High-Quality Genome Assembly and Annotation of the Big-Eye Mandarin Fish (Siniperca knerii)
The big-eye mandarin fish (Siniperca knerii) is an endemic species of southern China. It belongs to the family Sinipercidae, which is closely related to the well-known North American sunfish family Centrarchidae. Determining the genome sequence of S. knerii would provide a foundation for better exam...
Ausführliche Beschreibung
Autor*in: |
Liang Lu [verfasserIn] Jinliang Zhao [verfasserIn] Chenhong Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: G3: Genes, Genomes, Genetics - Oxford University Press, 2012, 10(2020), 3, Seite 877-880 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2020 ; number:3 ; pages:877-880 |
Links: |
---|
DOI / URN: |
10.1534/g3.119.400930 |
---|
Katalog-ID: |
DOAJ005453496 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ005453496 | ||
003 | DE-627 | ||
005 | 20230309193109.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1534/g3.119.400930 |2 doi | |
035 | |a (DE-627)DOAJ005453496 | ||
035 | |a (DE-599)DOAJ0bf7b70ead5c4b60aad53c2bca5be226 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH426-470 | |
100 | 0 | |a Liang Lu |e verfasserin |4 aut | |
245 | 1 | 0 | |a High-Quality Genome Assembly and Annotation of the Big-Eye Mandarin Fish (Siniperca knerii) |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The big-eye mandarin fish (Siniperca knerii) is an endemic species of southern China. It belongs to the family Sinipercidae, which is closely related to the well-known North American sunfish family Centrarchidae. Determining the genome sequence of S. knerii would provide a foundation for better examining its genetic diversity and population history. A novel sequenced genome of the Sinipercidae also would help in comparative study of the Centrarchidae using Siniperca as a reference. Here, we determined the genome sequence of S. knerii using 10x Genomics technology and next-generation sequencing. Paired-end sequencing on a half lane of HiSeq X platform generated 56 Gbp of raw data. Read assembly using Supernova assembler resulted in two haplotype genomes with 732.1 Mb in size and an average GC content of 40.4%, which is consistent with genome size previously reported or estimated using k-mer counting. A total of 7,989 scaffolds with an N50 score of 12.64 Mb were obtained. The longest scaffold was 30.54 Mb. Evaluation of the genome completeness using BUSCO confirmed that 96.5% genes of the Actinopterygii Benchmarking Universal Single-Copy Orthologs were found in the assembled genome of S. knerii. Gene prediction using Maker annotation kit resulted in 28,440 genes, of which 25,899 genes had at least one hit comparing to the NCBI Nr database, KEGG or InterProScan5. Pairwise sequentially Markovian coalescent (PSMC) analysis of the genome showed that there was a bottleneck event of the population of S. knerii between 70 ka – 20 ka, which was concordant with the Tali glacier period, suggesting a population decline of S. knerii probably due to climate conditions. | ||
650 | 4 | |a siniperca knerii | |
650 | 4 | |a chinese perch | |
650 | 4 | |a genome sequencing | |
650 | 4 | |a genome assembly | |
650 | 4 | |a 10x genomics | |
653 | 0 | |a Genetics | |
700 | 0 | |a Jinliang Zhao |e verfasserin |4 aut | |
700 | 0 | |a Chenhong Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t G3: Genes, Genomes, Genetics |d Oxford University Press, 2012 |g 10(2020), 3, Seite 877-880 |w (DE-627)668901071 |w (DE-600)2629978-1 |x 21601836 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2020 |g number:3 |g pages:877-880 |
856 | 4 | 0 | |u https://doi.org/10.1534/g3.119.400930 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/0bf7b70ead5c4b60aad53c2bca5be226 |z kostenfrei |
856 | 4 | 0 | |u http://g3journal.org/lookup/doi/10.1534/g3.119.400930 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2160-1836 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2020 |e 3 |h 877-880 |
author_variant |
l l ll j z jz c l cl |
---|---|
matchkey_str |
article:21601836:2020----::ihultgnmasmladnoainfhbgymnai |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QH |
publishDate |
2020 |
allfields |
10.1534/g3.119.400930 doi (DE-627)DOAJ005453496 (DE-599)DOAJ0bf7b70ead5c4b60aad53c2bca5be226 DE-627 ger DE-627 rakwb eng QH426-470 Liang Lu verfasserin aut High-Quality Genome Assembly and Annotation of the Big-Eye Mandarin Fish (Siniperca knerii) 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The big-eye mandarin fish (Siniperca knerii) is an endemic species of southern China. It belongs to the family Sinipercidae, which is closely related to the well-known North American sunfish family Centrarchidae. Determining the genome sequence of S. knerii would provide a foundation for better examining its genetic diversity and population history. A novel sequenced genome of the Sinipercidae also would help in comparative study of the Centrarchidae using Siniperca as a reference. Here, we determined the genome sequence of S. knerii using 10x Genomics technology and next-generation sequencing. Paired-end sequencing on a half lane of HiSeq X platform generated 56 Gbp of raw data. Read assembly using Supernova assembler resulted in two haplotype genomes with 732.1 Mb in size and an average GC content of 40.4%, which is consistent with genome size previously reported or estimated using k-mer counting. A total of 7,989 scaffolds with an N50 score of 12.64 Mb were obtained. The longest scaffold was 30.54 Mb. Evaluation of the genome completeness using BUSCO confirmed that 96.5% genes of the Actinopterygii Benchmarking Universal Single-Copy Orthologs were found in the assembled genome of S. knerii. Gene prediction using Maker annotation kit resulted in 28,440 genes, of which 25,899 genes had at least one hit comparing to the NCBI Nr database, KEGG or InterProScan5. Pairwise sequentially Markovian coalescent (PSMC) analysis of the genome showed that there was a bottleneck event of the population of S. knerii between 70 ka – 20 ka, which was concordant with the Tali glacier period, suggesting a population decline of S. knerii probably due to climate conditions. siniperca knerii chinese perch genome sequencing genome assembly 10x genomics Genetics Jinliang Zhao verfasserin aut Chenhong Li verfasserin aut In G3: Genes, Genomes, Genetics Oxford University Press, 2012 10(2020), 3, Seite 877-880 (DE-627)668901071 (DE-600)2629978-1 21601836 nnns volume:10 year:2020 number:3 pages:877-880 https://doi.org/10.1534/g3.119.400930 kostenfrei https://doaj.org/article/0bf7b70ead5c4b60aad53c2bca5be226 kostenfrei http://g3journal.org/lookup/doi/10.1534/g3.119.400930 kostenfrei https://doaj.org/toc/2160-1836 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 3 877-880 |
spelling |
10.1534/g3.119.400930 doi (DE-627)DOAJ005453496 (DE-599)DOAJ0bf7b70ead5c4b60aad53c2bca5be226 DE-627 ger DE-627 rakwb eng QH426-470 Liang Lu verfasserin aut High-Quality Genome Assembly and Annotation of the Big-Eye Mandarin Fish (Siniperca knerii) 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The big-eye mandarin fish (Siniperca knerii) is an endemic species of southern China. It belongs to the family Sinipercidae, which is closely related to the well-known North American sunfish family Centrarchidae. Determining the genome sequence of S. knerii would provide a foundation for better examining its genetic diversity and population history. A novel sequenced genome of the Sinipercidae also would help in comparative study of the Centrarchidae using Siniperca as a reference. Here, we determined the genome sequence of S. knerii using 10x Genomics technology and next-generation sequencing. Paired-end sequencing on a half lane of HiSeq X platform generated 56 Gbp of raw data. Read assembly using Supernova assembler resulted in two haplotype genomes with 732.1 Mb in size and an average GC content of 40.4%, which is consistent with genome size previously reported or estimated using k-mer counting. A total of 7,989 scaffolds with an N50 score of 12.64 Mb were obtained. The longest scaffold was 30.54 Mb. Evaluation of the genome completeness using BUSCO confirmed that 96.5% genes of the Actinopterygii Benchmarking Universal Single-Copy Orthologs were found in the assembled genome of S. knerii. Gene prediction using Maker annotation kit resulted in 28,440 genes, of which 25,899 genes had at least one hit comparing to the NCBI Nr database, KEGG or InterProScan5. Pairwise sequentially Markovian coalescent (PSMC) analysis of the genome showed that there was a bottleneck event of the population of S. knerii between 70 ka – 20 ka, which was concordant with the Tali glacier period, suggesting a population decline of S. knerii probably due to climate conditions. siniperca knerii chinese perch genome sequencing genome assembly 10x genomics Genetics Jinliang Zhao verfasserin aut Chenhong Li verfasserin aut In G3: Genes, Genomes, Genetics Oxford University Press, 2012 10(2020), 3, Seite 877-880 (DE-627)668901071 (DE-600)2629978-1 21601836 nnns volume:10 year:2020 number:3 pages:877-880 https://doi.org/10.1534/g3.119.400930 kostenfrei https://doaj.org/article/0bf7b70ead5c4b60aad53c2bca5be226 kostenfrei http://g3journal.org/lookup/doi/10.1534/g3.119.400930 kostenfrei https://doaj.org/toc/2160-1836 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 3 877-880 |
allfields_unstemmed |
10.1534/g3.119.400930 doi (DE-627)DOAJ005453496 (DE-599)DOAJ0bf7b70ead5c4b60aad53c2bca5be226 DE-627 ger DE-627 rakwb eng QH426-470 Liang Lu verfasserin aut High-Quality Genome Assembly and Annotation of the Big-Eye Mandarin Fish (Siniperca knerii) 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The big-eye mandarin fish (Siniperca knerii) is an endemic species of southern China. It belongs to the family Sinipercidae, which is closely related to the well-known North American sunfish family Centrarchidae. Determining the genome sequence of S. knerii would provide a foundation for better examining its genetic diversity and population history. A novel sequenced genome of the Sinipercidae also would help in comparative study of the Centrarchidae using Siniperca as a reference. Here, we determined the genome sequence of S. knerii using 10x Genomics technology and next-generation sequencing. Paired-end sequencing on a half lane of HiSeq X platform generated 56 Gbp of raw data. Read assembly using Supernova assembler resulted in two haplotype genomes with 732.1 Mb in size and an average GC content of 40.4%, which is consistent with genome size previously reported or estimated using k-mer counting. A total of 7,989 scaffolds with an N50 score of 12.64 Mb were obtained. The longest scaffold was 30.54 Mb. Evaluation of the genome completeness using BUSCO confirmed that 96.5% genes of the Actinopterygii Benchmarking Universal Single-Copy Orthologs were found in the assembled genome of S. knerii. Gene prediction using Maker annotation kit resulted in 28,440 genes, of which 25,899 genes had at least one hit comparing to the NCBI Nr database, KEGG or InterProScan5. Pairwise sequentially Markovian coalescent (PSMC) analysis of the genome showed that there was a bottleneck event of the population of S. knerii between 70 ka – 20 ka, which was concordant with the Tali glacier period, suggesting a population decline of S. knerii probably due to climate conditions. siniperca knerii chinese perch genome sequencing genome assembly 10x genomics Genetics Jinliang Zhao verfasserin aut Chenhong Li verfasserin aut In G3: Genes, Genomes, Genetics Oxford University Press, 2012 10(2020), 3, Seite 877-880 (DE-627)668901071 (DE-600)2629978-1 21601836 nnns volume:10 year:2020 number:3 pages:877-880 https://doi.org/10.1534/g3.119.400930 kostenfrei https://doaj.org/article/0bf7b70ead5c4b60aad53c2bca5be226 kostenfrei http://g3journal.org/lookup/doi/10.1534/g3.119.400930 kostenfrei https://doaj.org/toc/2160-1836 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 3 877-880 |
allfieldsGer |
10.1534/g3.119.400930 doi (DE-627)DOAJ005453496 (DE-599)DOAJ0bf7b70ead5c4b60aad53c2bca5be226 DE-627 ger DE-627 rakwb eng QH426-470 Liang Lu verfasserin aut High-Quality Genome Assembly and Annotation of the Big-Eye Mandarin Fish (Siniperca knerii) 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The big-eye mandarin fish (Siniperca knerii) is an endemic species of southern China. It belongs to the family Sinipercidae, which is closely related to the well-known North American sunfish family Centrarchidae. Determining the genome sequence of S. knerii would provide a foundation for better examining its genetic diversity and population history. A novel sequenced genome of the Sinipercidae also would help in comparative study of the Centrarchidae using Siniperca as a reference. Here, we determined the genome sequence of S. knerii using 10x Genomics technology and next-generation sequencing. Paired-end sequencing on a half lane of HiSeq X platform generated 56 Gbp of raw data. Read assembly using Supernova assembler resulted in two haplotype genomes with 732.1 Mb in size and an average GC content of 40.4%, which is consistent with genome size previously reported or estimated using k-mer counting. A total of 7,989 scaffolds with an N50 score of 12.64 Mb were obtained. The longest scaffold was 30.54 Mb. Evaluation of the genome completeness using BUSCO confirmed that 96.5% genes of the Actinopterygii Benchmarking Universal Single-Copy Orthologs were found in the assembled genome of S. knerii. Gene prediction using Maker annotation kit resulted in 28,440 genes, of which 25,899 genes had at least one hit comparing to the NCBI Nr database, KEGG or InterProScan5. Pairwise sequentially Markovian coalescent (PSMC) analysis of the genome showed that there was a bottleneck event of the population of S. knerii between 70 ka – 20 ka, which was concordant with the Tali glacier period, suggesting a population decline of S. knerii probably due to climate conditions. siniperca knerii chinese perch genome sequencing genome assembly 10x genomics Genetics Jinliang Zhao verfasserin aut Chenhong Li verfasserin aut In G3: Genes, Genomes, Genetics Oxford University Press, 2012 10(2020), 3, Seite 877-880 (DE-627)668901071 (DE-600)2629978-1 21601836 nnns volume:10 year:2020 number:3 pages:877-880 https://doi.org/10.1534/g3.119.400930 kostenfrei https://doaj.org/article/0bf7b70ead5c4b60aad53c2bca5be226 kostenfrei http://g3journal.org/lookup/doi/10.1534/g3.119.400930 kostenfrei https://doaj.org/toc/2160-1836 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 3 877-880 |
allfieldsSound |
10.1534/g3.119.400930 doi (DE-627)DOAJ005453496 (DE-599)DOAJ0bf7b70ead5c4b60aad53c2bca5be226 DE-627 ger DE-627 rakwb eng QH426-470 Liang Lu verfasserin aut High-Quality Genome Assembly and Annotation of the Big-Eye Mandarin Fish (Siniperca knerii) 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The big-eye mandarin fish (Siniperca knerii) is an endemic species of southern China. It belongs to the family Sinipercidae, which is closely related to the well-known North American sunfish family Centrarchidae. Determining the genome sequence of S. knerii would provide a foundation for better examining its genetic diversity and population history. A novel sequenced genome of the Sinipercidae also would help in comparative study of the Centrarchidae using Siniperca as a reference. Here, we determined the genome sequence of S. knerii using 10x Genomics technology and next-generation sequencing. Paired-end sequencing on a half lane of HiSeq X platform generated 56 Gbp of raw data. Read assembly using Supernova assembler resulted in two haplotype genomes with 732.1 Mb in size and an average GC content of 40.4%, which is consistent with genome size previously reported or estimated using k-mer counting. A total of 7,989 scaffolds with an N50 score of 12.64 Mb were obtained. The longest scaffold was 30.54 Mb. Evaluation of the genome completeness using BUSCO confirmed that 96.5% genes of the Actinopterygii Benchmarking Universal Single-Copy Orthologs were found in the assembled genome of S. knerii. Gene prediction using Maker annotation kit resulted in 28,440 genes, of which 25,899 genes had at least one hit comparing to the NCBI Nr database, KEGG or InterProScan5. Pairwise sequentially Markovian coalescent (PSMC) analysis of the genome showed that there was a bottleneck event of the population of S. knerii between 70 ka – 20 ka, which was concordant with the Tali glacier period, suggesting a population decline of S. knerii probably due to climate conditions. siniperca knerii chinese perch genome sequencing genome assembly 10x genomics Genetics Jinliang Zhao verfasserin aut Chenhong Li verfasserin aut In G3: Genes, Genomes, Genetics Oxford University Press, 2012 10(2020), 3, Seite 877-880 (DE-627)668901071 (DE-600)2629978-1 21601836 nnns volume:10 year:2020 number:3 pages:877-880 https://doi.org/10.1534/g3.119.400930 kostenfrei https://doaj.org/article/0bf7b70ead5c4b60aad53c2bca5be226 kostenfrei http://g3journal.org/lookup/doi/10.1534/g3.119.400930 kostenfrei https://doaj.org/toc/2160-1836 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 3 877-880 |
language |
English |
source |
In G3: Genes, Genomes, Genetics 10(2020), 3, Seite 877-880 volume:10 year:2020 number:3 pages:877-880 |
sourceStr |
In G3: Genes, Genomes, Genetics 10(2020), 3, Seite 877-880 volume:10 year:2020 number:3 pages:877-880 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
siniperca knerii chinese perch genome sequencing genome assembly 10x genomics Genetics |
isfreeaccess_bool |
true |
container_title |
G3: Genes, Genomes, Genetics |
authorswithroles_txt_mv |
Liang Lu @@aut@@ Jinliang Zhao @@aut@@ Chenhong Li @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
668901071 |
id |
DOAJ005453496 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ005453496</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309193109.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1534/g3.119.400930</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ005453496</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0bf7b70ead5c4b60aad53c2bca5be226</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Liang Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-Quality Genome Assembly and Annotation of the Big-Eye Mandarin Fish (Siniperca knerii)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The big-eye mandarin fish (Siniperca knerii) is an endemic species of southern China. It belongs to the family Sinipercidae, which is closely related to the well-known North American sunfish family Centrarchidae. Determining the genome sequence of S. knerii would provide a foundation for better examining its genetic diversity and population history. A novel sequenced genome of the Sinipercidae also would help in comparative study of the Centrarchidae using Siniperca as a reference. Here, we determined the genome sequence of S. knerii using 10x Genomics technology and next-generation sequencing. Paired-end sequencing on a half lane of HiSeq X platform generated 56 Gbp of raw data. Read assembly using Supernova assembler resulted in two haplotype genomes with 732.1 Mb in size and an average GC content of 40.4%, which is consistent with genome size previously reported or estimated using k-mer counting. A total of 7,989 scaffolds with an N50 score of 12.64 Mb were obtained. The longest scaffold was 30.54 Mb. Evaluation of the genome completeness using BUSCO confirmed that 96.5% genes of the Actinopterygii Benchmarking Universal Single-Copy Orthologs were found in the assembled genome of S. knerii. Gene prediction using Maker annotation kit resulted in 28,440 genes, of which 25,899 genes had at least one hit comparing to the NCBI Nr database, KEGG or InterProScan5. Pairwise sequentially Markovian coalescent (PSMC) analysis of the genome showed that there was a bottleneck event of the population of S. knerii between 70 ka – 20 ka, which was concordant with the Tali glacier period, suggesting a population decline of S. knerii probably due to climate conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">siniperca knerii</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chinese perch</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genome sequencing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genome assembly</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">10x genomics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinliang Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chenhong Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">G3: Genes, Genomes, Genetics</subfield><subfield code="d">Oxford University Press, 2012</subfield><subfield code="g">10(2020), 3, Seite 877-880</subfield><subfield code="w">(DE-627)668901071</subfield><subfield code="w">(DE-600)2629978-1</subfield><subfield code="x">21601836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:877-880</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1534/g3.119.400930</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0bf7b70ead5c4b60aad53c2bca5be226</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://g3journal.org/lookup/doi/10.1534/g3.119.400930</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2160-1836</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield><subfield code="e">3</subfield><subfield code="h">877-880</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Liang Lu |
spellingShingle |
Liang Lu misc QH426-470 misc siniperca knerii misc chinese perch misc genome sequencing misc genome assembly misc 10x genomics misc Genetics High-Quality Genome Assembly and Annotation of the Big-Eye Mandarin Fish (Siniperca knerii) |
authorStr |
Liang Lu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)668901071 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH426-470 |
illustrated |
Not Illustrated |
issn |
21601836 |
topic_title |
QH426-470 High-Quality Genome Assembly and Annotation of the Big-Eye Mandarin Fish (Siniperca knerii) siniperca knerii chinese perch genome sequencing genome assembly 10x genomics |
topic |
misc QH426-470 misc siniperca knerii misc chinese perch misc genome sequencing misc genome assembly misc 10x genomics misc Genetics |
topic_unstemmed |
misc QH426-470 misc siniperca knerii misc chinese perch misc genome sequencing misc genome assembly misc 10x genomics misc Genetics |
topic_browse |
misc QH426-470 misc siniperca knerii misc chinese perch misc genome sequencing misc genome assembly misc 10x genomics misc Genetics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
G3: Genes, Genomes, Genetics |
hierarchy_parent_id |
668901071 |
hierarchy_top_title |
G3: Genes, Genomes, Genetics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)668901071 (DE-600)2629978-1 |
title |
High-Quality Genome Assembly and Annotation of the Big-Eye Mandarin Fish (Siniperca knerii) |
ctrlnum |
(DE-627)DOAJ005453496 (DE-599)DOAJ0bf7b70ead5c4b60aad53c2bca5be226 |
title_full |
High-Quality Genome Assembly and Annotation of the Big-Eye Mandarin Fish (Siniperca knerii) |
author_sort |
Liang Lu |
journal |
G3: Genes, Genomes, Genetics |
journalStr |
G3: Genes, Genomes, Genetics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
877 |
author_browse |
Liang Lu Jinliang Zhao Chenhong Li |
container_volume |
10 |
class |
QH426-470 |
format_se |
Elektronische Aufsätze |
author-letter |
Liang Lu |
doi_str_mv |
10.1534/g3.119.400930 |
author2-role |
verfasserin |
title_sort |
high-quality genome assembly and annotation of the big-eye mandarin fish (siniperca knerii) |
callnumber |
QH426-470 |
title_auth |
High-Quality Genome Assembly and Annotation of the Big-Eye Mandarin Fish (Siniperca knerii) |
abstract |
The big-eye mandarin fish (Siniperca knerii) is an endemic species of southern China. It belongs to the family Sinipercidae, which is closely related to the well-known North American sunfish family Centrarchidae. Determining the genome sequence of S. knerii would provide a foundation for better examining its genetic diversity and population history. A novel sequenced genome of the Sinipercidae also would help in comparative study of the Centrarchidae using Siniperca as a reference. Here, we determined the genome sequence of S. knerii using 10x Genomics technology and next-generation sequencing. Paired-end sequencing on a half lane of HiSeq X platform generated 56 Gbp of raw data. Read assembly using Supernova assembler resulted in two haplotype genomes with 732.1 Mb in size and an average GC content of 40.4%, which is consistent with genome size previously reported or estimated using k-mer counting. A total of 7,989 scaffolds with an N50 score of 12.64 Mb were obtained. The longest scaffold was 30.54 Mb. Evaluation of the genome completeness using BUSCO confirmed that 96.5% genes of the Actinopterygii Benchmarking Universal Single-Copy Orthologs were found in the assembled genome of S. knerii. Gene prediction using Maker annotation kit resulted in 28,440 genes, of which 25,899 genes had at least one hit comparing to the NCBI Nr database, KEGG or InterProScan5. Pairwise sequentially Markovian coalescent (PSMC) analysis of the genome showed that there was a bottleneck event of the population of S. knerii between 70 ka – 20 ka, which was concordant with the Tali glacier period, suggesting a population decline of S. knerii probably due to climate conditions. |
abstractGer |
The big-eye mandarin fish (Siniperca knerii) is an endemic species of southern China. It belongs to the family Sinipercidae, which is closely related to the well-known North American sunfish family Centrarchidae. Determining the genome sequence of S. knerii would provide a foundation for better examining its genetic diversity and population history. A novel sequenced genome of the Sinipercidae also would help in comparative study of the Centrarchidae using Siniperca as a reference. Here, we determined the genome sequence of S. knerii using 10x Genomics technology and next-generation sequencing. Paired-end sequencing on a half lane of HiSeq X platform generated 56 Gbp of raw data. Read assembly using Supernova assembler resulted in two haplotype genomes with 732.1 Mb in size and an average GC content of 40.4%, which is consistent with genome size previously reported or estimated using k-mer counting. A total of 7,989 scaffolds with an N50 score of 12.64 Mb were obtained. The longest scaffold was 30.54 Mb. Evaluation of the genome completeness using BUSCO confirmed that 96.5% genes of the Actinopterygii Benchmarking Universal Single-Copy Orthologs were found in the assembled genome of S. knerii. Gene prediction using Maker annotation kit resulted in 28,440 genes, of which 25,899 genes had at least one hit comparing to the NCBI Nr database, KEGG or InterProScan5. Pairwise sequentially Markovian coalescent (PSMC) analysis of the genome showed that there was a bottleneck event of the population of S. knerii between 70 ka – 20 ka, which was concordant with the Tali glacier period, suggesting a population decline of S. knerii probably due to climate conditions. |
abstract_unstemmed |
The big-eye mandarin fish (Siniperca knerii) is an endemic species of southern China. It belongs to the family Sinipercidae, which is closely related to the well-known North American sunfish family Centrarchidae. Determining the genome sequence of S. knerii would provide a foundation for better examining its genetic diversity and population history. A novel sequenced genome of the Sinipercidae also would help in comparative study of the Centrarchidae using Siniperca as a reference. Here, we determined the genome sequence of S. knerii using 10x Genomics technology and next-generation sequencing. Paired-end sequencing on a half lane of HiSeq X platform generated 56 Gbp of raw data. Read assembly using Supernova assembler resulted in two haplotype genomes with 732.1 Mb in size and an average GC content of 40.4%, which is consistent with genome size previously reported or estimated using k-mer counting. A total of 7,989 scaffolds with an N50 score of 12.64 Mb were obtained. The longest scaffold was 30.54 Mb. Evaluation of the genome completeness using BUSCO confirmed that 96.5% genes of the Actinopterygii Benchmarking Universal Single-Copy Orthologs were found in the assembled genome of S. knerii. Gene prediction using Maker annotation kit resulted in 28,440 genes, of which 25,899 genes had at least one hit comparing to the NCBI Nr database, KEGG or InterProScan5. Pairwise sequentially Markovian coalescent (PSMC) analysis of the genome showed that there was a bottleneck event of the population of S. knerii between 70 ka – 20 ka, which was concordant with the Tali glacier period, suggesting a population decline of S. knerii probably due to climate conditions. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
High-Quality Genome Assembly and Annotation of the Big-Eye Mandarin Fish (Siniperca knerii) |
url |
https://doi.org/10.1534/g3.119.400930 https://doaj.org/article/0bf7b70ead5c4b60aad53c2bca5be226 http://g3journal.org/lookup/doi/10.1534/g3.119.400930 https://doaj.org/toc/2160-1836 |
remote_bool |
true |
author2 |
Jinliang Zhao Chenhong Li |
author2Str |
Jinliang Zhao Chenhong Li |
ppnlink |
668901071 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1534/g3.119.400930 |
callnumber-a |
QH426-470 |
up_date |
2024-07-03T15:05:45.838Z |
_version_ |
1803570795869372416 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ005453496</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309193109.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1534/g3.119.400930</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ005453496</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0bf7b70ead5c4b60aad53c2bca5be226</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Liang Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-Quality Genome Assembly and Annotation of the Big-Eye Mandarin Fish (Siniperca knerii)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The big-eye mandarin fish (Siniperca knerii) is an endemic species of southern China. It belongs to the family Sinipercidae, which is closely related to the well-known North American sunfish family Centrarchidae. Determining the genome sequence of S. knerii would provide a foundation for better examining its genetic diversity and population history. A novel sequenced genome of the Sinipercidae also would help in comparative study of the Centrarchidae using Siniperca as a reference. Here, we determined the genome sequence of S. knerii using 10x Genomics technology and next-generation sequencing. Paired-end sequencing on a half lane of HiSeq X platform generated 56 Gbp of raw data. Read assembly using Supernova assembler resulted in two haplotype genomes with 732.1 Mb in size and an average GC content of 40.4%, which is consistent with genome size previously reported or estimated using k-mer counting. A total of 7,989 scaffolds with an N50 score of 12.64 Mb were obtained. The longest scaffold was 30.54 Mb. Evaluation of the genome completeness using BUSCO confirmed that 96.5% genes of the Actinopterygii Benchmarking Universal Single-Copy Orthologs were found in the assembled genome of S. knerii. Gene prediction using Maker annotation kit resulted in 28,440 genes, of which 25,899 genes had at least one hit comparing to the NCBI Nr database, KEGG or InterProScan5. Pairwise sequentially Markovian coalescent (PSMC) analysis of the genome showed that there was a bottleneck event of the population of S. knerii between 70 ka – 20 ka, which was concordant with the Tali glacier period, suggesting a population decline of S. knerii probably due to climate conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">siniperca knerii</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chinese perch</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genome sequencing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genome assembly</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">10x genomics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinliang Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chenhong Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">G3: Genes, Genomes, Genetics</subfield><subfield code="d">Oxford University Press, 2012</subfield><subfield code="g">10(2020), 3, Seite 877-880</subfield><subfield code="w">(DE-627)668901071</subfield><subfield code="w">(DE-600)2629978-1</subfield><subfield code="x">21601836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:877-880</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1534/g3.119.400930</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0bf7b70ead5c4b60aad53c2bca5be226</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://g3journal.org/lookup/doi/10.1534/g3.119.400930</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2160-1836</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield><subfield code="e">3</subfield><subfield code="h">877-880</subfield></datafield></record></collection>
|
score |
7.401865 |