Progress, Challenges and Perspectives of 3D LiDAR Point Cloud Processing
3D LiDAR can perform an intensive sampling of the earth surface in a direct way, and yield the 3D point cloud that contains numerous and scattered points with the coordinates (<i<X, Y, Z</i<) and attributes (e.g., intensity). As the vital 3D geospatial data for description of the world i...
Ausführliche Beschreibung
Autor*in: |
YANG Bisheng [verfasserIn] LIANG Fuxun [verfasserIn] HUANG Ronggang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Chinesisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Acta Geodaetica et Cartographica Sinica - Surveying and Mapping Press, 2014, 46(2017), 10, Seite 1509-1516 |
---|---|
Übergeordnetes Werk: |
volume:46 ; year:2017 ; number:10 ; pages:1509-1516 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.11947/j.AGCS.2017.20170351 |
---|
Katalog-ID: |
DOAJ005839599 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ005839599 | ||
003 | DE-627 | ||
005 | 20230502122605.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2017 xx |||||o 00| ||chi c | ||
024 | 7 | |a 10.11947/j.AGCS.2017.20170351 |2 doi | |
035 | |a (DE-627)DOAJ005839599 | ||
035 | |a (DE-599)DOAJb906bea34a2c4de88a934cba31560f19 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a chi | ||
050 | 0 | |a GA1-1776 | |
100 | 0 | |a YANG Bisheng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Progress, Challenges and Perspectives of 3D LiDAR Point Cloud Processing |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a 3D LiDAR can perform an intensive sampling of the earth surface in a direct way, and yield the 3D point cloud that contains numerous and scattered points with the coordinates (<i<X, Y, Z</i<) and attributes (e.g., intensity). As the vital 3D geospatial data for description of the world in the digital era, 3D point cloud plays an important role not only in earth science researches but also in national requirements (e.g., global change analysis, global mapping, and smart city). Inspired by sensor technologies and national requirements, 3D LiDAR has got great progresses in hardware, data processing and applications, and is facing new challenges. Following the history of 3D LiDAR, this paper first reviews the status of 3D LiDAR system, and introduces the development of key technologies in data processing. Then the typical applications of 3D LiDAR in surveying and other related fields are listed, and current challenges in point cloud processing are concluded. Finally, some future perspectives are presented. | ||
650 | 4 | |a 3D LiDAR | |
650 | 4 | |a point cloud | |
650 | 4 | |a point cloud fusion | |
650 | 4 | |a object extraction | |
650 | 4 | |a 3D representation | |
650 | 4 | |a ubiquitous point cloud | |
653 | 0 | |a Mathematical geography. Cartography | |
700 | 0 | |a LIANG Fuxun |e verfasserin |4 aut | |
700 | 0 | |a HUANG Ronggang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Acta Geodaetica et Cartographica Sinica |d Surveying and Mapping Press, 2014 |g 46(2017), 10, Seite 1509-1516 |w (DE-627)57517014X |w (DE-600)2445687-1 |x 10011595 |7 nnns |
773 | 1 | 8 | |g volume:46 |g year:2017 |g number:10 |g pages:1509-1516 |
856 | 4 | 0 | |u https://doi.org/10.11947/j.AGCS.2017.20170351 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b906bea34a2c4de88a934cba31560f19 |z kostenfrei |
856 | 4 | 0 | |u http://html.rhhz.net/CHXB/html/2017-10-1509.htm |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1001-1595 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1001-1595 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 46 |j 2017 |e 10 |h 1509-1516 |
author_variant |
y b yb l f lf h r hr |
---|---|
matchkey_str |
article:10011595:2017----::rgeshlegsnprpcieo3ldro |
hierarchy_sort_str |
2017 |
callnumber-subject-code |
GA |
publishDate |
2017 |
allfields |
10.11947/j.AGCS.2017.20170351 doi (DE-627)DOAJ005839599 (DE-599)DOAJb906bea34a2c4de88a934cba31560f19 DE-627 ger DE-627 rakwb chi GA1-1776 YANG Bisheng verfasserin aut Progress, Challenges and Perspectives of 3D LiDAR Point Cloud Processing 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier 3D LiDAR can perform an intensive sampling of the earth surface in a direct way, and yield the 3D point cloud that contains numerous and scattered points with the coordinates (<i<X, Y, Z</i<) and attributes (e.g., intensity). As the vital 3D geospatial data for description of the world in the digital era, 3D point cloud plays an important role not only in earth science researches but also in national requirements (e.g., global change analysis, global mapping, and smart city). Inspired by sensor technologies and national requirements, 3D LiDAR has got great progresses in hardware, data processing and applications, and is facing new challenges. Following the history of 3D LiDAR, this paper first reviews the status of 3D LiDAR system, and introduces the development of key technologies in data processing. Then the typical applications of 3D LiDAR in surveying and other related fields are listed, and current challenges in point cloud processing are concluded. Finally, some future perspectives are presented. 3D LiDAR point cloud point cloud fusion object extraction 3D representation ubiquitous point cloud Mathematical geography. Cartography LIANG Fuxun verfasserin aut HUANG Ronggang verfasserin aut In Acta Geodaetica et Cartographica Sinica Surveying and Mapping Press, 2014 46(2017), 10, Seite 1509-1516 (DE-627)57517014X (DE-600)2445687-1 10011595 nnns volume:46 year:2017 number:10 pages:1509-1516 https://doi.org/10.11947/j.AGCS.2017.20170351 kostenfrei https://doaj.org/article/b906bea34a2c4de88a934cba31560f19 kostenfrei http://html.rhhz.net/CHXB/html/2017-10-1509.htm kostenfrei https://doaj.org/toc/1001-1595 Journal toc kostenfrei https://doaj.org/toc/1001-1595 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 46 2017 10 1509-1516 |
spelling |
10.11947/j.AGCS.2017.20170351 doi (DE-627)DOAJ005839599 (DE-599)DOAJb906bea34a2c4de88a934cba31560f19 DE-627 ger DE-627 rakwb chi GA1-1776 YANG Bisheng verfasserin aut Progress, Challenges and Perspectives of 3D LiDAR Point Cloud Processing 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier 3D LiDAR can perform an intensive sampling of the earth surface in a direct way, and yield the 3D point cloud that contains numerous and scattered points with the coordinates (<i<X, Y, Z</i<) and attributes (e.g., intensity). As the vital 3D geospatial data for description of the world in the digital era, 3D point cloud plays an important role not only in earth science researches but also in national requirements (e.g., global change analysis, global mapping, and smart city). Inspired by sensor technologies and national requirements, 3D LiDAR has got great progresses in hardware, data processing and applications, and is facing new challenges. Following the history of 3D LiDAR, this paper first reviews the status of 3D LiDAR system, and introduces the development of key technologies in data processing. Then the typical applications of 3D LiDAR in surveying and other related fields are listed, and current challenges in point cloud processing are concluded. Finally, some future perspectives are presented. 3D LiDAR point cloud point cloud fusion object extraction 3D representation ubiquitous point cloud Mathematical geography. Cartography LIANG Fuxun verfasserin aut HUANG Ronggang verfasserin aut In Acta Geodaetica et Cartographica Sinica Surveying and Mapping Press, 2014 46(2017), 10, Seite 1509-1516 (DE-627)57517014X (DE-600)2445687-1 10011595 nnns volume:46 year:2017 number:10 pages:1509-1516 https://doi.org/10.11947/j.AGCS.2017.20170351 kostenfrei https://doaj.org/article/b906bea34a2c4de88a934cba31560f19 kostenfrei http://html.rhhz.net/CHXB/html/2017-10-1509.htm kostenfrei https://doaj.org/toc/1001-1595 Journal toc kostenfrei https://doaj.org/toc/1001-1595 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 46 2017 10 1509-1516 |
allfields_unstemmed |
10.11947/j.AGCS.2017.20170351 doi (DE-627)DOAJ005839599 (DE-599)DOAJb906bea34a2c4de88a934cba31560f19 DE-627 ger DE-627 rakwb chi GA1-1776 YANG Bisheng verfasserin aut Progress, Challenges and Perspectives of 3D LiDAR Point Cloud Processing 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier 3D LiDAR can perform an intensive sampling of the earth surface in a direct way, and yield the 3D point cloud that contains numerous and scattered points with the coordinates (<i<X, Y, Z</i<) and attributes (e.g., intensity). As the vital 3D geospatial data for description of the world in the digital era, 3D point cloud plays an important role not only in earth science researches but also in national requirements (e.g., global change analysis, global mapping, and smart city). Inspired by sensor technologies and national requirements, 3D LiDAR has got great progresses in hardware, data processing and applications, and is facing new challenges. Following the history of 3D LiDAR, this paper first reviews the status of 3D LiDAR system, and introduces the development of key technologies in data processing. Then the typical applications of 3D LiDAR in surveying and other related fields are listed, and current challenges in point cloud processing are concluded. Finally, some future perspectives are presented. 3D LiDAR point cloud point cloud fusion object extraction 3D representation ubiquitous point cloud Mathematical geography. Cartography LIANG Fuxun verfasserin aut HUANG Ronggang verfasserin aut In Acta Geodaetica et Cartographica Sinica Surveying and Mapping Press, 2014 46(2017), 10, Seite 1509-1516 (DE-627)57517014X (DE-600)2445687-1 10011595 nnns volume:46 year:2017 number:10 pages:1509-1516 https://doi.org/10.11947/j.AGCS.2017.20170351 kostenfrei https://doaj.org/article/b906bea34a2c4de88a934cba31560f19 kostenfrei http://html.rhhz.net/CHXB/html/2017-10-1509.htm kostenfrei https://doaj.org/toc/1001-1595 Journal toc kostenfrei https://doaj.org/toc/1001-1595 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 46 2017 10 1509-1516 |
allfieldsGer |
10.11947/j.AGCS.2017.20170351 doi (DE-627)DOAJ005839599 (DE-599)DOAJb906bea34a2c4de88a934cba31560f19 DE-627 ger DE-627 rakwb chi GA1-1776 YANG Bisheng verfasserin aut Progress, Challenges and Perspectives of 3D LiDAR Point Cloud Processing 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier 3D LiDAR can perform an intensive sampling of the earth surface in a direct way, and yield the 3D point cloud that contains numerous and scattered points with the coordinates (<i<X, Y, Z</i<) and attributes (e.g., intensity). As the vital 3D geospatial data for description of the world in the digital era, 3D point cloud plays an important role not only in earth science researches but also in national requirements (e.g., global change analysis, global mapping, and smart city). Inspired by sensor technologies and national requirements, 3D LiDAR has got great progresses in hardware, data processing and applications, and is facing new challenges. Following the history of 3D LiDAR, this paper first reviews the status of 3D LiDAR system, and introduces the development of key technologies in data processing. Then the typical applications of 3D LiDAR in surveying and other related fields are listed, and current challenges in point cloud processing are concluded. Finally, some future perspectives are presented. 3D LiDAR point cloud point cloud fusion object extraction 3D representation ubiquitous point cloud Mathematical geography. Cartography LIANG Fuxun verfasserin aut HUANG Ronggang verfasserin aut In Acta Geodaetica et Cartographica Sinica Surveying and Mapping Press, 2014 46(2017), 10, Seite 1509-1516 (DE-627)57517014X (DE-600)2445687-1 10011595 nnns volume:46 year:2017 number:10 pages:1509-1516 https://doi.org/10.11947/j.AGCS.2017.20170351 kostenfrei https://doaj.org/article/b906bea34a2c4de88a934cba31560f19 kostenfrei http://html.rhhz.net/CHXB/html/2017-10-1509.htm kostenfrei https://doaj.org/toc/1001-1595 Journal toc kostenfrei https://doaj.org/toc/1001-1595 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 46 2017 10 1509-1516 |
allfieldsSound |
10.11947/j.AGCS.2017.20170351 doi (DE-627)DOAJ005839599 (DE-599)DOAJb906bea34a2c4de88a934cba31560f19 DE-627 ger DE-627 rakwb chi GA1-1776 YANG Bisheng verfasserin aut Progress, Challenges and Perspectives of 3D LiDAR Point Cloud Processing 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier 3D LiDAR can perform an intensive sampling of the earth surface in a direct way, and yield the 3D point cloud that contains numerous and scattered points with the coordinates (<i<X, Y, Z</i<) and attributes (e.g., intensity). As the vital 3D geospatial data for description of the world in the digital era, 3D point cloud plays an important role not only in earth science researches but also in national requirements (e.g., global change analysis, global mapping, and smart city). Inspired by sensor technologies and national requirements, 3D LiDAR has got great progresses in hardware, data processing and applications, and is facing new challenges. Following the history of 3D LiDAR, this paper first reviews the status of 3D LiDAR system, and introduces the development of key technologies in data processing. Then the typical applications of 3D LiDAR in surveying and other related fields are listed, and current challenges in point cloud processing are concluded. Finally, some future perspectives are presented. 3D LiDAR point cloud point cloud fusion object extraction 3D representation ubiquitous point cloud Mathematical geography. Cartography LIANG Fuxun verfasserin aut HUANG Ronggang verfasserin aut In Acta Geodaetica et Cartographica Sinica Surveying and Mapping Press, 2014 46(2017), 10, Seite 1509-1516 (DE-627)57517014X (DE-600)2445687-1 10011595 nnns volume:46 year:2017 number:10 pages:1509-1516 https://doi.org/10.11947/j.AGCS.2017.20170351 kostenfrei https://doaj.org/article/b906bea34a2c4de88a934cba31560f19 kostenfrei http://html.rhhz.net/CHXB/html/2017-10-1509.htm kostenfrei https://doaj.org/toc/1001-1595 Journal toc kostenfrei https://doaj.org/toc/1001-1595 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 46 2017 10 1509-1516 |
language |
Chinese |
source |
In Acta Geodaetica et Cartographica Sinica 46(2017), 10, Seite 1509-1516 volume:46 year:2017 number:10 pages:1509-1516 |
sourceStr |
In Acta Geodaetica et Cartographica Sinica 46(2017), 10, Seite 1509-1516 volume:46 year:2017 number:10 pages:1509-1516 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
3D LiDAR point cloud point cloud fusion object extraction 3D representation ubiquitous point cloud Mathematical geography. Cartography |
isfreeaccess_bool |
true |
container_title |
Acta Geodaetica et Cartographica Sinica |
authorswithroles_txt_mv |
YANG Bisheng @@aut@@ LIANG Fuxun @@aut@@ HUANG Ronggang @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
57517014X |
id |
DOAJ005839599 |
language_de |
chinesisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ005839599</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502122605.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2017 xx |||||o 00| ||chi c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.11947/j.AGCS.2017.20170351</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ005839599</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb906bea34a2c4de88a934cba31560f19</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">chi</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GA1-1776</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">YANG Bisheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Progress, Challenges and Perspectives of 3D LiDAR Point Cloud Processing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">3D LiDAR can perform an intensive sampling of the earth surface in a direct way, and yield the 3D point cloud that contains numerous and scattered points with the coordinates (<i<X, Y, Z</i<) and attributes (e.g., intensity). As the vital 3D geospatial data for description of the world in the digital era, 3D point cloud plays an important role not only in earth science researches but also in national requirements (e.g., global change analysis, global mapping, and smart city). Inspired by sensor technologies and national requirements, 3D LiDAR has got great progresses in hardware, data processing and applications, and is facing new challenges. Following the history of 3D LiDAR, this paper first reviews the status of 3D LiDAR system, and introduces the development of key technologies in data processing. Then the typical applications of 3D LiDAR in surveying and other related fields are listed, and current challenges in point cloud processing are concluded. Finally, some future perspectives are presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D LiDAR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">point cloud</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">point cloud fusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">object extraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D representation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ubiquitous point cloud</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematical geography. Cartography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">LIANG Fuxun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">HUANG Ronggang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Acta Geodaetica et Cartographica Sinica</subfield><subfield code="d">Surveying and Mapping Press, 2014</subfield><subfield code="g">46(2017), 10, Seite 1509-1516</subfield><subfield code="w">(DE-627)57517014X</subfield><subfield code="w">(DE-600)2445687-1</subfield><subfield code="x">10011595</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:1509-1516</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.11947/j.AGCS.2017.20170351</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b906bea34a2c4de88a934cba31560f19</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://html.rhhz.net/CHXB/html/2017-10-1509.htm</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1001-1595</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1001-1595</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2017</subfield><subfield code="e">10</subfield><subfield code="h">1509-1516</subfield></datafield></record></collection>
|
callnumber-first |
G - Geography, Anthropology, Recreation |
author |
YANG Bisheng |
spellingShingle |
YANG Bisheng misc GA1-1776 misc 3D LiDAR misc point cloud misc point cloud fusion misc object extraction misc 3D representation misc ubiquitous point cloud misc Mathematical geography. Cartography Progress, Challenges and Perspectives of 3D LiDAR Point Cloud Processing |
authorStr |
YANG Bisheng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)57517014X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
GA1-1776 |
illustrated |
Not Illustrated |
issn |
10011595 |
topic_title |
GA1-1776 Progress, Challenges and Perspectives of 3D LiDAR Point Cloud Processing 3D LiDAR point cloud point cloud fusion object extraction 3D representation ubiquitous point cloud |
topic |
misc GA1-1776 misc 3D LiDAR misc point cloud misc point cloud fusion misc object extraction misc 3D representation misc ubiquitous point cloud misc Mathematical geography. Cartography |
topic_unstemmed |
misc GA1-1776 misc 3D LiDAR misc point cloud misc point cloud fusion misc object extraction misc 3D representation misc ubiquitous point cloud misc Mathematical geography. Cartography |
topic_browse |
misc GA1-1776 misc 3D LiDAR misc point cloud misc point cloud fusion misc object extraction misc 3D representation misc ubiquitous point cloud misc Mathematical geography. Cartography |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Acta Geodaetica et Cartographica Sinica |
hierarchy_parent_id |
57517014X |
hierarchy_top_title |
Acta Geodaetica et Cartographica Sinica |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)57517014X (DE-600)2445687-1 |
title |
Progress, Challenges and Perspectives of 3D LiDAR Point Cloud Processing |
ctrlnum |
(DE-627)DOAJ005839599 (DE-599)DOAJb906bea34a2c4de88a934cba31560f19 |
title_full |
Progress, Challenges and Perspectives of 3D LiDAR Point Cloud Processing |
author_sort |
YANG Bisheng |
journal |
Acta Geodaetica et Cartographica Sinica |
journalStr |
Acta Geodaetica et Cartographica Sinica |
callnumber-first-code |
G |
lang_code |
chi |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
1509 |
author_browse |
YANG Bisheng LIANG Fuxun HUANG Ronggang |
container_volume |
46 |
class |
GA1-1776 |
format_se |
Elektronische Aufsätze |
author-letter |
YANG Bisheng |
doi_str_mv |
10.11947/j.AGCS.2017.20170351 |
author2-role |
verfasserin |
title_sort |
progress, challenges and perspectives of 3d lidar point cloud processing |
callnumber |
GA1-1776 |
title_auth |
Progress, Challenges and Perspectives of 3D LiDAR Point Cloud Processing |
abstract |
3D LiDAR can perform an intensive sampling of the earth surface in a direct way, and yield the 3D point cloud that contains numerous and scattered points with the coordinates (<i<X, Y, Z</i<) and attributes (e.g., intensity). As the vital 3D geospatial data for description of the world in the digital era, 3D point cloud plays an important role not only in earth science researches but also in national requirements (e.g., global change analysis, global mapping, and smart city). Inspired by sensor technologies and national requirements, 3D LiDAR has got great progresses in hardware, data processing and applications, and is facing new challenges. Following the history of 3D LiDAR, this paper first reviews the status of 3D LiDAR system, and introduces the development of key technologies in data processing. Then the typical applications of 3D LiDAR in surveying and other related fields are listed, and current challenges in point cloud processing are concluded. Finally, some future perspectives are presented. |
abstractGer |
3D LiDAR can perform an intensive sampling of the earth surface in a direct way, and yield the 3D point cloud that contains numerous and scattered points with the coordinates (<i<X, Y, Z</i<) and attributes (e.g., intensity). As the vital 3D geospatial data for description of the world in the digital era, 3D point cloud plays an important role not only in earth science researches but also in national requirements (e.g., global change analysis, global mapping, and smart city). Inspired by sensor technologies and national requirements, 3D LiDAR has got great progresses in hardware, data processing and applications, and is facing new challenges. Following the history of 3D LiDAR, this paper first reviews the status of 3D LiDAR system, and introduces the development of key technologies in data processing. Then the typical applications of 3D LiDAR in surveying and other related fields are listed, and current challenges in point cloud processing are concluded. Finally, some future perspectives are presented. |
abstract_unstemmed |
3D LiDAR can perform an intensive sampling of the earth surface in a direct way, and yield the 3D point cloud that contains numerous and scattered points with the coordinates (<i<X, Y, Z</i<) and attributes (e.g., intensity). As the vital 3D geospatial data for description of the world in the digital era, 3D point cloud plays an important role not only in earth science researches but also in national requirements (e.g., global change analysis, global mapping, and smart city). Inspired by sensor technologies and national requirements, 3D LiDAR has got great progresses in hardware, data processing and applications, and is facing new challenges. Following the history of 3D LiDAR, this paper first reviews the status of 3D LiDAR system, and introduces the development of key technologies in data processing. Then the typical applications of 3D LiDAR in surveying and other related fields are listed, and current challenges in point cloud processing are concluded. Finally, some future perspectives are presented. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
10 |
title_short |
Progress, Challenges and Perspectives of 3D LiDAR Point Cloud Processing |
url |
https://doi.org/10.11947/j.AGCS.2017.20170351 https://doaj.org/article/b906bea34a2c4de88a934cba31560f19 http://html.rhhz.net/CHXB/html/2017-10-1509.htm https://doaj.org/toc/1001-1595 |
remote_bool |
true |
author2 |
LIANG Fuxun HUANG Ronggang |
author2Str |
LIANG Fuxun HUANG Ronggang |
ppnlink |
57517014X |
callnumber-subject |
GA - Mathematical Geography and Cartography |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.11947/j.AGCS.2017.20170351 |
callnumber-a |
GA1-1776 |
up_date |
2024-07-03T17:25:39.354Z |
_version_ |
1803579597125582848 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ005839599</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502122605.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2017 xx |||||o 00| ||chi c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.11947/j.AGCS.2017.20170351</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ005839599</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb906bea34a2c4de88a934cba31560f19</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">chi</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GA1-1776</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">YANG Bisheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Progress, Challenges and Perspectives of 3D LiDAR Point Cloud Processing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">3D LiDAR can perform an intensive sampling of the earth surface in a direct way, and yield the 3D point cloud that contains numerous and scattered points with the coordinates (<i<X, Y, Z</i<) and attributes (e.g., intensity). As the vital 3D geospatial data for description of the world in the digital era, 3D point cloud plays an important role not only in earth science researches but also in national requirements (e.g., global change analysis, global mapping, and smart city). Inspired by sensor technologies and national requirements, 3D LiDAR has got great progresses in hardware, data processing and applications, and is facing new challenges. Following the history of 3D LiDAR, this paper first reviews the status of 3D LiDAR system, and introduces the development of key technologies in data processing. Then the typical applications of 3D LiDAR in surveying and other related fields are listed, and current challenges in point cloud processing are concluded. Finally, some future perspectives are presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D LiDAR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">point cloud</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">point cloud fusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">object extraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D representation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ubiquitous point cloud</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematical geography. Cartography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">LIANG Fuxun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">HUANG Ronggang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Acta Geodaetica et Cartographica Sinica</subfield><subfield code="d">Surveying and Mapping Press, 2014</subfield><subfield code="g">46(2017), 10, Seite 1509-1516</subfield><subfield code="w">(DE-627)57517014X</subfield><subfield code="w">(DE-600)2445687-1</subfield><subfield code="x">10011595</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:1509-1516</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.11947/j.AGCS.2017.20170351</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b906bea34a2c4de88a934cba31560f19</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://html.rhhz.net/CHXB/html/2017-10-1509.htm</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1001-1595</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1001-1595</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2017</subfield><subfield code="e">10</subfield><subfield code="h">1509-1516</subfield></datafield></record></collection>
|
score |
7.4010277 |