Measurements of Entropic Uncertainty Relations in Neutron Optics
The emergence of the uncertainty principle has celebrated its 90th anniversary recently. For this occasion, the latest experimental results of uncertainty relations quantified in terms of Shannon entropies are presented, concentrating only on outcomes in neutron optics. The focus is on the type of m...
Ausführliche Beschreibung
Autor*in: |
Bülent Demirel [verfasserIn] Stephan Sponar [verfasserIn] Yuji Hasegawa [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Applied Sciences - MDPI AG, 2012, 10(2020), 3, p 1087 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2020 ; number:3, p 1087 |
Links: |
---|
DOI / URN: |
10.3390/app10031087 |
---|
Katalog-ID: |
DOAJ005942985 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ005942985 | ||
003 | DE-627 | ||
005 | 20230309194957.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/app10031087 |2 doi | |
035 | |a (DE-627)DOAJ005942985 | ||
035 | |a (DE-599)DOAJf094d0b8ea9a4f44aacc2bcf379fcf27 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QC1-999 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Bülent Demirel |e verfasserin |4 aut | |
245 | 1 | 0 | |a Measurements of Entropic Uncertainty Relations in Neutron Optics |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The emergence of the uncertainty principle has celebrated its 90th anniversary recently. For this occasion, the latest experimental results of uncertainty relations quantified in terms of Shannon entropies are presented, concentrating only on outcomes in neutron optics. The focus is on the type of measurement uncertainties that describe the inability to obtain the respective individual results from joint measurement statistics. For this purpose, the neutron spin of two non-commuting directions is analyzed. Two sub-categories of measurement uncertainty relations are considered: noise−noise and noise−disturbance uncertainty relations. In the first case, it will be shown that the lowest boundary can be obtained and the uncertainty relations be saturated by implementing a simple positive operator-valued measure (POVM). For the second category, an analysis for projective measurements is made and error correction procedures are presented. | ||
650 | 4 | |a uncertainty relation | |
650 | 4 | |a joint measurability | |
650 | 4 | |a quantum information theory | |
650 | 4 | |a shannon entropy | |
650 | 4 | |a noise and disturbance | |
650 | 4 | |a foundations of quantum measurement | |
650 | 4 | |a neutron optics | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Physics | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Stephan Sponar |e verfasserin |4 aut | |
700 | 0 | |a Yuji Hasegawa |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Applied Sciences |d MDPI AG, 2012 |g 10(2020), 3, p 1087 |w (DE-627)737287640 |w (DE-600)2704225-X |x 20763417 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2020 |g number:3, p 1087 |
856 | 4 | 0 | |u https://doi.org/10.3390/app10031087 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f094d0b8ea9a4f44aacc2bcf379fcf27 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-3417/10/3/1087 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3417 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2020 |e 3, p 1087 |
author_variant |
b d bd s s ss y h yh |
---|---|
matchkey_str |
article:20763417:2020----::esrmnsfnrpcnetitrltos |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TA |
publishDate |
2020 |
allfields |
10.3390/app10031087 doi (DE-627)DOAJ005942985 (DE-599)DOAJf094d0b8ea9a4f44aacc2bcf379fcf27 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Bülent Demirel verfasserin aut Measurements of Entropic Uncertainty Relations in Neutron Optics 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The emergence of the uncertainty principle has celebrated its 90th anniversary recently. For this occasion, the latest experimental results of uncertainty relations quantified in terms of Shannon entropies are presented, concentrating only on outcomes in neutron optics. The focus is on the type of measurement uncertainties that describe the inability to obtain the respective individual results from joint measurement statistics. For this purpose, the neutron spin of two non-commuting directions is analyzed. Two sub-categories of measurement uncertainty relations are considered: noise−noise and noise−disturbance uncertainty relations. In the first case, it will be shown that the lowest boundary can be obtained and the uncertainty relations be saturated by implementing a simple positive operator-valued measure (POVM). For the second category, an analysis for projective measurements is made and error correction procedures are presented. uncertainty relation joint measurability quantum information theory shannon entropy noise and disturbance foundations of quantum measurement neutron optics Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Stephan Sponar verfasserin aut Yuji Hasegawa verfasserin aut In Applied Sciences MDPI AG, 2012 10(2020), 3, p 1087 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:10 year:2020 number:3, p 1087 https://doi.org/10.3390/app10031087 kostenfrei https://doaj.org/article/f094d0b8ea9a4f44aacc2bcf379fcf27 kostenfrei https://www.mdpi.com/2076-3417/10/3/1087 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 3, p 1087 |
spelling |
10.3390/app10031087 doi (DE-627)DOAJ005942985 (DE-599)DOAJf094d0b8ea9a4f44aacc2bcf379fcf27 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Bülent Demirel verfasserin aut Measurements of Entropic Uncertainty Relations in Neutron Optics 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The emergence of the uncertainty principle has celebrated its 90th anniversary recently. For this occasion, the latest experimental results of uncertainty relations quantified in terms of Shannon entropies are presented, concentrating only on outcomes in neutron optics. The focus is on the type of measurement uncertainties that describe the inability to obtain the respective individual results from joint measurement statistics. For this purpose, the neutron spin of two non-commuting directions is analyzed. Two sub-categories of measurement uncertainty relations are considered: noise−noise and noise−disturbance uncertainty relations. In the first case, it will be shown that the lowest boundary can be obtained and the uncertainty relations be saturated by implementing a simple positive operator-valued measure (POVM). For the second category, an analysis for projective measurements is made and error correction procedures are presented. uncertainty relation joint measurability quantum information theory shannon entropy noise and disturbance foundations of quantum measurement neutron optics Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Stephan Sponar verfasserin aut Yuji Hasegawa verfasserin aut In Applied Sciences MDPI AG, 2012 10(2020), 3, p 1087 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:10 year:2020 number:3, p 1087 https://doi.org/10.3390/app10031087 kostenfrei https://doaj.org/article/f094d0b8ea9a4f44aacc2bcf379fcf27 kostenfrei https://www.mdpi.com/2076-3417/10/3/1087 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 3, p 1087 |
allfields_unstemmed |
10.3390/app10031087 doi (DE-627)DOAJ005942985 (DE-599)DOAJf094d0b8ea9a4f44aacc2bcf379fcf27 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Bülent Demirel verfasserin aut Measurements of Entropic Uncertainty Relations in Neutron Optics 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The emergence of the uncertainty principle has celebrated its 90th anniversary recently. For this occasion, the latest experimental results of uncertainty relations quantified in terms of Shannon entropies are presented, concentrating only on outcomes in neutron optics. The focus is on the type of measurement uncertainties that describe the inability to obtain the respective individual results from joint measurement statistics. For this purpose, the neutron spin of two non-commuting directions is analyzed. Two sub-categories of measurement uncertainty relations are considered: noise−noise and noise−disturbance uncertainty relations. In the first case, it will be shown that the lowest boundary can be obtained and the uncertainty relations be saturated by implementing a simple positive operator-valued measure (POVM). For the second category, an analysis for projective measurements is made and error correction procedures are presented. uncertainty relation joint measurability quantum information theory shannon entropy noise and disturbance foundations of quantum measurement neutron optics Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Stephan Sponar verfasserin aut Yuji Hasegawa verfasserin aut In Applied Sciences MDPI AG, 2012 10(2020), 3, p 1087 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:10 year:2020 number:3, p 1087 https://doi.org/10.3390/app10031087 kostenfrei https://doaj.org/article/f094d0b8ea9a4f44aacc2bcf379fcf27 kostenfrei https://www.mdpi.com/2076-3417/10/3/1087 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 3, p 1087 |
allfieldsGer |
10.3390/app10031087 doi (DE-627)DOAJ005942985 (DE-599)DOAJf094d0b8ea9a4f44aacc2bcf379fcf27 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Bülent Demirel verfasserin aut Measurements of Entropic Uncertainty Relations in Neutron Optics 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The emergence of the uncertainty principle has celebrated its 90th anniversary recently. For this occasion, the latest experimental results of uncertainty relations quantified in terms of Shannon entropies are presented, concentrating only on outcomes in neutron optics. The focus is on the type of measurement uncertainties that describe the inability to obtain the respective individual results from joint measurement statistics. For this purpose, the neutron spin of two non-commuting directions is analyzed. Two sub-categories of measurement uncertainty relations are considered: noise−noise and noise−disturbance uncertainty relations. In the first case, it will be shown that the lowest boundary can be obtained and the uncertainty relations be saturated by implementing a simple positive operator-valued measure (POVM). For the second category, an analysis for projective measurements is made and error correction procedures are presented. uncertainty relation joint measurability quantum information theory shannon entropy noise and disturbance foundations of quantum measurement neutron optics Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Stephan Sponar verfasserin aut Yuji Hasegawa verfasserin aut In Applied Sciences MDPI AG, 2012 10(2020), 3, p 1087 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:10 year:2020 number:3, p 1087 https://doi.org/10.3390/app10031087 kostenfrei https://doaj.org/article/f094d0b8ea9a4f44aacc2bcf379fcf27 kostenfrei https://www.mdpi.com/2076-3417/10/3/1087 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 3, p 1087 |
allfieldsSound |
10.3390/app10031087 doi (DE-627)DOAJ005942985 (DE-599)DOAJf094d0b8ea9a4f44aacc2bcf379fcf27 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Bülent Demirel verfasserin aut Measurements of Entropic Uncertainty Relations in Neutron Optics 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The emergence of the uncertainty principle has celebrated its 90th anniversary recently. For this occasion, the latest experimental results of uncertainty relations quantified in terms of Shannon entropies are presented, concentrating only on outcomes in neutron optics. The focus is on the type of measurement uncertainties that describe the inability to obtain the respective individual results from joint measurement statistics. For this purpose, the neutron spin of two non-commuting directions is analyzed. Two sub-categories of measurement uncertainty relations are considered: noise−noise and noise−disturbance uncertainty relations. In the first case, it will be shown that the lowest boundary can be obtained and the uncertainty relations be saturated by implementing a simple positive operator-valued measure (POVM). For the second category, an analysis for projective measurements is made and error correction procedures are presented. uncertainty relation joint measurability quantum information theory shannon entropy noise and disturbance foundations of quantum measurement neutron optics Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Stephan Sponar verfasserin aut Yuji Hasegawa verfasserin aut In Applied Sciences MDPI AG, 2012 10(2020), 3, p 1087 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:10 year:2020 number:3, p 1087 https://doi.org/10.3390/app10031087 kostenfrei https://doaj.org/article/f094d0b8ea9a4f44aacc2bcf379fcf27 kostenfrei https://www.mdpi.com/2076-3417/10/3/1087 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 3, p 1087 |
language |
English |
source |
In Applied Sciences 10(2020), 3, p 1087 volume:10 year:2020 number:3, p 1087 |
sourceStr |
In Applied Sciences 10(2020), 3, p 1087 volume:10 year:2020 number:3, p 1087 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
uncertainty relation joint measurability quantum information theory shannon entropy noise and disturbance foundations of quantum measurement neutron optics Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry |
isfreeaccess_bool |
true |
container_title |
Applied Sciences |
authorswithroles_txt_mv |
Bülent Demirel @@aut@@ Stephan Sponar @@aut@@ Yuji Hasegawa @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
737287640 |
id |
DOAJ005942985 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ005942985</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309194957.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app10031087</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ005942985</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf094d0b8ea9a4f44aacc2bcf379fcf27</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bülent Demirel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Measurements of Entropic Uncertainty Relations in Neutron Optics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The emergence of the uncertainty principle has celebrated its 90th anniversary recently. For this occasion, the latest experimental results of uncertainty relations quantified in terms of Shannon entropies are presented, concentrating only on outcomes in neutron optics. The focus is on the type of measurement uncertainties that describe the inability to obtain the respective individual results from joint measurement statistics. For this purpose, the neutron spin of two non-commuting directions is analyzed. Two sub-categories of measurement uncertainty relations are considered: noise−noise and noise−disturbance uncertainty relations. In the first case, it will be shown that the lowest boundary can be obtained and the uncertainty relations be saturated by implementing a simple positive operator-valued measure (POVM). For the second category, an analysis for projective measurements is made and error correction procedures are presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">uncertainty relation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">joint measurability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum information theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shannon entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">noise and disturbance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">foundations of quantum measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neutron optics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stephan Sponar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuji Hasegawa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">10(2020), 3, p 1087</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3, p 1087</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app10031087</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f094d0b8ea9a4f44aacc2bcf379fcf27</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/10/3/1087</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield><subfield code="e">3, p 1087</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Bülent Demirel |
spellingShingle |
Bülent Demirel misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc uncertainty relation misc joint measurability misc quantum information theory misc shannon entropy misc noise and disturbance misc foundations of quantum measurement misc neutron optics misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry Measurements of Entropic Uncertainty Relations in Neutron Optics |
authorStr |
Bülent Demirel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287640 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20763417 |
topic_title |
TA1-2040 QH301-705.5 QC1-999 QD1-999 Measurements of Entropic Uncertainty Relations in Neutron Optics uncertainty relation joint measurability quantum information theory shannon entropy noise and disturbance foundations of quantum measurement neutron optics |
topic |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc uncertainty relation misc joint measurability misc quantum information theory misc shannon entropy misc noise and disturbance misc foundations of quantum measurement misc neutron optics misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_unstemmed |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc uncertainty relation misc joint measurability misc quantum information theory misc shannon entropy misc noise and disturbance misc foundations of quantum measurement misc neutron optics misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_browse |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc uncertainty relation misc joint measurability misc quantum information theory misc shannon entropy misc noise and disturbance misc foundations of quantum measurement misc neutron optics misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied Sciences |
hierarchy_parent_id |
737287640 |
hierarchy_top_title |
Applied Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287640 (DE-600)2704225-X |
title |
Measurements of Entropic Uncertainty Relations in Neutron Optics |
ctrlnum |
(DE-627)DOAJ005942985 (DE-599)DOAJf094d0b8ea9a4f44aacc2bcf379fcf27 |
title_full |
Measurements of Entropic Uncertainty Relations in Neutron Optics |
author_sort |
Bülent Demirel |
journal |
Applied Sciences |
journalStr |
Applied Sciences |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Bülent Demirel Stephan Sponar Yuji Hasegawa |
container_volume |
10 |
class |
TA1-2040 QH301-705.5 QC1-999 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Bülent Demirel |
doi_str_mv |
10.3390/app10031087 |
author2-role |
verfasserin |
title_sort |
measurements of entropic uncertainty relations in neutron optics |
callnumber |
TA1-2040 |
title_auth |
Measurements of Entropic Uncertainty Relations in Neutron Optics |
abstract |
The emergence of the uncertainty principle has celebrated its 90th anniversary recently. For this occasion, the latest experimental results of uncertainty relations quantified in terms of Shannon entropies are presented, concentrating only on outcomes in neutron optics. The focus is on the type of measurement uncertainties that describe the inability to obtain the respective individual results from joint measurement statistics. For this purpose, the neutron spin of two non-commuting directions is analyzed. Two sub-categories of measurement uncertainty relations are considered: noise−noise and noise−disturbance uncertainty relations. In the first case, it will be shown that the lowest boundary can be obtained and the uncertainty relations be saturated by implementing a simple positive operator-valued measure (POVM). For the second category, an analysis for projective measurements is made and error correction procedures are presented. |
abstractGer |
The emergence of the uncertainty principle has celebrated its 90th anniversary recently. For this occasion, the latest experimental results of uncertainty relations quantified in terms of Shannon entropies are presented, concentrating only on outcomes in neutron optics. The focus is on the type of measurement uncertainties that describe the inability to obtain the respective individual results from joint measurement statistics. For this purpose, the neutron spin of two non-commuting directions is analyzed. Two sub-categories of measurement uncertainty relations are considered: noise−noise and noise−disturbance uncertainty relations. In the first case, it will be shown that the lowest boundary can be obtained and the uncertainty relations be saturated by implementing a simple positive operator-valued measure (POVM). For the second category, an analysis for projective measurements is made and error correction procedures are presented. |
abstract_unstemmed |
The emergence of the uncertainty principle has celebrated its 90th anniversary recently. For this occasion, the latest experimental results of uncertainty relations quantified in terms of Shannon entropies are presented, concentrating only on outcomes in neutron optics. The focus is on the type of measurement uncertainties that describe the inability to obtain the respective individual results from joint measurement statistics. For this purpose, the neutron spin of two non-commuting directions is analyzed. Two sub-categories of measurement uncertainty relations are considered: noise−noise and noise−disturbance uncertainty relations. In the first case, it will be shown that the lowest boundary can be obtained and the uncertainty relations be saturated by implementing a simple positive operator-valued measure (POVM). For the second category, an analysis for projective measurements is made and error correction procedures are presented. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 1087 |
title_short |
Measurements of Entropic Uncertainty Relations in Neutron Optics |
url |
https://doi.org/10.3390/app10031087 https://doaj.org/article/f094d0b8ea9a4f44aacc2bcf379fcf27 https://www.mdpi.com/2076-3417/10/3/1087 https://doaj.org/toc/2076-3417 |
remote_bool |
true |
author2 |
Stephan Sponar Yuji Hasegawa |
author2Str |
Stephan Sponar Yuji Hasegawa |
ppnlink |
737287640 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/app10031087 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T18:02:34.783Z |
_version_ |
1803581920155533312 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ005942985</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309194957.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app10031087</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ005942985</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf094d0b8ea9a4f44aacc2bcf379fcf27</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bülent Demirel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Measurements of Entropic Uncertainty Relations in Neutron Optics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The emergence of the uncertainty principle has celebrated its 90th anniversary recently. For this occasion, the latest experimental results of uncertainty relations quantified in terms of Shannon entropies are presented, concentrating only on outcomes in neutron optics. The focus is on the type of measurement uncertainties that describe the inability to obtain the respective individual results from joint measurement statistics. For this purpose, the neutron spin of two non-commuting directions is analyzed. Two sub-categories of measurement uncertainty relations are considered: noise−noise and noise−disturbance uncertainty relations. In the first case, it will be shown that the lowest boundary can be obtained and the uncertainty relations be saturated by implementing a simple positive operator-valued measure (POVM). For the second category, an analysis for projective measurements is made and error correction procedures are presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">uncertainty relation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">joint measurability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum information theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shannon entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">noise and disturbance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">foundations of quantum measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neutron optics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stephan Sponar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuji Hasegawa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">10(2020), 3, p 1087</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3, p 1087</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app10031087</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f094d0b8ea9a4f44aacc2bcf379fcf27</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/10/3/1087</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield><subfield code="e">3, p 1087</subfield></datafield></record></collection>
|
score |
7.4007006 |