OSNR-Aware Modeling and Optimization of Multi-Core Fiber-Based Spectrally–Spatially Flexible Optical Networks
We focus on the optical signal-to-noise ratio (OSNR)-aware optical path (lightpath) planning problem in spectrally and spatially flexible optical networks (SS-FONs) connected using weakly coupled multi-core fibers (MCFs) in which distance-adaptive and super-channel transmission is realized using mul...
Ausführliche Beschreibung
Autor*in: |
Mirosław Klinkowski [verfasserIn] Marek Jaworski [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Telecom - MDPI AG, 2020, 3(2022), 3, Seite 467-483 |
---|---|
Übergeordnetes Werk: |
volume:3 ; year:2022 ; number:3 ; pages:467-483 |
Links: |
---|
DOI / URN: |
10.3390/telecom3030025 |
---|
Katalog-ID: |
DOAJ005573599 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ005573599 | ||
003 | DE-627 | ||
005 | 20240414190949.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/telecom3030025 |2 doi | |
035 | |a (DE-627)DOAJ005573599 | ||
035 | |a (DE-599)DOAJe0738dd7efb347bca68b3d1dd5c56b37 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK7885-7895 | |
050 | 0 | |a QA75.5-76.95 | |
100 | 0 | |a Mirosław Klinkowski |e verfasserin |4 aut | |
245 | 1 | 0 | |a OSNR-Aware Modeling and Optimization of Multi-Core Fiber-Based Spectrally–Spatially Flexible Optical Networks |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We focus on the optical signal-to-noise ratio (OSNR)-aware optical path (lightpath) planning problem in spectrally and spatially flexible optical networks (SS-FONs) connected using weakly coupled multi-core fibers (MCFs) in which distance-adaptive and super-channel transmission is realized using multiple modulation formats. In the SS-FON considered, the quality of transmission (QoT) of optical signals is degraded due to the inter-core crosstalk (XT) effect occurring in MCFs. To account for the XT impairment when planning lightpath connections, we make use of a reliable QoT model based on the OSNR estimation, in which the XT impairment is integrated with other physical-layer impairments. To model the lightpath planning optimization problem, we develop a novel mixed-integer programming (MIP) formulation that incorporates the OSNR model. In addition, we propose an efficient heuristic method that is capable of solving larger instances of the optimization problem considered. The results of numerical experiments indicate the low scalability of the MIP method due to the presence of XT and high effectiveness of the heuristic method. The analysis of three different network topologies and two types of MCFs shows a high impact of XT on network performance and limited performance gains from the presence of the central core in a 7-core MCF. | ||
650 | 4 | |a space division multiplexing | |
650 | 4 | |a elastic optical networks | |
650 | 4 | |a multi-core fiber | |
650 | 4 | |a inter-core crosstalk | |
650 | 4 | |a routing | |
650 | 4 | |a spatial mode and spectrum allocation | |
653 | 0 | |a Computer engineering. Computer hardware | |
653 | 0 | |a Electronic computers. Computer science | |
700 | 0 | |a Marek Jaworski |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Telecom |d MDPI AG, 2020 |g 3(2022), 3, Seite 467-483 |w (DE-627)1696034000 |x 26734001 |7 nnns |
773 | 1 | 8 | |g volume:3 |g year:2022 |g number:3 |g pages:467-483 |
856 | 4 | 0 | |u https://doi.org/10.3390/telecom3030025 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e0738dd7efb347bca68b3d1dd5c56b37 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2673-4001/3/3/25 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2673-4001 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 3 |j 2022 |e 3 |h 467-483 |
author_variant |
m k mk m j mj |
---|---|
matchkey_str |
article:26734001:2022----::srwrmdlnadpiiainfutcrfbraesetalsai |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.3390/telecom3030025 doi (DE-627)DOAJ005573599 (DE-599)DOAJe0738dd7efb347bca68b3d1dd5c56b37 DE-627 ger DE-627 rakwb eng TK7885-7895 QA75.5-76.95 Mirosław Klinkowski verfasserin aut OSNR-Aware Modeling and Optimization of Multi-Core Fiber-Based Spectrally–Spatially Flexible Optical Networks 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We focus on the optical signal-to-noise ratio (OSNR)-aware optical path (lightpath) planning problem in spectrally and spatially flexible optical networks (SS-FONs) connected using weakly coupled multi-core fibers (MCFs) in which distance-adaptive and super-channel transmission is realized using multiple modulation formats. In the SS-FON considered, the quality of transmission (QoT) of optical signals is degraded due to the inter-core crosstalk (XT) effect occurring in MCFs. To account for the XT impairment when planning lightpath connections, we make use of a reliable QoT model based on the OSNR estimation, in which the XT impairment is integrated with other physical-layer impairments. To model the lightpath planning optimization problem, we develop a novel mixed-integer programming (MIP) formulation that incorporates the OSNR model. In addition, we propose an efficient heuristic method that is capable of solving larger instances of the optimization problem considered. The results of numerical experiments indicate the low scalability of the MIP method due to the presence of XT and high effectiveness of the heuristic method. The analysis of three different network topologies and two types of MCFs shows a high impact of XT on network performance and limited performance gains from the presence of the central core in a 7-core MCF. space division multiplexing elastic optical networks multi-core fiber inter-core crosstalk routing spatial mode and spectrum allocation Computer engineering. Computer hardware Electronic computers. Computer science Marek Jaworski verfasserin aut In Telecom MDPI AG, 2020 3(2022), 3, Seite 467-483 (DE-627)1696034000 26734001 nnns volume:3 year:2022 number:3 pages:467-483 https://doi.org/10.3390/telecom3030025 kostenfrei https://doaj.org/article/e0738dd7efb347bca68b3d1dd5c56b37 kostenfrei https://www.mdpi.com/2673-4001/3/3/25 kostenfrei https://doaj.org/toc/2673-4001 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2022 3 467-483 |
spelling |
10.3390/telecom3030025 doi (DE-627)DOAJ005573599 (DE-599)DOAJe0738dd7efb347bca68b3d1dd5c56b37 DE-627 ger DE-627 rakwb eng TK7885-7895 QA75.5-76.95 Mirosław Klinkowski verfasserin aut OSNR-Aware Modeling and Optimization of Multi-Core Fiber-Based Spectrally–Spatially Flexible Optical Networks 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We focus on the optical signal-to-noise ratio (OSNR)-aware optical path (lightpath) planning problem in spectrally and spatially flexible optical networks (SS-FONs) connected using weakly coupled multi-core fibers (MCFs) in which distance-adaptive and super-channel transmission is realized using multiple modulation formats. In the SS-FON considered, the quality of transmission (QoT) of optical signals is degraded due to the inter-core crosstalk (XT) effect occurring in MCFs. To account for the XT impairment when planning lightpath connections, we make use of a reliable QoT model based on the OSNR estimation, in which the XT impairment is integrated with other physical-layer impairments. To model the lightpath planning optimization problem, we develop a novel mixed-integer programming (MIP) formulation that incorporates the OSNR model. In addition, we propose an efficient heuristic method that is capable of solving larger instances of the optimization problem considered. The results of numerical experiments indicate the low scalability of the MIP method due to the presence of XT and high effectiveness of the heuristic method. The analysis of three different network topologies and two types of MCFs shows a high impact of XT on network performance and limited performance gains from the presence of the central core in a 7-core MCF. space division multiplexing elastic optical networks multi-core fiber inter-core crosstalk routing spatial mode and spectrum allocation Computer engineering. Computer hardware Electronic computers. Computer science Marek Jaworski verfasserin aut In Telecom MDPI AG, 2020 3(2022), 3, Seite 467-483 (DE-627)1696034000 26734001 nnns volume:3 year:2022 number:3 pages:467-483 https://doi.org/10.3390/telecom3030025 kostenfrei https://doaj.org/article/e0738dd7efb347bca68b3d1dd5c56b37 kostenfrei https://www.mdpi.com/2673-4001/3/3/25 kostenfrei https://doaj.org/toc/2673-4001 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2022 3 467-483 |
allfields_unstemmed |
10.3390/telecom3030025 doi (DE-627)DOAJ005573599 (DE-599)DOAJe0738dd7efb347bca68b3d1dd5c56b37 DE-627 ger DE-627 rakwb eng TK7885-7895 QA75.5-76.95 Mirosław Klinkowski verfasserin aut OSNR-Aware Modeling and Optimization of Multi-Core Fiber-Based Spectrally–Spatially Flexible Optical Networks 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We focus on the optical signal-to-noise ratio (OSNR)-aware optical path (lightpath) planning problem in spectrally and spatially flexible optical networks (SS-FONs) connected using weakly coupled multi-core fibers (MCFs) in which distance-adaptive and super-channel transmission is realized using multiple modulation formats. In the SS-FON considered, the quality of transmission (QoT) of optical signals is degraded due to the inter-core crosstalk (XT) effect occurring in MCFs. To account for the XT impairment when planning lightpath connections, we make use of a reliable QoT model based on the OSNR estimation, in which the XT impairment is integrated with other physical-layer impairments. To model the lightpath planning optimization problem, we develop a novel mixed-integer programming (MIP) formulation that incorporates the OSNR model. In addition, we propose an efficient heuristic method that is capable of solving larger instances of the optimization problem considered. The results of numerical experiments indicate the low scalability of the MIP method due to the presence of XT and high effectiveness of the heuristic method. The analysis of three different network topologies and two types of MCFs shows a high impact of XT on network performance and limited performance gains from the presence of the central core in a 7-core MCF. space division multiplexing elastic optical networks multi-core fiber inter-core crosstalk routing spatial mode and spectrum allocation Computer engineering. Computer hardware Electronic computers. Computer science Marek Jaworski verfasserin aut In Telecom MDPI AG, 2020 3(2022), 3, Seite 467-483 (DE-627)1696034000 26734001 nnns volume:3 year:2022 number:3 pages:467-483 https://doi.org/10.3390/telecom3030025 kostenfrei https://doaj.org/article/e0738dd7efb347bca68b3d1dd5c56b37 kostenfrei https://www.mdpi.com/2673-4001/3/3/25 kostenfrei https://doaj.org/toc/2673-4001 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2022 3 467-483 |
allfieldsGer |
10.3390/telecom3030025 doi (DE-627)DOAJ005573599 (DE-599)DOAJe0738dd7efb347bca68b3d1dd5c56b37 DE-627 ger DE-627 rakwb eng TK7885-7895 QA75.5-76.95 Mirosław Klinkowski verfasserin aut OSNR-Aware Modeling and Optimization of Multi-Core Fiber-Based Spectrally–Spatially Flexible Optical Networks 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We focus on the optical signal-to-noise ratio (OSNR)-aware optical path (lightpath) planning problem in spectrally and spatially flexible optical networks (SS-FONs) connected using weakly coupled multi-core fibers (MCFs) in which distance-adaptive and super-channel transmission is realized using multiple modulation formats. In the SS-FON considered, the quality of transmission (QoT) of optical signals is degraded due to the inter-core crosstalk (XT) effect occurring in MCFs. To account for the XT impairment when planning lightpath connections, we make use of a reliable QoT model based on the OSNR estimation, in which the XT impairment is integrated with other physical-layer impairments. To model the lightpath planning optimization problem, we develop a novel mixed-integer programming (MIP) formulation that incorporates the OSNR model. In addition, we propose an efficient heuristic method that is capable of solving larger instances of the optimization problem considered. The results of numerical experiments indicate the low scalability of the MIP method due to the presence of XT and high effectiveness of the heuristic method. The analysis of three different network topologies and two types of MCFs shows a high impact of XT on network performance and limited performance gains from the presence of the central core in a 7-core MCF. space division multiplexing elastic optical networks multi-core fiber inter-core crosstalk routing spatial mode and spectrum allocation Computer engineering. Computer hardware Electronic computers. Computer science Marek Jaworski verfasserin aut In Telecom MDPI AG, 2020 3(2022), 3, Seite 467-483 (DE-627)1696034000 26734001 nnns volume:3 year:2022 number:3 pages:467-483 https://doi.org/10.3390/telecom3030025 kostenfrei https://doaj.org/article/e0738dd7efb347bca68b3d1dd5c56b37 kostenfrei https://www.mdpi.com/2673-4001/3/3/25 kostenfrei https://doaj.org/toc/2673-4001 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2022 3 467-483 |
allfieldsSound |
10.3390/telecom3030025 doi (DE-627)DOAJ005573599 (DE-599)DOAJe0738dd7efb347bca68b3d1dd5c56b37 DE-627 ger DE-627 rakwb eng TK7885-7895 QA75.5-76.95 Mirosław Klinkowski verfasserin aut OSNR-Aware Modeling and Optimization of Multi-Core Fiber-Based Spectrally–Spatially Flexible Optical Networks 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We focus on the optical signal-to-noise ratio (OSNR)-aware optical path (lightpath) planning problem in spectrally and spatially flexible optical networks (SS-FONs) connected using weakly coupled multi-core fibers (MCFs) in which distance-adaptive and super-channel transmission is realized using multiple modulation formats. In the SS-FON considered, the quality of transmission (QoT) of optical signals is degraded due to the inter-core crosstalk (XT) effect occurring in MCFs. To account for the XT impairment when planning lightpath connections, we make use of a reliable QoT model based on the OSNR estimation, in which the XT impairment is integrated with other physical-layer impairments. To model the lightpath planning optimization problem, we develop a novel mixed-integer programming (MIP) formulation that incorporates the OSNR model. In addition, we propose an efficient heuristic method that is capable of solving larger instances of the optimization problem considered. The results of numerical experiments indicate the low scalability of the MIP method due to the presence of XT and high effectiveness of the heuristic method. The analysis of three different network topologies and two types of MCFs shows a high impact of XT on network performance and limited performance gains from the presence of the central core in a 7-core MCF. space division multiplexing elastic optical networks multi-core fiber inter-core crosstalk routing spatial mode and spectrum allocation Computer engineering. Computer hardware Electronic computers. Computer science Marek Jaworski verfasserin aut In Telecom MDPI AG, 2020 3(2022), 3, Seite 467-483 (DE-627)1696034000 26734001 nnns volume:3 year:2022 number:3 pages:467-483 https://doi.org/10.3390/telecom3030025 kostenfrei https://doaj.org/article/e0738dd7efb347bca68b3d1dd5c56b37 kostenfrei https://www.mdpi.com/2673-4001/3/3/25 kostenfrei https://doaj.org/toc/2673-4001 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2022 3 467-483 |
language |
English |
source |
In Telecom 3(2022), 3, Seite 467-483 volume:3 year:2022 number:3 pages:467-483 |
sourceStr |
In Telecom 3(2022), 3, Seite 467-483 volume:3 year:2022 number:3 pages:467-483 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
space division multiplexing elastic optical networks multi-core fiber inter-core crosstalk routing spatial mode and spectrum allocation Computer engineering. Computer hardware Electronic computers. Computer science |
isfreeaccess_bool |
true |
container_title |
Telecom |
authorswithroles_txt_mv |
Mirosław Klinkowski @@aut@@ Marek Jaworski @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
1696034000 |
id |
DOAJ005573599 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ005573599</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414190949.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/telecom3030025</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ005573599</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe0738dd7efb347bca68b3d1dd5c56b37</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7885-7895</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mirosław Klinkowski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">OSNR-Aware Modeling and Optimization of Multi-Core Fiber-Based Spectrally–Spatially Flexible Optical Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We focus on the optical signal-to-noise ratio (OSNR)-aware optical path (lightpath) planning problem in spectrally and spatially flexible optical networks (SS-FONs) connected using weakly coupled multi-core fibers (MCFs) in which distance-adaptive and super-channel transmission is realized using multiple modulation formats. In the SS-FON considered, the quality of transmission (QoT) of optical signals is degraded due to the inter-core crosstalk (XT) effect occurring in MCFs. To account for the XT impairment when planning lightpath connections, we make use of a reliable QoT model based on the OSNR estimation, in which the XT impairment is integrated with other physical-layer impairments. To model the lightpath planning optimization problem, we develop a novel mixed-integer programming (MIP) formulation that incorporates the OSNR model. In addition, we propose an efficient heuristic method that is capable of solving larger instances of the optimization problem considered. The results of numerical experiments indicate the low scalability of the MIP method due to the presence of XT and high effectiveness of the heuristic method. The analysis of three different network topologies and two types of MCFs shows a high impact of XT on network performance and limited performance gains from the presence of the central core in a 7-core MCF.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">space division multiplexing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">elastic optical networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-core fiber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inter-core crosstalk</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">routing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spatial mode and spectrum allocation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer engineering. Computer hardware</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marek Jaworski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Telecom</subfield><subfield code="d">MDPI AG, 2020</subfield><subfield code="g">3(2022), 3, Seite 467-483</subfield><subfield code="w">(DE-627)1696034000</subfield><subfield code="x">26734001</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:467-483</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/telecom3030025</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e0738dd7efb347bca68b3d1dd5c56b37</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2673-4001/3/3/25</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2673-4001</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="h">467-483</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Mirosław Klinkowski |
spellingShingle |
Mirosław Klinkowski misc TK7885-7895 misc QA75.5-76.95 misc space division multiplexing misc elastic optical networks misc multi-core fiber misc inter-core crosstalk misc routing misc spatial mode and spectrum allocation misc Computer engineering. Computer hardware misc Electronic computers. Computer science OSNR-Aware Modeling and Optimization of Multi-Core Fiber-Based Spectrally–Spatially Flexible Optical Networks |
authorStr |
Mirosław Klinkowski |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1696034000 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK7885-7895 |
illustrated |
Not Illustrated |
issn |
26734001 |
topic_title |
TK7885-7895 QA75.5-76.95 OSNR-Aware Modeling and Optimization of Multi-Core Fiber-Based Spectrally–Spatially Flexible Optical Networks space division multiplexing elastic optical networks multi-core fiber inter-core crosstalk routing spatial mode and spectrum allocation |
topic |
misc TK7885-7895 misc QA75.5-76.95 misc space division multiplexing misc elastic optical networks misc multi-core fiber misc inter-core crosstalk misc routing misc spatial mode and spectrum allocation misc Computer engineering. Computer hardware misc Electronic computers. Computer science |
topic_unstemmed |
misc TK7885-7895 misc QA75.5-76.95 misc space division multiplexing misc elastic optical networks misc multi-core fiber misc inter-core crosstalk misc routing misc spatial mode and spectrum allocation misc Computer engineering. Computer hardware misc Electronic computers. Computer science |
topic_browse |
misc TK7885-7895 misc QA75.5-76.95 misc space division multiplexing misc elastic optical networks misc multi-core fiber misc inter-core crosstalk misc routing misc spatial mode and spectrum allocation misc Computer engineering. Computer hardware misc Electronic computers. Computer science |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Telecom |
hierarchy_parent_id |
1696034000 |
hierarchy_top_title |
Telecom |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1696034000 |
title |
OSNR-Aware Modeling and Optimization of Multi-Core Fiber-Based Spectrally–Spatially Flexible Optical Networks |
ctrlnum |
(DE-627)DOAJ005573599 (DE-599)DOAJe0738dd7efb347bca68b3d1dd5c56b37 |
title_full |
OSNR-Aware Modeling and Optimization of Multi-Core Fiber-Based Spectrally–Spatially Flexible Optical Networks |
author_sort |
Mirosław Klinkowski |
journal |
Telecom |
journalStr |
Telecom |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
467 |
author_browse |
Mirosław Klinkowski Marek Jaworski |
container_volume |
3 |
class |
TK7885-7895 QA75.5-76.95 |
format_se |
Elektronische Aufsätze |
author-letter |
Mirosław Klinkowski |
doi_str_mv |
10.3390/telecom3030025 |
author2-role |
verfasserin |
title_sort |
osnr-aware modeling and optimization of multi-core fiber-based spectrally–spatially flexible optical networks |
callnumber |
TK7885-7895 |
title_auth |
OSNR-Aware Modeling and Optimization of Multi-Core Fiber-Based Spectrally–Spatially Flexible Optical Networks |
abstract |
We focus on the optical signal-to-noise ratio (OSNR)-aware optical path (lightpath) planning problem in spectrally and spatially flexible optical networks (SS-FONs) connected using weakly coupled multi-core fibers (MCFs) in which distance-adaptive and super-channel transmission is realized using multiple modulation formats. In the SS-FON considered, the quality of transmission (QoT) of optical signals is degraded due to the inter-core crosstalk (XT) effect occurring in MCFs. To account for the XT impairment when planning lightpath connections, we make use of a reliable QoT model based on the OSNR estimation, in which the XT impairment is integrated with other physical-layer impairments. To model the lightpath planning optimization problem, we develop a novel mixed-integer programming (MIP) formulation that incorporates the OSNR model. In addition, we propose an efficient heuristic method that is capable of solving larger instances of the optimization problem considered. The results of numerical experiments indicate the low scalability of the MIP method due to the presence of XT and high effectiveness of the heuristic method. The analysis of three different network topologies and two types of MCFs shows a high impact of XT on network performance and limited performance gains from the presence of the central core in a 7-core MCF. |
abstractGer |
We focus on the optical signal-to-noise ratio (OSNR)-aware optical path (lightpath) planning problem in spectrally and spatially flexible optical networks (SS-FONs) connected using weakly coupled multi-core fibers (MCFs) in which distance-adaptive and super-channel transmission is realized using multiple modulation formats. In the SS-FON considered, the quality of transmission (QoT) of optical signals is degraded due to the inter-core crosstalk (XT) effect occurring in MCFs. To account for the XT impairment when planning lightpath connections, we make use of a reliable QoT model based on the OSNR estimation, in which the XT impairment is integrated with other physical-layer impairments. To model the lightpath planning optimization problem, we develop a novel mixed-integer programming (MIP) formulation that incorporates the OSNR model. In addition, we propose an efficient heuristic method that is capable of solving larger instances of the optimization problem considered. The results of numerical experiments indicate the low scalability of the MIP method due to the presence of XT and high effectiveness of the heuristic method. The analysis of three different network topologies and two types of MCFs shows a high impact of XT on network performance and limited performance gains from the presence of the central core in a 7-core MCF. |
abstract_unstemmed |
We focus on the optical signal-to-noise ratio (OSNR)-aware optical path (lightpath) planning problem in spectrally and spatially flexible optical networks (SS-FONs) connected using weakly coupled multi-core fibers (MCFs) in which distance-adaptive and super-channel transmission is realized using multiple modulation formats. In the SS-FON considered, the quality of transmission (QoT) of optical signals is degraded due to the inter-core crosstalk (XT) effect occurring in MCFs. To account for the XT impairment when planning lightpath connections, we make use of a reliable QoT model based on the OSNR estimation, in which the XT impairment is integrated with other physical-layer impairments. To model the lightpath planning optimization problem, we develop a novel mixed-integer programming (MIP) formulation that incorporates the OSNR model. In addition, we propose an efficient heuristic method that is capable of solving larger instances of the optimization problem considered. The results of numerical experiments indicate the low scalability of the MIP method due to the presence of XT and high effectiveness of the heuristic method. The analysis of three different network topologies and two types of MCFs shows a high impact of XT on network performance and limited performance gains from the presence of the central core in a 7-core MCF. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
OSNR-Aware Modeling and Optimization of Multi-Core Fiber-Based Spectrally–Spatially Flexible Optical Networks |
url |
https://doi.org/10.3390/telecom3030025 https://doaj.org/article/e0738dd7efb347bca68b3d1dd5c56b37 https://www.mdpi.com/2673-4001/3/3/25 https://doaj.org/toc/2673-4001 |
remote_bool |
true |
author2 |
Marek Jaworski |
author2Str |
Marek Jaworski |
ppnlink |
1696034000 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/telecom3030025 |
callnumber-a |
TK7885-7895 |
up_date |
2024-07-03T15:50:37.083Z |
_version_ |
1803573617855823872 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ005573599</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414190949.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/telecom3030025</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ005573599</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe0738dd7efb347bca68b3d1dd5c56b37</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7885-7895</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mirosław Klinkowski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">OSNR-Aware Modeling and Optimization of Multi-Core Fiber-Based Spectrally–Spatially Flexible Optical Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We focus on the optical signal-to-noise ratio (OSNR)-aware optical path (lightpath) planning problem in spectrally and spatially flexible optical networks (SS-FONs) connected using weakly coupled multi-core fibers (MCFs) in which distance-adaptive and super-channel transmission is realized using multiple modulation formats. In the SS-FON considered, the quality of transmission (QoT) of optical signals is degraded due to the inter-core crosstalk (XT) effect occurring in MCFs. To account for the XT impairment when planning lightpath connections, we make use of a reliable QoT model based on the OSNR estimation, in which the XT impairment is integrated with other physical-layer impairments. To model the lightpath planning optimization problem, we develop a novel mixed-integer programming (MIP) formulation that incorporates the OSNR model. In addition, we propose an efficient heuristic method that is capable of solving larger instances of the optimization problem considered. The results of numerical experiments indicate the low scalability of the MIP method due to the presence of XT and high effectiveness of the heuristic method. The analysis of three different network topologies and two types of MCFs shows a high impact of XT on network performance and limited performance gains from the presence of the central core in a 7-core MCF.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">space division multiplexing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">elastic optical networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-core fiber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inter-core crosstalk</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">routing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spatial mode and spectrum allocation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer engineering. Computer hardware</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marek Jaworski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Telecom</subfield><subfield code="d">MDPI AG, 2020</subfield><subfield code="g">3(2022), 3, Seite 467-483</subfield><subfield code="w">(DE-627)1696034000</subfield><subfield code="x">26734001</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:467-483</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/telecom3030025</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e0738dd7efb347bca68b3d1dd5c56b37</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2673-4001/3/3/25</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2673-4001</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="h">467-483</subfield></datafield></record></collection>
|
score |
7.402915 |