Extraordinary phase coherence length in epitaxial halide perovskites
Summary: Inorganic halide perovskites have emerged as a promising platform in a wide range of applications from solar energy harvesting to computing and light emission. The recent advent of epitaxial thin film growth of halide perovskites has made it possible to investigate low-dimensional quantum e...
Ausführliche Beschreibung
Autor*in: |
Kostyantyn Nasyedkin [verfasserIn] Isaac King [verfasserIn] Liangji Zhang [verfasserIn] Pei Chen [verfasserIn] Lili Wang [verfasserIn] Richard J. Staples [verfasserIn] Richard R. Lunt [verfasserIn] Johannes Pollanen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: iScience - Elsevier, 2019, 24(2021), 8, Seite 102912- |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2021 ; number:8 ; pages:102912- |
Links: |
---|
DOI / URN: |
10.1016/j.isci.2021.102912 |
---|
Katalog-ID: |
DOAJ00533781X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ00533781X | ||
003 | DE-627 | ||
005 | 20230309192359.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.isci.2021.102912 |2 doi | |
035 | |a (DE-627)DOAJ00533781X | ||
035 | |a (DE-599)DOAJ65db4c5384764c0a9e061a278fb1483d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Kostyantyn Nasyedkin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Extraordinary phase coherence length in epitaxial halide perovskites |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Summary: Inorganic halide perovskites have emerged as a promising platform in a wide range of applications from solar energy harvesting to computing and light emission. The recent advent of epitaxial thin film growth of halide perovskites has made it possible to investigate low-dimensional quantum electronic devices based on this class of materials. This study leverages advances in vapor-phase epitaxy of halide perovskites to perform low-temperature magnetotransport measurements on single-domain cesium tin iodide (CsSnI3) epitaxial thin films. The low-field magnetoresistance carries signatures of coherent quantum interference effects and spin-orbit coupling. These weak anti-localization measurements reveal a micron-scale low-temperature phase coherence length for charge carriers in this system. The results indicate that epitaxial halide perovskite heterostructures are a promising platform for investigating long coherent quantum electronic effects and potential applications in spintronics and spin-orbitronics. | ||
650 | 4 | |a quantum phenomena | |
650 | 4 | |a quantum physics | |
650 | 4 | |a quantum electronics | |
650 | 4 | |a electronic materials | |
650 | 4 | |a materials physics | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Isaac King |e verfasserin |4 aut | |
700 | 0 | |a Liangji Zhang |e verfasserin |4 aut | |
700 | 0 | |a Pei Chen |e verfasserin |4 aut | |
700 | 0 | |a Lili Wang |e verfasserin |4 aut | |
700 | 0 | |a Richard J. Staples |e verfasserin |4 aut | |
700 | 0 | |a Richard R. Lunt |e verfasserin |4 aut | |
700 | 0 | |a Johannes Pollanen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t iScience |d Elsevier, 2019 |g 24(2021), 8, Seite 102912- |w (DE-627)1019532106 |x 25890042 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2021 |g number:8 |g pages:102912- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.isci.2021.102912 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/65db4c5384764c0a9e061a278fb1483d |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2589004221008804 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2589-0042 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 24 |j 2021 |e 8 |h 102912- |
author_variant |
k n kn i k ik l z lz p c pc l w lw r j s rjs r r l rrl j p jp |
---|---|
matchkey_str |
article:25890042:2021----::xrodnrpaeoeeclntieiail |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1016/j.isci.2021.102912 doi (DE-627)DOAJ00533781X (DE-599)DOAJ65db4c5384764c0a9e061a278fb1483d DE-627 ger DE-627 rakwb eng Kostyantyn Nasyedkin verfasserin aut Extraordinary phase coherence length in epitaxial halide perovskites 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary: Inorganic halide perovskites have emerged as a promising platform in a wide range of applications from solar energy harvesting to computing and light emission. The recent advent of epitaxial thin film growth of halide perovskites has made it possible to investigate low-dimensional quantum electronic devices based on this class of materials. This study leverages advances in vapor-phase epitaxy of halide perovskites to perform low-temperature magnetotransport measurements on single-domain cesium tin iodide (CsSnI3) epitaxial thin films. The low-field magnetoresistance carries signatures of coherent quantum interference effects and spin-orbit coupling. These weak anti-localization measurements reveal a micron-scale low-temperature phase coherence length for charge carriers in this system. The results indicate that epitaxial halide perovskite heterostructures are a promising platform for investigating long coherent quantum electronic effects and potential applications in spintronics and spin-orbitronics. quantum phenomena quantum physics quantum electronics electronic materials materials physics Science Q Isaac King verfasserin aut Liangji Zhang verfasserin aut Pei Chen verfasserin aut Lili Wang verfasserin aut Richard J. Staples verfasserin aut Richard R. Lunt verfasserin aut Johannes Pollanen verfasserin aut In iScience Elsevier, 2019 24(2021), 8, Seite 102912- (DE-627)1019532106 25890042 nnns volume:24 year:2021 number:8 pages:102912- https://doi.org/10.1016/j.isci.2021.102912 kostenfrei https://doaj.org/article/65db4c5384764c0a9e061a278fb1483d kostenfrei http://www.sciencedirect.com/science/article/pii/S2589004221008804 kostenfrei https://doaj.org/toc/2589-0042 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 24 2021 8 102912- |
spelling |
10.1016/j.isci.2021.102912 doi (DE-627)DOAJ00533781X (DE-599)DOAJ65db4c5384764c0a9e061a278fb1483d DE-627 ger DE-627 rakwb eng Kostyantyn Nasyedkin verfasserin aut Extraordinary phase coherence length in epitaxial halide perovskites 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary: Inorganic halide perovskites have emerged as a promising platform in a wide range of applications from solar energy harvesting to computing and light emission. The recent advent of epitaxial thin film growth of halide perovskites has made it possible to investigate low-dimensional quantum electronic devices based on this class of materials. This study leverages advances in vapor-phase epitaxy of halide perovskites to perform low-temperature magnetotransport measurements on single-domain cesium tin iodide (CsSnI3) epitaxial thin films. The low-field magnetoresistance carries signatures of coherent quantum interference effects and spin-orbit coupling. These weak anti-localization measurements reveal a micron-scale low-temperature phase coherence length for charge carriers in this system. The results indicate that epitaxial halide perovskite heterostructures are a promising platform for investigating long coherent quantum electronic effects and potential applications in spintronics and spin-orbitronics. quantum phenomena quantum physics quantum electronics electronic materials materials physics Science Q Isaac King verfasserin aut Liangji Zhang verfasserin aut Pei Chen verfasserin aut Lili Wang verfasserin aut Richard J. Staples verfasserin aut Richard R. Lunt verfasserin aut Johannes Pollanen verfasserin aut In iScience Elsevier, 2019 24(2021), 8, Seite 102912- (DE-627)1019532106 25890042 nnns volume:24 year:2021 number:8 pages:102912- https://doi.org/10.1016/j.isci.2021.102912 kostenfrei https://doaj.org/article/65db4c5384764c0a9e061a278fb1483d kostenfrei http://www.sciencedirect.com/science/article/pii/S2589004221008804 kostenfrei https://doaj.org/toc/2589-0042 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 24 2021 8 102912- |
allfields_unstemmed |
10.1016/j.isci.2021.102912 doi (DE-627)DOAJ00533781X (DE-599)DOAJ65db4c5384764c0a9e061a278fb1483d DE-627 ger DE-627 rakwb eng Kostyantyn Nasyedkin verfasserin aut Extraordinary phase coherence length in epitaxial halide perovskites 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary: Inorganic halide perovskites have emerged as a promising platform in a wide range of applications from solar energy harvesting to computing and light emission. The recent advent of epitaxial thin film growth of halide perovskites has made it possible to investigate low-dimensional quantum electronic devices based on this class of materials. This study leverages advances in vapor-phase epitaxy of halide perovskites to perform low-temperature magnetotransport measurements on single-domain cesium tin iodide (CsSnI3) epitaxial thin films. The low-field magnetoresistance carries signatures of coherent quantum interference effects and spin-orbit coupling. These weak anti-localization measurements reveal a micron-scale low-temperature phase coherence length for charge carriers in this system. The results indicate that epitaxial halide perovskite heterostructures are a promising platform for investigating long coherent quantum electronic effects and potential applications in spintronics and spin-orbitronics. quantum phenomena quantum physics quantum electronics electronic materials materials physics Science Q Isaac King verfasserin aut Liangji Zhang verfasserin aut Pei Chen verfasserin aut Lili Wang verfasserin aut Richard J. Staples verfasserin aut Richard R. Lunt verfasserin aut Johannes Pollanen verfasserin aut In iScience Elsevier, 2019 24(2021), 8, Seite 102912- (DE-627)1019532106 25890042 nnns volume:24 year:2021 number:8 pages:102912- https://doi.org/10.1016/j.isci.2021.102912 kostenfrei https://doaj.org/article/65db4c5384764c0a9e061a278fb1483d kostenfrei http://www.sciencedirect.com/science/article/pii/S2589004221008804 kostenfrei https://doaj.org/toc/2589-0042 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 24 2021 8 102912- |
allfieldsGer |
10.1016/j.isci.2021.102912 doi (DE-627)DOAJ00533781X (DE-599)DOAJ65db4c5384764c0a9e061a278fb1483d DE-627 ger DE-627 rakwb eng Kostyantyn Nasyedkin verfasserin aut Extraordinary phase coherence length in epitaxial halide perovskites 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary: Inorganic halide perovskites have emerged as a promising platform in a wide range of applications from solar energy harvesting to computing and light emission. The recent advent of epitaxial thin film growth of halide perovskites has made it possible to investigate low-dimensional quantum electronic devices based on this class of materials. This study leverages advances in vapor-phase epitaxy of halide perovskites to perform low-temperature magnetotransport measurements on single-domain cesium tin iodide (CsSnI3) epitaxial thin films. The low-field magnetoresistance carries signatures of coherent quantum interference effects and spin-orbit coupling. These weak anti-localization measurements reveal a micron-scale low-temperature phase coherence length for charge carriers in this system. The results indicate that epitaxial halide perovskite heterostructures are a promising platform for investigating long coherent quantum electronic effects and potential applications in spintronics and spin-orbitronics. quantum phenomena quantum physics quantum electronics electronic materials materials physics Science Q Isaac King verfasserin aut Liangji Zhang verfasserin aut Pei Chen verfasserin aut Lili Wang verfasserin aut Richard J. Staples verfasserin aut Richard R. Lunt verfasserin aut Johannes Pollanen verfasserin aut In iScience Elsevier, 2019 24(2021), 8, Seite 102912- (DE-627)1019532106 25890042 nnns volume:24 year:2021 number:8 pages:102912- https://doi.org/10.1016/j.isci.2021.102912 kostenfrei https://doaj.org/article/65db4c5384764c0a9e061a278fb1483d kostenfrei http://www.sciencedirect.com/science/article/pii/S2589004221008804 kostenfrei https://doaj.org/toc/2589-0042 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 24 2021 8 102912- |
allfieldsSound |
10.1016/j.isci.2021.102912 doi (DE-627)DOAJ00533781X (DE-599)DOAJ65db4c5384764c0a9e061a278fb1483d DE-627 ger DE-627 rakwb eng Kostyantyn Nasyedkin verfasserin aut Extraordinary phase coherence length in epitaxial halide perovskites 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary: Inorganic halide perovskites have emerged as a promising platform in a wide range of applications from solar energy harvesting to computing and light emission. The recent advent of epitaxial thin film growth of halide perovskites has made it possible to investigate low-dimensional quantum electronic devices based on this class of materials. This study leverages advances in vapor-phase epitaxy of halide perovskites to perform low-temperature magnetotransport measurements on single-domain cesium tin iodide (CsSnI3) epitaxial thin films. The low-field magnetoresistance carries signatures of coherent quantum interference effects and spin-orbit coupling. These weak anti-localization measurements reveal a micron-scale low-temperature phase coherence length for charge carriers in this system. The results indicate that epitaxial halide perovskite heterostructures are a promising platform for investigating long coherent quantum electronic effects and potential applications in spintronics and spin-orbitronics. quantum phenomena quantum physics quantum electronics electronic materials materials physics Science Q Isaac King verfasserin aut Liangji Zhang verfasserin aut Pei Chen verfasserin aut Lili Wang verfasserin aut Richard J. Staples verfasserin aut Richard R. Lunt verfasserin aut Johannes Pollanen verfasserin aut In iScience Elsevier, 2019 24(2021), 8, Seite 102912- (DE-627)1019532106 25890042 nnns volume:24 year:2021 number:8 pages:102912- https://doi.org/10.1016/j.isci.2021.102912 kostenfrei https://doaj.org/article/65db4c5384764c0a9e061a278fb1483d kostenfrei http://www.sciencedirect.com/science/article/pii/S2589004221008804 kostenfrei https://doaj.org/toc/2589-0042 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 24 2021 8 102912- |
language |
English |
source |
In iScience 24(2021), 8, Seite 102912- volume:24 year:2021 number:8 pages:102912- |
sourceStr |
In iScience 24(2021), 8, Seite 102912- volume:24 year:2021 number:8 pages:102912- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
quantum phenomena quantum physics quantum electronics electronic materials materials physics Science Q |
isfreeaccess_bool |
true |
container_title |
iScience |
authorswithroles_txt_mv |
Kostyantyn Nasyedkin @@aut@@ Isaac King @@aut@@ Liangji Zhang @@aut@@ Pei Chen @@aut@@ Lili Wang @@aut@@ Richard J. Staples @@aut@@ Richard R. Lunt @@aut@@ Johannes Pollanen @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
1019532106 |
id |
DOAJ00533781X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ00533781X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309192359.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.isci.2021.102912</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ00533781X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ65db4c5384764c0a9e061a278fb1483d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kostyantyn Nasyedkin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Extraordinary phase coherence length in epitaxial halide perovskites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary: Inorganic halide perovskites have emerged as a promising platform in a wide range of applications from solar energy harvesting to computing and light emission. The recent advent of epitaxial thin film growth of halide perovskites has made it possible to investigate low-dimensional quantum electronic devices based on this class of materials. This study leverages advances in vapor-phase epitaxy of halide perovskites to perform low-temperature magnetotransport measurements on single-domain cesium tin iodide (CsSnI3) epitaxial thin films. The low-field magnetoresistance carries signatures of coherent quantum interference effects and spin-orbit coupling. These weak anti-localization measurements reveal a micron-scale low-temperature phase coherence length for charge carriers in this system. The results indicate that epitaxial halide perovskite heterostructures are a promising platform for investigating long coherent quantum electronic effects and potential applications in spintronics and spin-orbitronics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum phenomena</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum electronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electronic materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">materials physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Isaac King</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liangji Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pei Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lili Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Richard J. Staples</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Richard R. Lunt</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Johannes Pollanen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">iScience</subfield><subfield code="d">Elsevier, 2019</subfield><subfield code="g">24(2021), 8, Seite 102912-</subfield><subfield code="w">(DE-627)1019532106</subfield><subfield code="x">25890042</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:102912-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.isci.2021.102912</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/65db4c5384764c0a9e061a278fb1483d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2589004221008804</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2589-0042</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2021</subfield><subfield code="e">8</subfield><subfield code="h">102912-</subfield></datafield></record></collection>
|
author |
Kostyantyn Nasyedkin |
spellingShingle |
Kostyantyn Nasyedkin misc quantum phenomena misc quantum physics misc quantum electronics misc electronic materials misc materials physics misc Science misc Q Extraordinary phase coherence length in epitaxial halide perovskites |
authorStr |
Kostyantyn Nasyedkin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1019532106 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
25890042 |
topic_title |
Extraordinary phase coherence length in epitaxial halide perovskites quantum phenomena quantum physics quantum electronics electronic materials materials physics |
topic |
misc quantum phenomena misc quantum physics misc quantum electronics misc electronic materials misc materials physics misc Science misc Q |
topic_unstemmed |
misc quantum phenomena misc quantum physics misc quantum electronics misc electronic materials misc materials physics misc Science misc Q |
topic_browse |
misc quantum phenomena misc quantum physics misc quantum electronics misc electronic materials misc materials physics misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
iScience |
hierarchy_parent_id |
1019532106 |
hierarchy_top_title |
iScience |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1019532106 |
title |
Extraordinary phase coherence length in epitaxial halide perovskites |
ctrlnum |
(DE-627)DOAJ00533781X (DE-599)DOAJ65db4c5384764c0a9e061a278fb1483d |
title_full |
Extraordinary phase coherence length in epitaxial halide perovskites |
author_sort |
Kostyantyn Nasyedkin |
journal |
iScience |
journalStr |
iScience |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
102912 |
author_browse |
Kostyantyn Nasyedkin Isaac King Liangji Zhang Pei Chen Lili Wang Richard J. Staples Richard R. Lunt Johannes Pollanen |
container_volume |
24 |
format_se |
Elektronische Aufsätze |
author-letter |
Kostyantyn Nasyedkin |
doi_str_mv |
10.1016/j.isci.2021.102912 |
author2-role |
verfasserin |
title_sort |
extraordinary phase coherence length in epitaxial halide perovskites |
title_auth |
Extraordinary phase coherence length in epitaxial halide perovskites |
abstract |
Summary: Inorganic halide perovskites have emerged as a promising platform in a wide range of applications from solar energy harvesting to computing and light emission. The recent advent of epitaxial thin film growth of halide perovskites has made it possible to investigate low-dimensional quantum electronic devices based on this class of materials. This study leverages advances in vapor-phase epitaxy of halide perovskites to perform low-temperature magnetotransport measurements on single-domain cesium tin iodide (CsSnI3) epitaxial thin films. The low-field magnetoresistance carries signatures of coherent quantum interference effects and spin-orbit coupling. These weak anti-localization measurements reveal a micron-scale low-temperature phase coherence length for charge carriers in this system. The results indicate that epitaxial halide perovskite heterostructures are a promising platform for investigating long coherent quantum electronic effects and potential applications in spintronics and spin-orbitronics. |
abstractGer |
Summary: Inorganic halide perovskites have emerged as a promising platform in a wide range of applications from solar energy harvesting to computing and light emission. The recent advent of epitaxial thin film growth of halide perovskites has made it possible to investigate low-dimensional quantum electronic devices based on this class of materials. This study leverages advances in vapor-phase epitaxy of halide perovskites to perform low-temperature magnetotransport measurements on single-domain cesium tin iodide (CsSnI3) epitaxial thin films. The low-field magnetoresistance carries signatures of coherent quantum interference effects and spin-orbit coupling. These weak anti-localization measurements reveal a micron-scale low-temperature phase coherence length for charge carriers in this system. The results indicate that epitaxial halide perovskite heterostructures are a promising platform for investigating long coherent quantum electronic effects and potential applications in spintronics and spin-orbitronics. |
abstract_unstemmed |
Summary: Inorganic halide perovskites have emerged as a promising platform in a wide range of applications from solar energy harvesting to computing and light emission. The recent advent of epitaxial thin film growth of halide perovskites has made it possible to investigate low-dimensional quantum electronic devices based on this class of materials. This study leverages advances in vapor-phase epitaxy of halide perovskites to perform low-temperature magnetotransport measurements on single-domain cesium tin iodide (CsSnI3) epitaxial thin films. The low-field magnetoresistance carries signatures of coherent quantum interference effects and spin-orbit coupling. These weak anti-localization measurements reveal a micron-scale low-temperature phase coherence length for charge carriers in this system. The results indicate that epitaxial halide perovskite heterostructures are a promising platform for investigating long coherent quantum electronic effects and potential applications in spintronics and spin-orbitronics. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
8 |
title_short |
Extraordinary phase coherence length in epitaxial halide perovskites |
url |
https://doi.org/10.1016/j.isci.2021.102912 https://doaj.org/article/65db4c5384764c0a9e061a278fb1483d http://www.sciencedirect.com/science/article/pii/S2589004221008804 https://doaj.org/toc/2589-0042 |
remote_bool |
true |
author2 |
Isaac King Liangji Zhang Pei Chen Lili Wang Richard J. Staples Richard R. Lunt Johannes Pollanen |
author2Str |
Isaac King Liangji Zhang Pei Chen Lili Wang Richard J. Staples Richard R. Lunt Johannes Pollanen |
ppnlink |
1019532106 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.isci.2021.102912 |
up_date |
2024-07-03T14:24:23.311Z |
_version_ |
1803568192757432320 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ00533781X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309192359.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.isci.2021.102912</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ00533781X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ65db4c5384764c0a9e061a278fb1483d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kostyantyn Nasyedkin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Extraordinary phase coherence length in epitaxial halide perovskites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary: Inorganic halide perovskites have emerged as a promising platform in a wide range of applications from solar energy harvesting to computing and light emission. The recent advent of epitaxial thin film growth of halide perovskites has made it possible to investigate low-dimensional quantum electronic devices based on this class of materials. This study leverages advances in vapor-phase epitaxy of halide perovskites to perform low-temperature magnetotransport measurements on single-domain cesium tin iodide (CsSnI3) epitaxial thin films. The low-field magnetoresistance carries signatures of coherent quantum interference effects and spin-orbit coupling. These weak anti-localization measurements reveal a micron-scale low-temperature phase coherence length for charge carriers in this system. The results indicate that epitaxial halide perovskite heterostructures are a promising platform for investigating long coherent quantum electronic effects and potential applications in spintronics and spin-orbitronics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum phenomena</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum electronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electronic materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">materials physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Isaac King</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liangji Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pei Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lili Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Richard J. Staples</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Richard R. Lunt</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Johannes Pollanen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">iScience</subfield><subfield code="d">Elsevier, 2019</subfield><subfield code="g">24(2021), 8, Seite 102912-</subfield><subfield code="w">(DE-627)1019532106</subfield><subfield code="x">25890042</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:102912-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.isci.2021.102912</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/65db4c5384764c0a9e061a278fb1483d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2589004221008804</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2589-0042</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2021</subfield><subfield code="e">8</subfield><subfield code="h">102912-</subfield></datafield></record></collection>
|
score |
7.4028025 |