A brief guide to sampling in educational settings
This tutorial gives an overview of sampling techniques commonly used in the field of education such as simple randomized sampling, stratification methods and (multistage) cluster randomized sampling. Advantages and disadvantages of these techniques are described without diving too deep into sampling...
Ausführliche Beschreibung
Autor*in: |
George, Ann Cathrice [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Französisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Tutorials in Quantitative Methods for Psychology - Université d'Ottawa, 2011, 17(2021), 3, Seite 286-298 |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2021 ; number:3 ; pages:286-298 |
Links: |
---|
DOI / URN: |
10.20982/tqmp.17.3.p286 |
---|
Katalog-ID: |
DOAJ005345731 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ005345731 | ||
003 | DE-627 | ||
005 | 20230502134632.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.20982/tqmp.17.3.p286 |2 doi | |
035 | |a (DE-627)DOAJ005345731 | ||
035 | |a (DE-599)DOAJ6cd04e6b66214025bbc260c44650a349 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a fre | ||
050 | 0 | |a BF1-990 | |
100 | 0 | |a George, Ann Cathrice |e verfasserin |4 aut | |
245 | 1 | 2 | |a A brief guide to sampling in educational settings |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This tutorial gives an overview of sampling techniques commonly used in the field of education such as simple randomized sampling, stratification methods and (multistage) cluster randomized sampling. Advantages and disadvantages of these techniques are described without diving too deep into sampling theory. Instead, each technique is exemplified with data and program code in R. Finally, all presented techniques are combined to show the complexity of samples in famous educational large-scale studies such as PISA. Again an example with R code illustrates the theoretical descriptions. | ||
650 | 4 | |a sampling | |
650 | 4 | |a randomized sampling | |
650 | 4 | |a stratification | |
650 | 4 | |a cluster randomized sampling | |
650 | 4 | |a large-scale assessment. | |
650 | 4 | |a r | |
653 | 0 | |a Psychology | |
773 | 0 | 8 | |i In |t Tutorials in Quantitative Methods for Psychology |d Université d'Ottawa, 2011 |g 17(2021), 3, Seite 286-298 |w (DE-627)663846900 |w (DE-600)2616786-4 |x 19134126 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2021 |g number:3 |g pages:286-298 |
856 | 4 | 0 | |u https://doi.org/10.20982/tqmp.17.3.p286 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6cd04e6b66214025bbc260c44650a349 |z kostenfrei |
856 | 4 | 0 | |u https://www.tqmp.org/RegularArticles/vol17-3/p286/p286.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1913-4126 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
951 | |a AR | ||
952 | |d 17 |j 2021 |e 3 |h 286-298 |
author_variant |
a c g ac acg |
---|---|
matchkey_str |
article:19134126:2021----::bifudtsmlnieuai |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
BF |
publishDate |
2021 |
allfields |
10.20982/tqmp.17.3.p286 doi (DE-627)DOAJ005345731 (DE-599)DOAJ6cd04e6b66214025bbc260c44650a349 DE-627 ger DE-627 rakwb eng fre BF1-990 George, Ann Cathrice verfasserin aut A brief guide to sampling in educational settings 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This tutorial gives an overview of sampling techniques commonly used in the field of education such as simple randomized sampling, stratification methods and (multistage) cluster randomized sampling. Advantages and disadvantages of these techniques are described without diving too deep into sampling theory. Instead, each technique is exemplified with data and program code in R. Finally, all presented techniques are combined to show the complexity of samples in famous educational large-scale studies such as PISA. Again an example with R code illustrates the theoretical descriptions. sampling randomized sampling stratification cluster randomized sampling large-scale assessment. r Psychology In Tutorials in Quantitative Methods for Psychology Université d'Ottawa, 2011 17(2021), 3, Seite 286-298 (DE-627)663846900 (DE-600)2616786-4 19134126 nnns volume:17 year:2021 number:3 pages:286-298 https://doi.org/10.20982/tqmp.17.3.p286 kostenfrei https://doaj.org/article/6cd04e6b66214025bbc260c44650a349 kostenfrei https://www.tqmp.org/RegularArticles/vol17-3/p286/p286.pdf kostenfrei https://doaj.org/toc/1913-4126 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA AR 17 2021 3 286-298 |
spelling |
10.20982/tqmp.17.3.p286 doi (DE-627)DOAJ005345731 (DE-599)DOAJ6cd04e6b66214025bbc260c44650a349 DE-627 ger DE-627 rakwb eng fre BF1-990 George, Ann Cathrice verfasserin aut A brief guide to sampling in educational settings 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This tutorial gives an overview of sampling techniques commonly used in the field of education such as simple randomized sampling, stratification methods and (multistage) cluster randomized sampling. Advantages and disadvantages of these techniques are described without diving too deep into sampling theory. Instead, each technique is exemplified with data and program code in R. Finally, all presented techniques are combined to show the complexity of samples in famous educational large-scale studies such as PISA. Again an example with R code illustrates the theoretical descriptions. sampling randomized sampling stratification cluster randomized sampling large-scale assessment. r Psychology In Tutorials in Quantitative Methods for Psychology Université d'Ottawa, 2011 17(2021), 3, Seite 286-298 (DE-627)663846900 (DE-600)2616786-4 19134126 nnns volume:17 year:2021 number:3 pages:286-298 https://doi.org/10.20982/tqmp.17.3.p286 kostenfrei https://doaj.org/article/6cd04e6b66214025bbc260c44650a349 kostenfrei https://www.tqmp.org/RegularArticles/vol17-3/p286/p286.pdf kostenfrei https://doaj.org/toc/1913-4126 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA AR 17 2021 3 286-298 |
allfields_unstemmed |
10.20982/tqmp.17.3.p286 doi (DE-627)DOAJ005345731 (DE-599)DOAJ6cd04e6b66214025bbc260c44650a349 DE-627 ger DE-627 rakwb eng fre BF1-990 George, Ann Cathrice verfasserin aut A brief guide to sampling in educational settings 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This tutorial gives an overview of sampling techniques commonly used in the field of education such as simple randomized sampling, stratification methods and (multistage) cluster randomized sampling. Advantages and disadvantages of these techniques are described without diving too deep into sampling theory. Instead, each technique is exemplified with data and program code in R. Finally, all presented techniques are combined to show the complexity of samples in famous educational large-scale studies such as PISA. Again an example with R code illustrates the theoretical descriptions. sampling randomized sampling stratification cluster randomized sampling large-scale assessment. r Psychology In Tutorials in Quantitative Methods for Psychology Université d'Ottawa, 2011 17(2021), 3, Seite 286-298 (DE-627)663846900 (DE-600)2616786-4 19134126 nnns volume:17 year:2021 number:3 pages:286-298 https://doi.org/10.20982/tqmp.17.3.p286 kostenfrei https://doaj.org/article/6cd04e6b66214025bbc260c44650a349 kostenfrei https://www.tqmp.org/RegularArticles/vol17-3/p286/p286.pdf kostenfrei https://doaj.org/toc/1913-4126 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA AR 17 2021 3 286-298 |
allfieldsGer |
10.20982/tqmp.17.3.p286 doi (DE-627)DOAJ005345731 (DE-599)DOAJ6cd04e6b66214025bbc260c44650a349 DE-627 ger DE-627 rakwb eng fre BF1-990 George, Ann Cathrice verfasserin aut A brief guide to sampling in educational settings 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This tutorial gives an overview of sampling techniques commonly used in the field of education such as simple randomized sampling, stratification methods and (multistage) cluster randomized sampling. Advantages and disadvantages of these techniques are described without diving too deep into sampling theory. Instead, each technique is exemplified with data and program code in R. Finally, all presented techniques are combined to show the complexity of samples in famous educational large-scale studies such as PISA. Again an example with R code illustrates the theoretical descriptions. sampling randomized sampling stratification cluster randomized sampling large-scale assessment. r Psychology In Tutorials in Quantitative Methods for Psychology Université d'Ottawa, 2011 17(2021), 3, Seite 286-298 (DE-627)663846900 (DE-600)2616786-4 19134126 nnns volume:17 year:2021 number:3 pages:286-298 https://doi.org/10.20982/tqmp.17.3.p286 kostenfrei https://doaj.org/article/6cd04e6b66214025bbc260c44650a349 kostenfrei https://www.tqmp.org/RegularArticles/vol17-3/p286/p286.pdf kostenfrei https://doaj.org/toc/1913-4126 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA AR 17 2021 3 286-298 |
allfieldsSound |
10.20982/tqmp.17.3.p286 doi (DE-627)DOAJ005345731 (DE-599)DOAJ6cd04e6b66214025bbc260c44650a349 DE-627 ger DE-627 rakwb eng fre BF1-990 George, Ann Cathrice verfasserin aut A brief guide to sampling in educational settings 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This tutorial gives an overview of sampling techniques commonly used in the field of education such as simple randomized sampling, stratification methods and (multistage) cluster randomized sampling. Advantages and disadvantages of these techniques are described without diving too deep into sampling theory. Instead, each technique is exemplified with data and program code in R. Finally, all presented techniques are combined to show the complexity of samples in famous educational large-scale studies such as PISA. Again an example with R code illustrates the theoretical descriptions. sampling randomized sampling stratification cluster randomized sampling large-scale assessment. r Psychology In Tutorials in Quantitative Methods for Psychology Université d'Ottawa, 2011 17(2021), 3, Seite 286-298 (DE-627)663846900 (DE-600)2616786-4 19134126 nnns volume:17 year:2021 number:3 pages:286-298 https://doi.org/10.20982/tqmp.17.3.p286 kostenfrei https://doaj.org/article/6cd04e6b66214025bbc260c44650a349 kostenfrei https://www.tqmp.org/RegularArticles/vol17-3/p286/p286.pdf kostenfrei https://doaj.org/toc/1913-4126 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA AR 17 2021 3 286-298 |
language |
English French |
source |
In Tutorials in Quantitative Methods for Psychology 17(2021), 3, Seite 286-298 volume:17 year:2021 number:3 pages:286-298 |
sourceStr |
In Tutorials in Quantitative Methods for Psychology 17(2021), 3, Seite 286-298 volume:17 year:2021 number:3 pages:286-298 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
sampling randomized sampling stratification cluster randomized sampling large-scale assessment. r Psychology |
isfreeaccess_bool |
true |
container_title |
Tutorials in Quantitative Methods for Psychology |
authorswithroles_txt_mv |
George, Ann Cathrice @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
663846900 |
id |
DOAJ005345731 |
language_de |
englisch franzoesisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ005345731</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502134632.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.20982/tqmp.17.3.p286</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ005345731</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6cd04e6b66214025bbc260c44650a349</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">BF1-990</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">George, Ann Cathrice</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A brief guide to sampling in educational settings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This tutorial gives an overview of sampling techniques commonly used in the field of education such as simple randomized sampling, stratification methods and (multistage) cluster randomized sampling. Advantages and disadvantages of these techniques are described without diving too deep into sampling theory. Instead, each technique is exemplified with data and program code in R. Finally, all presented techniques are combined to show the complexity of samples in famous educational large-scale studies such as PISA. Again an example with R code illustrates the theoretical descriptions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sampling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">randomized sampling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stratification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cluster randomized sampling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">large-scale assessment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">r</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Psychology</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Tutorials in Quantitative Methods for Psychology</subfield><subfield code="d">Université d'Ottawa, 2011</subfield><subfield code="g">17(2021), 3, Seite 286-298</subfield><subfield code="w">(DE-627)663846900</subfield><subfield code="w">(DE-600)2616786-4</subfield><subfield code="x">19134126</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:286-298</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.20982/tqmp.17.3.p286</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6cd04e6b66214025bbc260c44650a349</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.tqmp.org/RegularArticles/vol17-3/p286/p286.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1913-4126</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="h">286-298</subfield></datafield></record></collection>
|
callnumber-first |
B - Philosophy, Psychology, Religion |
author |
George, Ann Cathrice |
spellingShingle |
George, Ann Cathrice misc BF1-990 misc sampling misc randomized sampling misc stratification misc cluster randomized sampling misc large-scale assessment. misc r misc Psychology A brief guide to sampling in educational settings |
authorStr |
George, Ann Cathrice |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)663846900 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
BF1-990 |
illustrated |
Not Illustrated |
issn |
19134126 |
topic_title |
BF1-990 A brief guide to sampling in educational settings sampling randomized sampling stratification cluster randomized sampling large-scale assessment r |
topic |
misc BF1-990 misc sampling misc randomized sampling misc stratification misc cluster randomized sampling misc large-scale assessment. misc r misc Psychology |
topic_unstemmed |
misc BF1-990 misc sampling misc randomized sampling misc stratification misc cluster randomized sampling misc large-scale assessment. misc r misc Psychology |
topic_browse |
misc BF1-990 misc sampling misc randomized sampling misc stratification misc cluster randomized sampling misc large-scale assessment. misc r misc Psychology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Tutorials in Quantitative Methods for Psychology |
hierarchy_parent_id |
663846900 |
hierarchy_top_title |
Tutorials in Quantitative Methods for Psychology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)663846900 (DE-600)2616786-4 |
title |
A brief guide to sampling in educational settings |
ctrlnum |
(DE-627)DOAJ005345731 (DE-599)DOAJ6cd04e6b66214025bbc260c44650a349 |
title_full |
A brief guide to sampling in educational settings |
author_sort |
George, Ann Cathrice |
journal |
Tutorials in Quantitative Methods for Psychology |
journalStr |
Tutorials in Quantitative Methods for Psychology |
callnumber-first-code |
B |
lang_code |
eng fre |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
286 |
author_browse |
George, Ann Cathrice |
container_volume |
17 |
class |
BF1-990 |
format_se |
Elektronische Aufsätze |
author-letter |
George, Ann Cathrice |
doi_str_mv |
10.20982/tqmp.17.3.p286 |
title_sort |
brief guide to sampling in educational settings |
callnumber |
BF1-990 |
title_auth |
A brief guide to sampling in educational settings |
abstract |
This tutorial gives an overview of sampling techniques commonly used in the field of education such as simple randomized sampling, stratification methods and (multistage) cluster randomized sampling. Advantages and disadvantages of these techniques are described without diving too deep into sampling theory. Instead, each technique is exemplified with data and program code in R. Finally, all presented techniques are combined to show the complexity of samples in famous educational large-scale studies such as PISA. Again an example with R code illustrates the theoretical descriptions. |
abstractGer |
This tutorial gives an overview of sampling techniques commonly used in the field of education such as simple randomized sampling, stratification methods and (multistage) cluster randomized sampling. Advantages and disadvantages of these techniques are described without diving too deep into sampling theory. Instead, each technique is exemplified with data and program code in R. Finally, all presented techniques are combined to show the complexity of samples in famous educational large-scale studies such as PISA. Again an example with R code illustrates the theoretical descriptions. |
abstract_unstemmed |
This tutorial gives an overview of sampling techniques commonly used in the field of education such as simple randomized sampling, stratification methods and (multistage) cluster randomized sampling. Advantages and disadvantages of these techniques are described without diving too deep into sampling theory. Instead, each technique is exemplified with data and program code in R. Finally, all presented techniques are combined to show the complexity of samples in famous educational large-scale studies such as PISA. Again an example with R code illustrates the theoretical descriptions. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA |
container_issue |
3 |
title_short |
A brief guide to sampling in educational settings |
url |
https://doi.org/10.20982/tqmp.17.3.p286 https://doaj.org/article/6cd04e6b66214025bbc260c44650a349 https://www.tqmp.org/RegularArticles/vol17-3/p286/p286.pdf https://doaj.org/toc/1913-4126 |
remote_bool |
true |
ppnlink |
663846900 |
callnumber-subject |
BF - Psychology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.20982/tqmp.17.3.p286 |
callnumber-a |
BF1-990 |
up_date |
2024-07-03T14:27:21.113Z |
_version_ |
1803568379192147968 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ005345731</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502134632.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.20982/tqmp.17.3.p286</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ005345731</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6cd04e6b66214025bbc260c44650a349</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">BF1-990</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">George, Ann Cathrice</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A brief guide to sampling in educational settings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This tutorial gives an overview of sampling techniques commonly used in the field of education such as simple randomized sampling, stratification methods and (multistage) cluster randomized sampling. Advantages and disadvantages of these techniques are described without diving too deep into sampling theory. Instead, each technique is exemplified with data and program code in R. Finally, all presented techniques are combined to show the complexity of samples in famous educational large-scale studies such as PISA. Again an example with R code illustrates the theoretical descriptions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sampling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">randomized sampling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stratification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cluster randomized sampling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">large-scale assessment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">r</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Psychology</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Tutorials in Quantitative Methods for Psychology</subfield><subfield code="d">Université d'Ottawa, 2011</subfield><subfield code="g">17(2021), 3, Seite 286-298</subfield><subfield code="w">(DE-627)663846900</subfield><subfield code="w">(DE-600)2616786-4</subfield><subfield code="x">19134126</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:286-298</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.20982/tqmp.17.3.p286</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6cd04e6b66214025bbc260c44650a349</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.tqmp.org/RegularArticles/vol17-3/p286/p286.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1913-4126</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="h">286-298</subfield></datafield></record></collection>
|
score |
7.401534 |