analysis | |
650 | 4 | |a Current chopping control | |
650 | 4 | |a Dynamical reference current setting | |
650 | 4 | |a Maximum power point tracking | |
653 | 0 | |a Production of electric energy or power. Powerplants. Central stations | |
653 | 0 | |a Renewable energy sources | |
700 | 0 | |a Yue TAO |e verfasserin |4 aut | |
700 | 0 | |a Shuai ZHANG |e verfasserin |4 aut | |
700 | 0 | |a Zhaoxia XIAO |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Modern Power Systems and Clean Energy |g 6(2017), 1, Seite 50-60 |
773 | 1 | 8 | |g volume:6 |g year:2017 |g number:1 |g pages:50-60 |
856 | 4 | 0 | |u https://doi.org/10.1007/s40565-017-0289-9 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/9714e80515444ecc93e7e0d2db325d19 |z kostenfrei |
856 | 4 | 0 | |u http://link.springer.com/article/10.1007/s40565-017-0289-9 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2196-5625 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2196-5420 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
951 | |a AR | ||
952 | |d 6 |j 2017 |e 1 |h 50-60 |
author_variant |
h f hf y t yt s z sz z x zx |
---|---|
matchkey_str |
hongweifangyuetaoshuaizhangzhaoxiaxiao:2017----:einnaayiobdrcinlrvnlatpwvpw |
hierarchy_sort_str |
2017 |
callnumber-subject-code |
TK |
publishDate |
2017 |
allfields |
10.1007/s40565-017-0289-9 doi (DE-627)DOAJ005162599 (DE-599)DOAJ9714e80515444ecc93e7e0d2db325d19 DE-627 ger DE-627 rakwb eng TK1001-1841 TJ807-830 Hongwei FANG verfasserin aut Design and analysis of bidirectional driven float-type wave power generation system 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The dynamic model for a bidirectional driven float-type wave power generation system design is presented in this paper. The gravity, buoyancy and drag force acting on the wave energy converter (WEC) are all analyzed. The analytical expression of the torque applied on the rotor is given based on a linear model of the switched reluctance generator (SRG). The SRG usually rotates with low velocity in the WEC system. In this situation, current chopping control (CCC) is adopted with fixed turn-on angle and turn-off angle control mode to have a quick response for SRG. Further, in order to make the float keep in phase with the wave so as to improve the power generation efficiency, the reference current is dynamically adjusted according to the wave motion at all working stages. Then maximum power point tracking (MPPT) of system is achieved. A simulation model is developed in MATLAB for the bidirectional driven float-type wave power generation system with real wave statistical characteristics taken into account. Simulation results show that the WEC can output desired torque periodically with high efficiency and good adaptability. Therefore, the feasibility of applying a SRG in a WEC is also verified. Wave energy converter Force analysis Current chopping control Dynamical reference current setting Maximum power point tracking Production of electric energy or power. Powerplants. Central stations Renewable energy sources Yue TAO verfasserin aut Shuai ZHANG verfasserin aut Zhaoxia XIAO verfasserin aut In Journal of Modern Power Systems and Clean Energy 6(2017), 1, Seite 50-60 volume:6 year:2017 number:1 pages:50-60 https://doi.org/10.1007/s40565-017-0289-9 kostenfrei https://doaj.org/article/9714e80515444ecc93e7e0d2db325d19 kostenfrei http://link.springer.com/article/10.1007/s40565-017-0289-9 kostenfrei https://doaj.org/toc/2196-5625 Journal toc kostenfrei https://doaj.org/toc/2196-5420 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA AR 6 2017 1 50-60 |
spelling |
10.1007/s40565-017-0289-9 doi (DE-627)DOAJ005162599 (DE-599)DOAJ9714e80515444ecc93e7e0d2db325d19 DE-627 ger DE-627 rakwb eng TK1001-1841 TJ807-830 Hongwei FANG verfasserin aut Design and analysis of bidirectional driven float-type wave power generation system 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The dynamic model for a bidirectional driven float-type wave power generation system design is presented in this paper. The gravity, buoyancy and drag force acting on the wave energy converter (WEC) are all analyzed. The analytical expression of the torque applied on the rotor is given based on a linear model of the switched reluctance generator (SRG). The SRG usually rotates with low velocity in the WEC system. In this situation, current chopping control (CCC) is adopted with fixed turn-on angle and turn-off angle control mode to have a quick response for SRG. Further, in order to make the float keep in phase with the wave so as to improve the power generation efficiency, the reference current is dynamically adjusted according to the wave motion at all working stages. Then maximum power point tracking (MPPT) of system is achieved. A simulation model is developed in MATLAB for the bidirectional driven float-type wave power generation system with real wave statistical characteristics taken into account. Simulation results show that the WEC can output desired torque periodically with high efficiency and good adaptability. Therefore, the feasibility of applying a SRG in a WEC is also verified. Wave energy converter Force analysis Current chopping control Dynamical reference current setting Maximum power point tracking Production of electric energy or power. Powerplants. Central stations Renewable energy sources Yue TAO verfasserin aut Shuai ZHANG verfasserin aut Zhaoxia XIAO verfasserin aut In Journal of Modern Power Systems and Clean Energy 6(2017), 1, Seite 50-60 volume:6 year:2017 number:1 pages:50-60 https://doi.org/10.1007/s40565-017-0289-9 kostenfrei https://doaj.org/article/9714e80515444ecc93e7e0d2db325d19 kostenfrei http://link.springer.com/article/10.1007/s40565-017-0289-9 kostenfrei https://doaj.org/toc/2196-5625 Journal toc kostenfrei https://doaj.org/toc/2196-5420 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA AR 6 2017 1 50-60 |
allfields_unstemmed |
10.1007/s40565-017-0289-9 doi (DE-627)DOAJ005162599 (DE-599)DOAJ9714e80515444ecc93e7e0d2db325d19 DE-627 ger DE-627 rakwb eng TK1001-1841 TJ807-830 Hongwei FANG verfasserin aut Design and analysis of bidirectional driven float-type wave power generation system 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The dynamic model for a bidirectional driven float-type wave power generation system design is presented in this paper. The gravity, buoyancy and drag force acting on the wave energy converter (WEC) are all analyzed. The analytical expression of the torque applied on the rotor is given based on a linear model of the switched reluctance generator (SRG). The SRG usually rotates with low velocity in the WEC system. In this situation, current chopping control (CCC) is adopted with fixed turn-on angle and turn-off angle control mode to have a quick response for SRG. Further, in order to make the float keep in phase with the wave so as to improve the power generation efficiency, the reference current is dynamically adjusted according to the wave motion at all working stages. Then maximum power point tracking (MPPT) of system is achieved. A simulation model is developed in MATLAB for the bidirectional driven float-type wave power generation system with real wave statistical characteristics taken into account. Simulation results show that the WEC can output desired torque periodically with high efficiency and good adaptability. Therefore, the feasibility of applying a SRG in a WEC is also verified. Wave energy converter Force analysis Current chopping control Dynamical reference current setting Maximum power point tracking Production of electric energy or power. Powerplants. Central stations Renewable energy sources Yue TAO verfasserin aut Shuai ZHANG verfasserin aut Zhaoxia XIAO verfasserin aut In Journal of Modern Power Systems and Clean Energy 6(2017), 1, Seite 50-60 volume:6 year:2017 number:1 pages:50-60 https://doi.org/10.1007/s40565-017-0289-9 kostenfrei https://doaj.org/article/9714e80515444ecc93e7e0d2db325d19 kostenfrei http://link.springer.com/article/10.1007/s40565-017-0289-9 kostenfrei https://doaj.org/toc/2196-5625 Journal toc kostenfrei https://doaj.org/toc/2196-5420 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA AR 6 2017 1 50-60 |
allfieldsGer |
10.1007/s40565-017-0289-9 doi (DE-627)DOAJ005162599 (DE-599)DOAJ9714e80515444ecc93e7e0d2db325d19 DE-627 ger DE-627 rakwb eng TK1001-1841 TJ807-830 Hongwei FANG verfasserin aut Design and analysis of bidirectional driven float-type wave power generation system 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The dynamic model for a bidirectional driven float-type wave power generation system design is presented in this paper. The gravity, buoyancy and drag force acting on the wave energy converter (WEC) are all analyzed. The analytical expression of the torque applied on the rotor is given based on a linear model of the switched reluctance generator (SRG). The SRG usually rotates with low velocity in the WEC system. In this situation, current chopping control (CCC) is adopted with fixed turn-on angle and turn-off angle control mode to have a quick response for SRG. Further, in order to make the float keep in phase with the wave so as to improve the power generation efficiency, the reference current is dynamically adjusted according to the wave motion at all working stages. Then maximum power point tracking (MPPT) of system is achieved. A simulation model is developed in MATLAB for the bidirectional driven float-type wave power generation system with real wave statistical characteristics taken into account. Simulation results show that the WEC can output desired torque periodically with high efficiency and good adaptability. Therefore, the feasibility of applying a SRG in a WEC is also verified. Wave energy converter Force analysis Current chopping control Dynamical reference current setting Maximum power point tracking Production of electric energy or power. Powerplants. Central stations Renewable energy sources Yue TAO verfasserin aut Shuai ZHANG verfasserin aut Zhaoxia XIAO verfasserin aut In Journal of Modern Power Systems and Clean Energy 6(2017), 1, Seite 50-60 volume:6 year:2017 number:1 pages:50-60 https://doi.org/10.1007/s40565-017-0289-9 kostenfrei https://doaj.org/article/9714e80515444ecc93e7e0d2db325d19 kostenfrei http://link.springer.com/article/10.1007/s40565-017-0289-9 kostenfrei https://doaj.org/toc/2196-5625 Journal toc kostenfrei https://doaj.org/toc/2196-5420 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA AR 6 2017 1 50-60 |
allfieldsSound |
10.1007/s40565-017-0289-9 doi (DE-627)DOAJ005162599 (DE-599)DOAJ9714e80515444ecc93e7e0d2db325d19 DE-627 ger DE-627 rakwb eng TK1001-1841 TJ807-830 Hongwei FANG verfasserin aut Design and analysis of bidirectional driven float-type wave power generation system 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The dynamic model for a bidirectional driven float-type wave power generation system design is presented in this paper. The gravity, buoyancy and drag force acting on the wave energy converter (WEC) are all analyzed. The analytical expression of the torque applied on the rotor is given based on a linear model of the switched reluctance generator (SRG). The SRG usually rotates with low velocity in the WEC system. In this situation, current chopping control (CCC) is adopted with fixed turn-on angle and turn-off angle control mode to have a quick response for SRG. Further, in order to make the float keep in phase with the wave so as to improve the power generation efficiency, the reference current is dynamically adjusted according to the wave motion at all working stages. Then maximum power point tracking (MPPT) of system is achieved. A simulation model is developed in MATLAB for the bidirectional driven float-type wave power generation system with real wave statistical characteristics taken into account. Simulation results show that the WEC can output desired torque periodically with high efficiency and good adaptability. Therefore, the feasibility of applying a SRG in a WEC is also verified. Wave energy converter Force analysis Current chopping control Dynamical reference current setting Maximum power point tracking Production of electric energy or power. Powerplants. Central stations Renewable energy sources Yue TAO verfasserin aut Shuai ZHANG verfasserin aut Zhaoxia XIAO verfasserin aut In Journal of Modern Power Systems and Clean Energy 6(2017), 1, Seite 50-60 volume:6 year:2017 number:1 pages:50-60 https://doi.org/10.1007/s40565-017-0289-9 kostenfrei https://doaj.org/article/9714e80515444ecc93e7e0d2db325d19 kostenfrei http://link.springer.com/article/10.1007/s40565-017-0289-9 kostenfrei https://doaj.org/toc/2196-5625 Journal toc kostenfrei https://doaj.org/toc/2196-5420 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA AR 6 2017 1 50-60 |
language |
English |
source |
In Journal of Modern Power Systems and Clean Energy 6(2017), 1, Seite 50-60 volume:6 year:2017 number:1 pages:50-60 |
sourceStr |
In Journal of Modern Power Systems and Clean Energy 6(2017), 1, Seite 50-60 volume:6 year:2017 number:1 pages:50-60 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Wave energy converter Force analysis Current chopping control Dynamical reference current setting Maximum power point tracking Production of electric energy or power. Powerplants. Central stations Renewable energy sources |
isfreeaccess_bool |
true |
container_title |
Journal of Modern Power Systems and Clean Energy |
authorswithroles_txt_mv |
Hongwei FANG @@aut@@ Yue TAO @@aut@@ Shuai ZHANG @@aut@@ Zhaoxia XIAO @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
id |
DOAJ005162599 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ005162599</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502114733.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40565-017-0289-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ005162599</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9714e80515444ecc93e7e0d2db325d19</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1001-1841</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hongwei FANG</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design and analysis of bidirectional driven float-type wave power generation system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The dynamic model for a bidirectional driven float-type wave power generation system design is presented in this paper. The gravity, buoyancy and drag force acting on the wave energy converter (WEC) are all analyzed. The analytical expression of the torque applied on the rotor is given based on a linear model of the switched reluctance generator (SRG). The SRG usually rotates with low velocity in the WEC system. In this situation, current chopping control (CCC) is adopted with fixed turn-on angle and turn-off angle control mode to have a quick response for SRG. Further, in order to make the float keep in phase with the wave so as to improve the power generation efficiency, the reference current is dynamically adjusted according to the wave motion at all working stages. Then maximum power point tracking (MPPT) of system is achieved. A simulation model is developed in MATLAB for the bidirectional driven float-type wave power generation system with real wave statistical characteristics taken into account. Simulation results show that the WEC can output desired torque periodically with high efficiency and good adaptability. Therefore, the feasibility of applying a SRG in a WEC is also verified.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave energy converter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Force analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Current chopping control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical reference current setting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maximum power point tracking</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Production of electric energy or power. Powerplants. Central stations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yue TAO</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuai ZHANG</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhaoxia XIAO</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Modern Power Systems and Clean Energy</subfield><subfield code="g">6(2017), 1, Seite 50-60</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:50-60</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s40565-017-0289-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9714e80515444ecc93e7e0d2db325d19</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1007/s40565-017-0289-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2196-5625</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2196-5420</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">50-60</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Hongwei FANG |
spellingShingle |
Hongwei FANG misc TK1001-1841 misc TJ807-830 misc Wave energy converter misc Force analysis misc Current chopping control misc Dynamical reference current setting misc Maximum power point tracking misc Production of electric energy or power. Powerplants. Central stations misc Renewable energy sources Design and analysis of bidirectional driven float-type wave power generation system |
authorStr |
Hongwei FANG |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1001-1841 |
illustrated |
Not Illustrated |
topic_title |
TK1001-1841 TJ807-830 Design and analysis of bidirectional driven float-type wave power generation system Wave energy converter Force analysis Current chopping control Dynamical reference current setting Maximum power point tracking |
topic |
misc TK1001-1841 misc TJ807-830 misc Wave energy converter misc Force analysis misc Current chopping control misc Dynamical reference current setting misc Maximum power point tracking misc Production of electric energy or power. Powerplants. Central stations misc Renewable energy sources |
topic_unstemmed |
misc TK1001-1841 misc TJ807-830 misc Wave energy converter misc Force analysis misc Current chopping control misc Dynamical reference current setting misc Maximum power point tracking misc Production of electric energy or power. Powerplants. Central stations misc Renewable energy sources |
topic_browse |
misc TK1001-1841 misc TJ807-830 misc Wave energy converter misc Force analysis misc Current chopping control misc Dynamical reference current setting misc Maximum power point tracking misc Production of electric energy or power. Powerplants. Central stations misc Renewable energy sources |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Modern Power Systems and Clean Energy |
hierarchy_top_title |
Journal of Modern Power Systems and Clean Energy |
isfreeaccess_txt |
true |
title |
Design and analysis of bidirectional driven float-type wave power generation system |
ctrlnum |
(DE-627)DOAJ005162599 (DE-599)DOAJ9714e80515444ecc93e7e0d2db325d19 |
title_full |
Design and analysis of bidirectional driven float-type wave power generation system |
author_sort |
Hongwei FANG |
journal |
Journal of Modern Power Systems and Clean Energy |
journalStr |
Journal of Modern Power Systems and Clean Energy |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
50 |
author_browse |
Hongwei FANG Yue TAO Shuai ZHANG Zhaoxia XIAO |
container_volume |
6 |
class |
TK1001-1841 TJ807-830 |
format_se |
Elektronische Aufsätze |
author-letter |
Hongwei FANG |
doi_str_mv |
10.1007/s40565-017-0289-9 |
author2-role |
verfasserin |
title_sort |
design and analysis of bidirectional driven float-type wave power generation system |
callnumber |
TK1001-1841 |
title_auth |
Design and analysis of bidirectional driven float-type wave power generation system |
abstract |
Abstract The dynamic model for a bidirectional driven float-type wave power generation system design is presented in this paper. The gravity, buoyancy and drag force acting on the wave energy converter (WEC) are all analyzed. The analytical expression of the torque applied on the rotor is given based on a linear model of the switched reluctance generator (SRG). The SRG usually rotates with low velocity in the WEC system. In this situation, current chopping control (CCC) is adopted with fixed turn-on angle and turn-off angle control mode to have a quick response for SRG. Further, in order to make the float keep in phase with the wave so as to improve the power generation efficiency, the reference current is dynamically adjusted according to the wave motion at all working stages. Then maximum power point tracking (MPPT) of system is achieved. A simulation model is developed in MATLAB for the bidirectional driven float-type wave power generation system with real wave statistical characteristics taken into account. Simulation results show that the WEC can output desired torque periodically with high efficiency and good adaptability. Therefore, the feasibility of applying a SRG in a WEC is also verified. |
abstractGer |
Abstract The dynamic model for a bidirectional driven float-type wave power generation system design is presented in this paper. The gravity, buoyancy and drag force acting on the wave energy converter (WEC) are all analyzed. The analytical expression of the torque applied on the rotor is given based on a linear model of the switched reluctance generator (SRG). The SRG usually rotates with low velocity in the WEC system. In this situation, current chopping control (CCC) is adopted with fixed turn-on angle and turn-off angle control mode to have a quick response for SRG. Further, in order to make the float keep in phase with the wave so as to improve the power generation efficiency, the reference current is dynamically adjusted according to the wave motion at all working stages. Then maximum power point tracking (MPPT) of system is achieved. A simulation model is developed in MATLAB for the bidirectional driven float-type wave power generation system with real wave statistical characteristics taken into account. Simulation results show that the WEC can output desired torque periodically with high efficiency and good adaptability. Therefore, the feasibility of applying a SRG in a WEC is also verified. |
abstract_unstemmed |
Abstract The dynamic model for a bidirectional driven float-type wave power generation system design is presented in this paper. The gravity, buoyancy and drag force acting on the wave energy converter (WEC) are all analyzed. The analytical expression of the torque applied on the rotor is given based on a linear model of the switched reluctance generator (SRG). The SRG usually rotates with low velocity in the WEC system. In this situation, current chopping control (CCC) is adopted with fixed turn-on angle and turn-off angle control mode to have a quick response for SRG. Further, in order to make the float keep in phase with the wave so as to improve the power generation efficiency, the reference current is dynamically adjusted according to the wave motion at all working stages. Then maximum power point tracking (MPPT) of system is achieved. A simulation model is developed in MATLAB for the bidirectional driven float-type wave power generation system with real wave statistical characteristics taken into account. Simulation results show that the WEC can output desired torque periodically with high efficiency and good adaptability. Therefore, the feasibility of applying a SRG in a WEC is also verified. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA |
container_issue |
1 |
title_short |
Design and analysis of bidirectional driven float-type wave power generation system |
url |
https://doi.org/10.1007/s40565-017-0289-9 https://doaj.org/article/9714e80515444ecc93e7e0d2db325d19 http://link.springer.com/article/10.1007/s40565-017-0289-9 https://doaj.org/toc/2196-5625 https://doaj.org/toc/2196-5420 |
remote_bool |
true |
author2 |
Yue TAO Shuai ZHANG Zhaoxia XIAO |
author2Str |
Yue TAO Shuai ZHANG Zhaoxia XIAO |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40565-017-0289-9 |
callnumber-a |
TK1001-1841 |
up_date |
2024-07-03T13:20:43.677Z |
_version_ |
1803564187585085440 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ005162599</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502114733.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40565-017-0289-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ005162599</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9714e80515444ecc93e7e0d2db325d19</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1001-1841</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hongwei FANG</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design and analysis of bidirectional driven float-type wave power generation system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The dynamic model for a bidirectional driven float-type wave power generation system design is presented in this paper. The gravity, buoyancy and drag force acting on the wave energy converter (WEC) are all analyzed. The analytical expression of the torque applied on the rotor is given based on a linear model of the switched reluctance generator (SRG). The SRG usually rotates with low velocity in the WEC system. In this situation, current chopping control (CCC) is adopted with fixed turn-on angle and turn-off angle control mode to have a quick response for SRG. Further, in order to make the float keep in phase with the wave so as to improve the power generation efficiency, the reference current is dynamically adjusted according to the wave motion at all working stages. Then maximum power point tracking (MPPT) of system is achieved. A simulation model is developed in MATLAB for the bidirectional driven float-type wave power generation system with real wave statistical characteristics taken into account. Simulation results show that the WEC can output desired torque periodically with high efficiency and good adaptability. Therefore, the feasibility of applying a SRG in a WEC is also verified.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave energy converter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Force analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Current chopping control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical reference current setting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maximum power point tracking</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Production of electric energy or power. Powerplants. Central stations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yue TAO</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuai ZHANG</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhaoxia XIAO</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Modern Power Systems and Clean Energy</subfield><subfield code="g">6(2017), 1, Seite 50-60</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:50-60</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s40565-017-0289-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9714e80515444ecc93e7e0d2db325d19</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1007/s40565-017-0289-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2196-5625</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2196-5420</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">50-60</subfield></datafield></record></collection>
|
score |
7.400523 |