Evolution of properties and enhancement mechanism of large-scale three-dimensional graphene oxide-carbon nanotube aerogel/polystyrene nanocomposites
Graphene oxide/carbon nanotubes reinforced high-performance polymer matrix composites featuring lightweight, electrical and thermal properties, are highly required, yet their development still remains a huge challenge. Here, a novel approach for a flexible and high strong (graphene oxide/carbon nano...
Ausführliche Beschreibung
Autor*in: |
Hui Xu [verfasserIn] Guojun Song [verfasserIn] Lichun Ma [verfasserIn] Peifeng Feng [verfasserIn] Longyu Xu [verfasserIn] Lina Zhang [verfasserIn] Zetian Zhao [verfasserIn] Jing Jin [verfasserIn] Zechao Chen [verfasserIn] Xiaoru Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Polymer Testing - Elsevier, 2021, 97(2021), Seite 107158- |
---|---|
Übergeordnetes Werk: |
volume:97 ; year:2021 ; pages:107158- |
Links: |
---|
DOI / URN: |
10.1016/j.polymertesting.2021.107158 |
---|
Katalog-ID: |
DOAJ005749379 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ005749379 | ||
003 | DE-627 | ||
005 | 20230309194232.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.polymertesting.2021.107158 |2 doi | |
035 | |a (DE-627)DOAJ005749379 | ||
035 | |a (DE-599)DOAJ8df92f5cc27c464eabfda0cecd8125b5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1080-1185 | |
100 | 0 | |a Hui Xu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Evolution of properties and enhancement mechanism of large-scale three-dimensional graphene oxide-carbon nanotube aerogel/polystyrene nanocomposites |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Graphene oxide/carbon nanotubes reinforced high-performance polymer matrix composites featuring lightweight, electrical and thermal properties, are highly required, yet their development still remains a huge challenge. Here, a novel approach for a flexible and high strong (graphene oxide/carbon nanotube) aerogel/polystyrene (GOCA/PS) nanocomposite was developed by in-situ polymerization and hot-pressing method using prefabricated GO/CNT aerogel as the interconnected three-dimensional (3D) reinforcement skeleton. Aerogel plays the role of nano-rivets in composite to improve mechanical strength, and the enhancement mechanism was investigated. The results indicate that GO/CNT exhibits excellent dispersion in the polystyrene matrix. In compared with pure PS, the tensile, flexural, compressive, and impact strength of GOCA/PS composite with about 1.0 wt%, a 7:3 mass ratio of GO to CNT, were increased by shifted from 7.35 to 12.83 MPa (about 74.5%), 18.13–29.60 MPa (about 63.2%), 33.15 to 74.44 kJ/m2 (about 124.5%), and 2.09–6.53 MPa (about 211.94%), respectively. Moreover, the microhardness, elastic, flexural and compressive modulus also increased to maximum at a 7:3 mass ratio of GO to CNT. The approach may provide an effective approach to the design and investigation of reinforced composites. | ||
650 | 4 | |a GO-CNT aerogel | |
650 | 4 | |a In-situ polymerization | |
650 | 4 | |a Nanocomposite | |
650 | 4 | |a Mechanical properties | |
650 | 4 | |a Enhancement mechanism | |
653 | 0 | |a Polymers and polymer manufacture | |
700 | 0 | |a Guojun Song |e verfasserin |4 aut | |
700 | 0 | |a Lichun Ma |e verfasserin |4 aut | |
700 | 0 | |a Peifeng Feng |e verfasserin |4 aut | |
700 | 0 | |a Longyu Xu |e verfasserin |4 aut | |
700 | 0 | |a Lina Zhang |e verfasserin |4 aut | |
700 | 0 | |a Zetian Zhao |e verfasserin |4 aut | |
700 | 0 | |a Jing Jin |e verfasserin |4 aut | |
700 | 0 | |a Zechao Chen |e verfasserin |4 aut | |
700 | 0 | |a Xiaoru Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Polymer Testing |d Elsevier, 2021 |g 97(2021), Seite 107158- |w (DE-627)320530280 |w (DE-600)2015673-X |x 18732348 |7 nnns |
773 | 1 | 8 | |g volume:97 |g year:2021 |g pages:107158- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.polymertesting.2021.107158 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8df92f5cc27c464eabfda0cecd8125b5 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0142941821001082 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0142-9418 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 97 |j 2021 |h 107158- |
author_variant |
h x hx g s gs l m lm p f pf l x lx l z lz z z zz j j jj z c zc x l xl |
---|---|
matchkey_str |
article:18732348:2021----::vltoopoeteadnacmnmcaimfagsaehedmninlrpeexdcronnt |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TP |
publishDate |
2021 |
allfields |
10.1016/j.polymertesting.2021.107158 doi (DE-627)DOAJ005749379 (DE-599)DOAJ8df92f5cc27c464eabfda0cecd8125b5 DE-627 ger DE-627 rakwb eng TP1080-1185 Hui Xu verfasserin aut Evolution of properties and enhancement mechanism of large-scale three-dimensional graphene oxide-carbon nanotube aerogel/polystyrene nanocomposites 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Graphene oxide/carbon nanotubes reinforced high-performance polymer matrix composites featuring lightweight, electrical and thermal properties, are highly required, yet their development still remains a huge challenge. Here, a novel approach for a flexible and high strong (graphene oxide/carbon nanotube) aerogel/polystyrene (GOCA/PS) nanocomposite was developed by in-situ polymerization and hot-pressing method using prefabricated GO/CNT aerogel as the interconnected three-dimensional (3D) reinforcement skeleton. Aerogel plays the role of nano-rivets in composite to improve mechanical strength, and the enhancement mechanism was investigated. The results indicate that GO/CNT exhibits excellent dispersion in the polystyrene matrix. In compared with pure PS, the tensile, flexural, compressive, and impact strength of GOCA/PS composite with about 1.0 wt%, a 7:3 mass ratio of GO to CNT, were increased by shifted from 7.35 to 12.83 MPa (about 74.5%), 18.13–29.60 MPa (about 63.2%), 33.15 to 74.44 kJ/m2 (about 124.5%), and 2.09–6.53 MPa (about 211.94%), respectively. Moreover, the microhardness, elastic, flexural and compressive modulus also increased to maximum at a 7:3 mass ratio of GO to CNT. The approach may provide an effective approach to the design and investigation of reinforced composites. GO-CNT aerogel In-situ polymerization Nanocomposite Mechanical properties Enhancement mechanism Polymers and polymer manufacture Guojun Song verfasserin aut Lichun Ma verfasserin aut Peifeng Feng verfasserin aut Longyu Xu verfasserin aut Lina Zhang verfasserin aut Zetian Zhao verfasserin aut Jing Jin verfasserin aut Zechao Chen verfasserin aut Xiaoru Li verfasserin aut In Polymer Testing Elsevier, 2021 97(2021), Seite 107158- (DE-627)320530280 (DE-600)2015673-X 18732348 nnns volume:97 year:2021 pages:107158- https://doi.org/10.1016/j.polymertesting.2021.107158 kostenfrei https://doaj.org/article/8df92f5cc27c464eabfda0cecd8125b5 kostenfrei http://www.sciencedirect.com/science/article/pii/S0142941821001082 kostenfrei https://doaj.org/toc/0142-9418 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 97 2021 107158- |
spelling |
10.1016/j.polymertesting.2021.107158 doi (DE-627)DOAJ005749379 (DE-599)DOAJ8df92f5cc27c464eabfda0cecd8125b5 DE-627 ger DE-627 rakwb eng TP1080-1185 Hui Xu verfasserin aut Evolution of properties and enhancement mechanism of large-scale three-dimensional graphene oxide-carbon nanotube aerogel/polystyrene nanocomposites 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Graphene oxide/carbon nanotubes reinforced high-performance polymer matrix composites featuring lightweight, electrical and thermal properties, are highly required, yet their development still remains a huge challenge. Here, a novel approach for a flexible and high strong (graphene oxide/carbon nanotube) aerogel/polystyrene (GOCA/PS) nanocomposite was developed by in-situ polymerization and hot-pressing method using prefabricated GO/CNT aerogel as the interconnected three-dimensional (3D) reinforcement skeleton. Aerogel plays the role of nano-rivets in composite to improve mechanical strength, and the enhancement mechanism was investigated. The results indicate that GO/CNT exhibits excellent dispersion in the polystyrene matrix. In compared with pure PS, the tensile, flexural, compressive, and impact strength of GOCA/PS composite with about 1.0 wt%, a 7:3 mass ratio of GO to CNT, were increased by shifted from 7.35 to 12.83 MPa (about 74.5%), 18.13–29.60 MPa (about 63.2%), 33.15 to 74.44 kJ/m2 (about 124.5%), and 2.09–6.53 MPa (about 211.94%), respectively. Moreover, the microhardness, elastic, flexural and compressive modulus also increased to maximum at a 7:3 mass ratio of GO to CNT. The approach may provide an effective approach to the design and investigation of reinforced composites. GO-CNT aerogel In-situ polymerization Nanocomposite Mechanical properties Enhancement mechanism Polymers and polymer manufacture Guojun Song verfasserin aut Lichun Ma verfasserin aut Peifeng Feng verfasserin aut Longyu Xu verfasserin aut Lina Zhang verfasserin aut Zetian Zhao verfasserin aut Jing Jin verfasserin aut Zechao Chen verfasserin aut Xiaoru Li verfasserin aut In Polymer Testing Elsevier, 2021 97(2021), Seite 107158- (DE-627)320530280 (DE-600)2015673-X 18732348 nnns volume:97 year:2021 pages:107158- https://doi.org/10.1016/j.polymertesting.2021.107158 kostenfrei https://doaj.org/article/8df92f5cc27c464eabfda0cecd8125b5 kostenfrei http://www.sciencedirect.com/science/article/pii/S0142941821001082 kostenfrei https://doaj.org/toc/0142-9418 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 97 2021 107158- |
allfields_unstemmed |
10.1016/j.polymertesting.2021.107158 doi (DE-627)DOAJ005749379 (DE-599)DOAJ8df92f5cc27c464eabfda0cecd8125b5 DE-627 ger DE-627 rakwb eng TP1080-1185 Hui Xu verfasserin aut Evolution of properties and enhancement mechanism of large-scale three-dimensional graphene oxide-carbon nanotube aerogel/polystyrene nanocomposites 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Graphene oxide/carbon nanotubes reinforced high-performance polymer matrix composites featuring lightweight, electrical and thermal properties, are highly required, yet their development still remains a huge challenge. Here, a novel approach for a flexible and high strong (graphene oxide/carbon nanotube) aerogel/polystyrene (GOCA/PS) nanocomposite was developed by in-situ polymerization and hot-pressing method using prefabricated GO/CNT aerogel as the interconnected three-dimensional (3D) reinforcement skeleton. Aerogel plays the role of nano-rivets in composite to improve mechanical strength, and the enhancement mechanism was investigated. The results indicate that GO/CNT exhibits excellent dispersion in the polystyrene matrix. In compared with pure PS, the tensile, flexural, compressive, and impact strength of GOCA/PS composite with about 1.0 wt%, a 7:3 mass ratio of GO to CNT, were increased by shifted from 7.35 to 12.83 MPa (about 74.5%), 18.13–29.60 MPa (about 63.2%), 33.15 to 74.44 kJ/m2 (about 124.5%), and 2.09–6.53 MPa (about 211.94%), respectively. Moreover, the microhardness, elastic, flexural and compressive modulus also increased to maximum at a 7:3 mass ratio of GO to CNT. The approach may provide an effective approach to the design and investigation of reinforced composites. GO-CNT aerogel In-situ polymerization Nanocomposite Mechanical properties Enhancement mechanism Polymers and polymer manufacture Guojun Song verfasserin aut Lichun Ma verfasserin aut Peifeng Feng verfasserin aut Longyu Xu verfasserin aut Lina Zhang verfasserin aut Zetian Zhao verfasserin aut Jing Jin verfasserin aut Zechao Chen verfasserin aut Xiaoru Li verfasserin aut In Polymer Testing Elsevier, 2021 97(2021), Seite 107158- (DE-627)320530280 (DE-600)2015673-X 18732348 nnns volume:97 year:2021 pages:107158- https://doi.org/10.1016/j.polymertesting.2021.107158 kostenfrei https://doaj.org/article/8df92f5cc27c464eabfda0cecd8125b5 kostenfrei http://www.sciencedirect.com/science/article/pii/S0142941821001082 kostenfrei https://doaj.org/toc/0142-9418 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 97 2021 107158- |
allfieldsGer |
10.1016/j.polymertesting.2021.107158 doi (DE-627)DOAJ005749379 (DE-599)DOAJ8df92f5cc27c464eabfda0cecd8125b5 DE-627 ger DE-627 rakwb eng TP1080-1185 Hui Xu verfasserin aut Evolution of properties and enhancement mechanism of large-scale three-dimensional graphene oxide-carbon nanotube aerogel/polystyrene nanocomposites 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Graphene oxide/carbon nanotubes reinforced high-performance polymer matrix composites featuring lightweight, electrical and thermal properties, are highly required, yet their development still remains a huge challenge. Here, a novel approach for a flexible and high strong (graphene oxide/carbon nanotube) aerogel/polystyrene (GOCA/PS) nanocomposite was developed by in-situ polymerization and hot-pressing method using prefabricated GO/CNT aerogel as the interconnected three-dimensional (3D) reinforcement skeleton. Aerogel plays the role of nano-rivets in composite to improve mechanical strength, and the enhancement mechanism was investigated. The results indicate that GO/CNT exhibits excellent dispersion in the polystyrene matrix. In compared with pure PS, the tensile, flexural, compressive, and impact strength of GOCA/PS composite with about 1.0 wt%, a 7:3 mass ratio of GO to CNT, were increased by shifted from 7.35 to 12.83 MPa (about 74.5%), 18.13–29.60 MPa (about 63.2%), 33.15 to 74.44 kJ/m2 (about 124.5%), and 2.09–6.53 MPa (about 211.94%), respectively. Moreover, the microhardness, elastic, flexural and compressive modulus also increased to maximum at a 7:3 mass ratio of GO to CNT. The approach may provide an effective approach to the design and investigation of reinforced composites. GO-CNT aerogel In-situ polymerization Nanocomposite Mechanical properties Enhancement mechanism Polymers and polymer manufacture Guojun Song verfasserin aut Lichun Ma verfasserin aut Peifeng Feng verfasserin aut Longyu Xu verfasserin aut Lina Zhang verfasserin aut Zetian Zhao verfasserin aut Jing Jin verfasserin aut Zechao Chen verfasserin aut Xiaoru Li verfasserin aut In Polymer Testing Elsevier, 2021 97(2021), Seite 107158- (DE-627)320530280 (DE-600)2015673-X 18732348 nnns volume:97 year:2021 pages:107158- https://doi.org/10.1016/j.polymertesting.2021.107158 kostenfrei https://doaj.org/article/8df92f5cc27c464eabfda0cecd8125b5 kostenfrei http://www.sciencedirect.com/science/article/pii/S0142941821001082 kostenfrei https://doaj.org/toc/0142-9418 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 97 2021 107158- |
allfieldsSound |
10.1016/j.polymertesting.2021.107158 doi (DE-627)DOAJ005749379 (DE-599)DOAJ8df92f5cc27c464eabfda0cecd8125b5 DE-627 ger DE-627 rakwb eng TP1080-1185 Hui Xu verfasserin aut Evolution of properties and enhancement mechanism of large-scale three-dimensional graphene oxide-carbon nanotube aerogel/polystyrene nanocomposites 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Graphene oxide/carbon nanotubes reinforced high-performance polymer matrix composites featuring lightweight, electrical and thermal properties, are highly required, yet their development still remains a huge challenge. Here, a novel approach for a flexible and high strong (graphene oxide/carbon nanotube) aerogel/polystyrene (GOCA/PS) nanocomposite was developed by in-situ polymerization and hot-pressing method using prefabricated GO/CNT aerogel as the interconnected three-dimensional (3D) reinforcement skeleton. Aerogel plays the role of nano-rivets in composite to improve mechanical strength, and the enhancement mechanism was investigated. The results indicate that GO/CNT exhibits excellent dispersion in the polystyrene matrix. In compared with pure PS, the tensile, flexural, compressive, and impact strength of GOCA/PS composite with about 1.0 wt%, a 7:3 mass ratio of GO to CNT, were increased by shifted from 7.35 to 12.83 MPa (about 74.5%), 18.13–29.60 MPa (about 63.2%), 33.15 to 74.44 kJ/m2 (about 124.5%), and 2.09–6.53 MPa (about 211.94%), respectively. Moreover, the microhardness, elastic, flexural and compressive modulus also increased to maximum at a 7:3 mass ratio of GO to CNT. The approach may provide an effective approach to the design and investigation of reinforced composites. GO-CNT aerogel In-situ polymerization Nanocomposite Mechanical properties Enhancement mechanism Polymers and polymer manufacture Guojun Song verfasserin aut Lichun Ma verfasserin aut Peifeng Feng verfasserin aut Longyu Xu verfasserin aut Lina Zhang verfasserin aut Zetian Zhao verfasserin aut Jing Jin verfasserin aut Zechao Chen verfasserin aut Xiaoru Li verfasserin aut In Polymer Testing Elsevier, 2021 97(2021), Seite 107158- (DE-627)320530280 (DE-600)2015673-X 18732348 nnns volume:97 year:2021 pages:107158- https://doi.org/10.1016/j.polymertesting.2021.107158 kostenfrei https://doaj.org/article/8df92f5cc27c464eabfda0cecd8125b5 kostenfrei http://www.sciencedirect.com/science/article/pii/S0142941821001082 kostenfrei https://doaj.org/toc/0142-9418 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 97 2021 107158- |
language |
English |
source |
In Polymer Testing 97(2021), Seite 107158- volume:97 year:2021 pages:107158- |
sourceStr |
In Polymer Testing 97(2021), Seite 107158- volume:97 year:2021 pages:107158- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
GO-CNT aerogel In-situ polymerization Nanocomposite Mechanical properties Enhancement mechanism Polymers and polymer manufacture |
isfreeaccess_bool |
true |
container_title |
Polymer Testing |
authorswithroles_txt_mv |
Hui Xu @@aut@@ Guojun Song @@aut@@ Lichun Ma @@aut@@ Peifeng Feng @@aut@@ Longyu Xu @@aut@@ Lina Zhang @@aut@@ Zetian Zhao @@aut@@ Jing Jin @@aut@@ Zechao Chen @@aut@@ Xiaoru Li @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
320530280 |
id |
DOAJ005749379 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ005749379</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309194232.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.polymertesting.2021.107158</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ005749379</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8df92f5cc27c464eabfda0cecd8125b5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1080-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hui Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evolution of properties and enhancement mechanism of large-scale three-dimensional graphene oxide-carbon nanotube aerogel/polystyrene nanocomposites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Graphene oxide/carbon nanotubes reinforced high-performance polymer matrix composites featuring lightweight, electrical and thermal properties, are highly required, yet their development still remains a huge challenge. Here, a novel approach for a flexible and high strong (graphene oxide/carbon nanotube) aerogel/polystyrene (GOCA/PS) nanocomposite was developed by in-situ polymerization and hot-pressing method using prefabricated GO/CNT aerogel as the interconnected three-dimensional (3D) reinforcement skeleton. Aerogel plays the role of nano-rivets in composite to improve mechanical strength, and the enhancement mechanism was investigated. The results indicate that GO/CNT exhibits excellent dispersion in the polystyrene matrix. In compared with pure PS, the tensile, flexural, compressive, and impact strength of GOCA/PS composite with about 1.0 wt%, a 7:3 mass ratio of GO to CNT, were increased by shifted from 7.35 to 12.83 MPa (about 74.5%), 18.13–29.60 MPa (about 63.2%), 33.15 to 74.44 kJ/m2 (about 124.5%), and 2.09–6.53 MPa (about 211.94%), respectively. Moreover, the microhardness, elastic, flexural and compressive modulus also increased to maximum at a 7:3 mass ratio of GO to CNT. The approach may provide an effective approach to the design and investigation of reinforced composites.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GO-CNT aerogel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">In-situ polymerization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanocomposite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Enhancement mechanism</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Polymers and polymer manufacture</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guojun Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lichun Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peifeng Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Longyu Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lina Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zetian Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zechao Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoru Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Polymer Testing</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">97(2021), Seite 107158-</subfield><subfield code="w">(DE-627)320530280</subfield><subfield code="w">(DE-600)2015673-X</subfield><subfield code="x">18732348</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:97</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:107158-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.polymertesting.2021.107158</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8df92f5cc27c464eabfda0cecd8125b5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0142941821001082</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0142-9418</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">97</subfield><subfield code="j">2021</subfield><subfield code="h">107158-</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Hui Xu |
spellingShingle |
Hui Xu misc TP1080-1185 misc GO-CNT aerogel misc In-situ polymerization misc Nanocomposite misc Mechanical properties misc Enhancement mechanism misc Polymers and polymer manufacture Evolution of properties and enhancement mechanism of large-scale three-dimensional graphene oxide-carbon nanotube aerogel/polystyrene nanocomposites |
authorStr |
Hui Xu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320530280 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1080-1185 |
illustrated |
Not Illustrated |
issn |
18732348 |
topic_title |
TP1080-1185 Evolution of properties and enhancement mechanism of large-scale three-dimensional graphene oxide-carbon nanotube aerogel/polystyrene nanocomposites GO-CNT aerogel In-situ polymerization Nanocomposite Mechanical properties Enhancement mechanism |
topic |
misc TP1080-1185 misc GO-CNT aerogel misc In-situ polymerization misc Nanocomposite misc Mechanical properties misc Enhancement mechanism misc Polymers and polymer manufacture |
topic_unstemmed |
misc TP1080-1185 misc GO-CNT aerogel misc In-situ polymerization misc Nanocomposite misc Mechanical properties misc Enhancement mechanism misc Polymers and polymer manufacture |
topic_browse |
misc TP1080-1185 misc GO-CNT aerogel misc In-situ polymerization misc Nanocomposite misc Mechanical properties misc Enhancement mechanism misc Polymers and polymer manufacture |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Polymer Testing |
hierarchy_parent_id |
320530280 |
hierarchy_top_title |
Polymer Testing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320530280 (DE-600)2015673-X |
title |
Evolution of properties and enhancement mechanism of large-scale three-dimensional graphene oxide-carbon nanotube aerogel/polystyrene nanocomposites |
ctrlnum |
(DE-627)DOAJ005749379 (DE-599)DOAJ8df92f5cc27c464eabfda0cecd8125b5 |
title_full |
Evolution of properties and enhancement mechanism of large-scale three-dimensional graphene oxide-carbon nanotube aerogel/polystyrene nanocomposites |
author_sort |
Hui Xu |
journal |
Polymer Testing |
journalStr |
Polymer Testing |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
107158 |
author_browse |
Hui Xu Guojun Song Lichun Ma Peifeng Feng Longyu Xu Lina Zhang Zetian Zhao Jing Jin Zechao Chen Xiaoru Li |
container_volume |
97 |
class |
TP1080-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Hui Xu |
doi_str_mv |
10.1016/j.polymertesting.2021.107158 |
author2-role |
verfasserin |
title_sort |
evolution of properties and enhancement mechanism of large-scale three-dimensional graphene oxide-carbon nanotube aerogel/polystyrene nanocomposites |
callnumber |
TP1080-1185 |
title_auth |
Evolution of properties and enhancement mechanism of large-scale three-dimensional graphene oxide-carbon nanotube aerogel/polystyrene nanocomposites |
abstract |
Graphene oxide/carbon nanotubes reinforced high-performance polymer matrix composites featuring lightweight, electrical and thermal properties, are highly required, yet their development still remains a huge challenge. Here, a novel approach for a flexible and high strong (graphene oxide/carbon nanotube) aerogel/polystyrene (GOCA/PS) nanocomposite was developed by in-situ polymerization and hot-pressing method using prefabricated GO/CNT aerogel as the interconnected three-dimensional (3D) reinforcement skeleton. Aerogel plays the role of nano-rivets in composite to improve mechanical strength, and the enhancement mechanism was investigated. The results indicate that GO/CNT exhibits excellent dispersion in the polystyrene matrix. In compared with pure PS, the tensile, flexural, compressive, and impact strength of GOCA/PS composite with about 1.0 wt%, a 7:3 mass ratio of GO to CNT, were increased by shifted from 7.35 to 12.83 MPa (about 74.5%), 18.13–29.60 MPa (about 63.2%), 33.15 to 74.44 kJ/m2 (about 124.5%), and 2.09–6.53 MPa (about 211.94%), respectively. Moreover, the microhardness, elastic, flexural and compressive modulus also increased to maximum at a 7:3 mass ratio of GO to CNT. The approach may provide an effective approach to the design and investigation of reinforced composites. |
abstractGer |
Graphene oxide/carbon nanotubes reinforced high-performance polymer matrix composites featuring lightweight, electrical and thermal properties, are highly required, yet their development still remains a huge challenge. Here, a novel approach for a flexible and high strong (graphene oxide/carbon nanotube) aerogel/polystyrene (GOCA/PS) nanocomposite was developed by in-situ polymerization and hot-pressing method using prefabricated GO/CNT aerogel as the interconnected three-dimensional (3D) reinforcement skeleton. Aerogel plays the role of nano-rivets in composite to improve mechanical strength, and the enhancement mechanism was investigated. The results indicate that GO/CNT exhibits excellent dispersion in the polystyrene matrix. In compared with pure PS, the tensile, flexural, compressive, and impact strength of GOCA/PS composite with about 1.0 wt%, a 7:3 mass ratio of GO to CNT, were increased by shifted from 7.35 to 12.83 MPa (about 74.5%), 18.13–29.60 MPa (about 63.2%), 33.15 to 74.44 kJ/m2 (about 124.5%), and 2.09–6.53 MPa (about 211.94%), respectively. Moreover, the microhardness, elastic, flexural and compressive modulus also increased to maximum at a 7:3 mass ratio of GO to CNT. The approach may provide an effective approach to the design and investigation of reinforced composites. |
abstract_unstemmed |
Graphene oxide/carbon nanotubes reinforced high-performance polymer matrix composites featuring lightweight, electrical and thermal properties, are highly required, yet their development still remains a huge challenge. Here, a novel approach for a flexible and high strong (graphene oxide/carbon nanotube) aerogel/polystyrene (GOCA/PS) nanocomposite was developed by in-situ polymerization and hot-pressing method using prefabricated GO/CNT aerogel as the interconnected three-dimensional (3D) reinforcement skeleton. Aerogel plays the role of nano-rivets in composite to improve mechanical strength, and the enhancement mechanism was investigated. The results indicate that GO/CNT exhibits excellent dispersion in the polystyrene matrix. In compared with pure PS, the tensile, flexural, compressive, and impact strength of GOCA/PS composite with about 1.0 wt%, a 7:3 mass ratio of GO to CNT, were increased by shifted from 7.35 to 12.83 MPa (about 74.5%), 18.13–29.60 MPa (about 63.2%), 33.15 to 74.44 kJ/m2 (about 124.5%), and 2.09–6.53 MPa (about 211.94%), respectively. Moreover, the microhardness, elastic, flexural and compressive modulus also increased to maximum at a 7:3 mass ratio of GO to CNT. The approach may provide an effective approach to the design and investigation of reinforced composites. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Evolution of properties and enhancement mechanism of large-scale three-dimensional graphene oxide-carbon nanotube aerogel/polystyrene nanocomposites |
url |
https://doi.org/10.1016/j.polymertesting.2021.107158 https://doaj.org/article/8df92f5cc27c464eabfda0cecd8125b5 http://www.sciencedirect.com/science/article/pii/S0142941821001082 https://doaj.org/toc/0142-9418 |
remote_bool |
true |
author2 |
Guojun Song Lichun Ma Peifeng Feng Longyu Xu Lina Zhang Zetian Zhao Jing Jin Zechao Chen Xiaoru Li |
author2Str |
Guojun Song Lichun Ma Peifeng Feng Longyu Xu Lina Zhang Zetian Zhao Jing Jin Zechao Chen Xiaoru Li |
ppnlink |
320530280 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.polymertesting.2021.107158 |
callnumber-a |
TP1080-1185 |
up_date |
2024-07-03T16:53:28.703Z |
_version_ |
1803577572675551232 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ005749379</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309194232.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.polymertesting.2021.107158</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ005749379</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8df92f5cc27c464eabfda0cecd8125b5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1080-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hui Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evolution of properties and enhancement mechanism of large-scale three-dimensional graphene oxide-carbon nanotube aerogel/polystyrene nanocomposites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Graphene oxide/carbon nanotubes reinforced high-performance polymer matrix composites featuring lightweight, electrical and thermal properties, are highly required, yet their development still remains a huge challenge. Here, a novel approach for a flexible and high strong (graphene oxide/carbon nanotube) aerogel/polystyrene (GOCA/PS) nanocomposite was developed by in-situ polymerization and hot-pressing method using prefabricated GO/CNT aerogel as the interconnected three-dimensional (3D) reinforcement skeleton. Aerogel plays the role of nano-rivets in composite to improve mechanical strength, and the enhancement mechanism was investigated. The results indicate that GO/CNT exhibits excellent dispersion in the polystyrene matrix. In compared with pure PS, the tensile, flexural, compressive, and impact strength of GOCA/PS composite with about 1.0 wt%, a 7:3 mass ratio of GO to CNT, were increased by shifted from 7.35 to 12.83 MPa (about 74.5%), 18.13–29.60 MPa (about 63.2%), 33.15 to 74.44 kJ/m2 (about 124.5%), and 2.09–6.53 MPa (about 211.94%), respectively. Moreover, the microhardness, elastic, flexural and compressive modulus also increased to maximum at a 7:3 mass ratio of GO to CNT. The approach may provide an effective approach to the design and investigation of reinforced composites.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GO-CNT aerogel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">In-situ polymerization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanocomposite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Enhancement mechanism</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Polymers and polymer manufacture</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guojun Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lichun Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peifeng Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Longyu Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lina Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zetian Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zechao Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoru Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Polymer Testing</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">97(2021), Seite 107158-</subfield><subfield code="w">(DE-627)320530280</subfield><subfield code="w">(DE-600)2015673-X</subfield><subfield code="x">18732348</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:97</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:107158-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.polymertesting.2021.107158</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8df92f5cc27c464eabfda0cecd8125b5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0142941821001082</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0142-9418</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">97</subfield><subfield code="j">2021</subfield><subfield code="h">107158-</subfield></datafield></record></collection>
|
score |
7.400696 |