Sustainable Development: Evaluating Optimal Technique for Spatial Data Forecast
This paper is an approach to forecast the spatial data in time series domain. Normally in GIS (Geographical Information System), we need raster forecasting. Moving average, exponential smoothing, and linear regression methods of forecasting are used over one-dimensional data. Present work concentrat...
Ausführliche Beschreibung
Autor*in: |
Gaurav Kumar [verfasserIn] Rajiv Gupta [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Proceedings - MDPI AG, 2018, 2(2018), 22, p 1371 |
---|---|
Übergeordnetes Werk: |
volume:2 ; year:2018 ; number:22, p 1371 |
Links: |
---|
DOI / URN: |
10.3390/proceedings2221371 |
---|
Katalog-ID: |
DOAJ005987903 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ005987903 | ||
003 | DE-627 | ||
005 | 20230309195153.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/proceedings2221371 |2 doi | |
035 | |a (DE-627)DOAJ005987903 | ||
035 | |a (DE-599)DOAJ203ca679e70c4b44ac56e8247a09c173 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Gaurav Kumar |e verfasserin |4 aut | |
245 | 1 | 0 | |a Sustainable Development: Evaluating Optimal Technique for Spatial Data Forecast |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper is an approach to forecast the spatial data in time series domain. Normally in GIS (Geographical Information System), we need raster forecasting. Moving average, exponential smoothing, and linear regression methods of forecasting are used over one-dimensional data. Present work concentrates on using these methods on satellite images applying them from pixel to pixel of historical temporal satellite data. An example set of satellite images from years 2011 to 2015 has been used to forecast the image in the year 2016. GIS tools have been developed in ArcGIS 10.1 using python to implement the methods of forecasting. Forecasted and actual images of the year 2016 have been compared by calculating the Normalized Difference Vegetation Indices (NDVI) and change detection to identify the best method. | ||
650 | 4 | |a time series extrapolation | |
650 | 4 | |a GIS | |
650 | 4 | |a raster forecasting | |
650 | 4 | |a NDVI | |
650 | 4 | |a change detection | |
653 | 0 | |a General Works | |
653 | 0 | |a A | |
700 | 0 | |a Rajiv Gupta |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Proceedings |d MDPI AG, 2018 |g 2(2018), 22, p 1371 |w (DE-627)896671828 |w (DE-600)2904077-2 |x 25043900 |7 nnns |
773 | 1 | 8 | |g volume:2 |g year:2018 |g number:22, p 1371 |
856 | 4 | 0 | |u https://doi.org/10.3390/proceedings2221371 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/203ca679e70c4b44ac56e8247a09c173 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2504-3900/2/22/1371 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2504-3900 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2 |j 2018 |e 22, p 1371 |
author_variant |
g k gk r g rg |
---|---|
matchkey_str |
article:25043900:2018----::utialdvlpetvlaigpiatcnqeo |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.3390/proceedings2221371 doi (DE-627)DOAJ005987903 (DE-599)DOAJ203ca679e70c4b44ac56e8247a09c173 DE-627 ger DE-627 rakwb eng Gaurav Kumar verfasserin aut Sustainable Development: Evaluating Optimal Technique for Spatial Data Forecast 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper is an approach to forecast the spatial data in time series domain. Normally in GIS (Geographical Information System), we need raster forecasting. Moving average, exponential smoothing, and linear regression methods of forecasting are used over one-dimensional data. Present work concentrates on using these methods on satellite images applying them from pixel to pixel of historical temporal satellite data. An example set of satellite images from years 2011 to 2015 has been used to forecast the image in the year 2016. GIS tools have been developed in ArcGIS 10.1 using python to implement the methods of forecasting. Forecasted and actual images of the year 2016 have been compared by calculating the Normalized Difference Vegetation Indices (NDVI) and change detection to identify the best method. time series extrapolation GIS raster forecasting NDVI change detection General Works A Rajiv Gupta verfasserin aut In Proceedings MDPI AG, 2018 2(2018), 22, p 1371 (DE-627)896671828 (DE-600)2904077-2 25043900 nnns volume:2 year:2018 number:22, p 1371 https://doi.org/10.3390/proceedings2221371 kostenfrei https://doaj.org/article/203ca679e70c4b44ac56e8247a09c173 kostenfrei https://www.mdpi.com/2504-3900/2/22/1371 kostenfrei https://doaj.org/toc/2504-3900 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2018 22, p 1371 |
spelling |
10.3390/proceedings2221371 doi (DE-627)DOAJ005987903 (DE-599)DOAJ203ca679e70c4b44ac56e8247a09c173 DE-627 ger DE-627 rakwb eng Gaurav Kumar verfasserin aut Sustainable Development: Evaluating Optimal Technique for Spatial Data Forecast 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper is an approach to forecast the spatial data in time series domain. Normally in GIS (Geographical Information System), we need raster forecasting. Moving average, exponential smoothing, and linear regression methods of forecasting are used over one-dimensional data. Present work concentrates on using these methods on satellite images applying them from pixel to pixel of historical temporal satellite data. An example set of satellite images from years 2011 to 2015 has been used to forecast the image in the year 2016. GIS tools have been developed in ArcGIS 10.1 using python to implement the methods of forecasting. Forecasted and actual images of the year 2016 have been compared by calculating the Normalized Difference Vegetation Indices (NDVI) and change detection to identify the best method. time series extrapolation GIS raster forecasting NDVI change detection General Works A Rajiv Gupta verfasserin aut In Proceedings MDPI AG, 2018 2(2018), 22, p 1371 (DE-627)896671828 (DE-600)2904077-2 25043900 nnns volume:2 year:2018 number:22, p 1371 https://doi.org/10.3390/proceedings2221371 kostenfrei https://doaj.org/article/203ca679e70c4b44ac56e8247a09c173 kostenfrei https://www.mdpi.com/2504-3900/2/22/1371 kostenfrei https://doaj.org/toc/2504-3900 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2018 22, p 1371 |
allfields_unstemmed |
10.3390/proceedings2221371 doi (DE-627)DOAJ005987903 (DE-599)DOAJ203ca679e70c4b44ac56e8247a09c173 DE-627 ger DE-627 rakwb eng Gaurav Kumar verfasserin aut Sustainable Development: Evaluating Optimal Technique for Spatial Data Forecast 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper is an approach to forecast the spatial data in time series domain. Normally in GIS (Geographical Information System), we need raster forecasting. Moving average, exponential smoothing, and linear regression methods of forecasting are used over one-dimensional data. Present work concentrates on using these methods on satellite images applying them from pixel to pixel of historical temporal satellite data. An example set of satellite images from years 2011 to 2015 has been used to forecast the image in the year 2016. GIS tools have been developed in ArcGIS 10.1 using python to implement the methods of forecasting. Forecasted and actual images of the year 2016 have been compared by calculating the Normalized Difference Vegetation Indices (NDVI) and change detection to identify the best method. time series extrapolation GIS raster forecasting NDVI change detection General Works A Rajiv Gupta verfasserin aut In Proceedings MDPI AG, 2018 2(2018), 22, p 1371 (DE-627)896671828 (DE-600)2904077-2 25043900 nnns volume:2 year:2018 number:22, p 1371 https://doi.org/10.3390/proceedings2221371 kostenfrei https://doaj.org/article/203ca679e70c4b44ac56e8247a09c173 kostenfrei https://www.mdpi.com/2504-3900/2/22/1371 kostenfrei https://doaj.org/toc/2504-3900 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2018 22, p 1371 |
allfieldsGer |
10.3390/proceedings2221371 doi (DE-627)DOAJ005987903 (DE-599)DOAJ203ca679e70c4b44ac56e8247a09c173 DE-627 ger DE-627 rakwb eng Gaurav Kumar verfasserin aut Sustainable Development: Evaluating Optimal Technique for Spatial Data Forecast 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper is an approach to forecast the spatial data in time series domain. Normally in GIS (Geographical Information System), we need raster forecasting. Moving average, exponential smoothing, and linear regression methods of forecasting are used over one-dimensional data. Present work concentrates on using these methods on satellite images applying them from pixel to pixel of historical temporal satellite data. An example set of satellite images from years 2011 to 2015 has been used to forecast the image in the year 2016. GIS tools have been developed in ArcGIS 10.1 using python to implement the methods of forecasting. Forecasted and actual images of the year 2016 have been compared by calculating the Normalized Difference Vegetation Indices (NDVI) and change detection to identify the best method. time series extrapolation GIS raster forecasting NDVI change detection General Works A Rajiv Gupta verfasserin aut In Proceedings MDPI AG, 2018 2(2018), 22, p 1371 (DE-627)896671828 (DE-600)2904077-2 25043900 nnns volume:2 year:2018 number:22, p 1371 https://doi.org/10.3390/proceedings2221371 kostenfrei https://doaj.org/article/203ca679e70c4b44ac56e8247a09c173 kostenfrei https://www.mdpi.com/2504-3900/2/22/1371 kostenfrei https://doaj.org/toc/2504-3900 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2018 22, p 1371 |
allfieldsSound |
10.3390/proceedings2221371 doi (DE-627)DOAJ005987903 (DE-599)DOAJ203ca679e70c4b44ac56e8247a09c173 DE-627 ger DE-627 rakwb eng Gaurav Kumar verfasserin aut Sustainable Development: Evaluating Optimal Technique for Spatial Data Forecast 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper is an approach to forecast the spatial data in time series domain. Normally in GIS (Geographical Information System), we need raster forecasting. Moving average, exponential smoothing, and linear regression methods of forecasting are used over one-dimensional data. Present work concentrates on using these methods on satellite images applying them from pixel to pixel of historical temporal satellite data. An example set of satellite images from years 2011 to 2015 has been used to forecast the image in the year 2016. GIS tools have been developed in ArcGIS 10.1 using python to implement the methods of forecasting. Forecasted and actual images of the year 2016 have been compared by calculating the Normalized Difference Vegetation Indices (NDVI) and change detection to identify the best method. time series extrapolation GIS raster forecasting NDVI change detection General Works A Rajiv Gupta verfasserin aut In Proceedings MDPI AG, 2018 2(2018), 22, p 1371 (DE-627)896671828 (DE-600)2904077-2 25043900 nnns volume:2 year:2018 number:22, p 1371 https://doi.org/10.3390/proceedings2221371 kostenfrei https://doaj.org/article/203ca679e70c4b44ac56e8247a09c173 kostenfrei https://www.mdpi.com/2504-3900/2/22/1371 kostenfrei https://doaj.org/toc/2504-3900 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2018 22, p 1371 |
language |
English |
source |
In Proceedings 2(2018), 22, p 1371 volume:2 year:2018 number:22, p 1371 |
sourceStr |
In Proceedings 2(2018), 22, p 1371 volume:2 year:2018 number:22, p 1371 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
time series extrapolation GIS raster forecasting NDVI change detection General Works A |
isfreeaccess_bool |
true |
container_title |
Proceedings |
authorswithroles_txt_mv |
Gaurav Kumar @@aut@@ Rajiv Gupta @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
896671828 |
id |
DOAJ005987903 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ005987903</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309195153.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/proceedings2221371</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ005987903</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ203ca679e70c4b44ac56e8247a09c173</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gaurav Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sustainable Development: Evaluating Optimal Technique for Spatial Data Forecast</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper is an approach to forecast the spatial data in time series domain. Normally in GIS (Geographical Information System), we need raster forecasting. Moving average, exponential smoothing, and linear regression methods of forecasting are used over one-dimensional data. Present work concentrates on using these methods on satellite images applying them from pixel to pixel of historical temporal satellite data. An example set of satellite images from years 2011 to 2015 has been used to forecast the image in the year 2016. GIS tools have been developed in ArcGIS 10.1 using python to implement the methods of forecasting. Forecasted and actual images of the year 2016 have been compared by calculating the Normalized Difference Vegetation Indices (NDVI) and change detection to identify the best method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time series extrapolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GIS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">raster forecasting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NDVI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">change detection</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">General Works</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">A</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rajiv Gupta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Proceedings</subfield><subfield code="d">MDPI AG, 2018</subfield><subfield code="g">2(2018), 22, p 1371</subfield><subfield code="w">(DE-627)896671828</subfield><subfield code="w">(DE-600)2904077-2</subfield><subfield code="x">25043900</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:22, p 1371</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/proceedings2221371</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/203ca679e70c4b44ac56e8247a09c173</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2504-3900/2/22/1371</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2504-3900</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2018</subfield><subfield code="e">22, p 1371</subfield></datafield></record></collection>
|
author |
Gaurav Kumar |
spellingShingle |
Gaurav Kumar misc time series extrapolation misc GIS misc raster forecasting misc NDVI misc change detection misc General Works misc A Sustainable Development: Evaluating Optimal Technique for Spatial Data Forecast |
authorStr |
Gaurav Kumar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)896671828 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
25043900 |
topic_title |
Sustainable Development: Evaluating Optimal Technique for Spatial Data Forecast time series extrapolation GIS raster forecasting NDVI change detection |
topic |
misc time series extrapolation misc GIS misc raster forecasting misc NDVI misc change detection misc General Works misc A |
topic_unstemmed |
misc time series extrapolation misc GIS misc raster forecasting misc NDVI misc change detection misc General Works misc A |
topic_browse |
misc time series extrapolation misc GIS misc raster forecasting misc NDVI misc change detection misc General Works misc A |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Proceedings |
hierarchy_parent_id |
896671828 |
hierarchy_top_title |
Proceedings |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)896671828 (DE-600)2904077-2 |
title |
Sustainable Development: Evaluating Optimal Technique for Spatial Data Forecast |
ctrlnum |
(DE-627)DOAJ005987903 (DE-599)DOAJ203ca679e70c4b44ac56e8247a09c173 |
title_full |
Sustainable Development: Evaluating Optimal Technique for Spatial Data Forecast |
author_sort |
Gaurav Kumar |
journal |
Proceedings |
journalStr |
Proceedings |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Gaurav Kumar Rajiv Gupta |
container_volume |
2 |
format_se |
Elektronische Aufsätze |
author-letter |
Gaurav Kumar |
doi_str_mv |
10.3390/proceedings2221371 |
author2-role |
verfasserin |
title_sort |
sustainable development: evaluating optimal technique for spatial data forecast |
title_auth |
Sustainable Development: Evaluating Optimal Technique for Spatial Data Forecast |
abstract |
This paper is an approach to forecast the spatial data in time series domain. Normally in GIS (Geographical Information System), we need raster forecasting. Moving average, exponential smoothing, and linear regression methods of forecasting are used over one-dimensional data. Present work concentrates on using these methods on satellite images applying them from pixel to pixel of historical temporal satellite data. An example set of satellite images from years 2011 to 2015 has been used to forecast the image in the year 2016. GIS tools have been developed in ArcGIS 10.1 using python to implement the methods of forecasting. Forecasted and actual images of the year 2016 have been compared by calculating the Normalized Difference Vegetation Indices (NDVI) and change detection to identify the best method. |
abstractGer |
This paper is an approach to forecast the spatial data in time series domain. Normally in GIS (Geographical Information System), we need raster forecasting. Moving average, exponential smoothing, and linear regression methods of forecasting are used over one-dimensional data. Present work concentrates on using these methods on satellite images applying them from pixel to pixel of historical temporal satellite data. An example set of satellite images from years 2011 to 2015 has been used to forecast the image in the year 2016. GIS tools have been developed in ArcGIS 10.1 using python to implement the methods of forecasting. Forecasted and actual images of the year 2016 have been compared by calculating the Normalized Difference Vegetation Indices (NDVI) and change detection to identify the best method. |
abstract_unstemmed |
This paper is an approach to forecast the spatial data in time series domain. Normally in GIS (Geographical Information System), we need raster forecasting. Moving average, exponential smoothing, and linear regression methods of forecasting are used over one-dimensional data. Present work concentrates on using these methods on satellite images applying them from pixel to pixel of historical temporal satellite data. An example set of satellite images from years 2011 to 2015 has been used to forecast the image in the year 2016. GIS tools have been developed in ArcGIS 10.1 using python to implement the methods of forecasting. Forecasted and actual images of the year 2016 have been compared by calculating the Normalized Difference Vegetation Indices (NDVI) and change detection to identify the best method. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
22, p 1371 |
title_short |
Sustainable Development: Evaluating Optimal Technique for Spatial Data Forecast |
url |
https://doi.org/10.3390/proceedings2221371 https://doaj.org/article/203ca679e70c4b44ac56e8247a09c173 https://www.mdpi.com/2504-3900/2/22/1371 https://doaj.org/toc/2504-3900 |
remote_bool |
true |
author2 |
Rajiv Gupta |
author2Str |
Rajiv Gupta |
ppnlink |
896671828 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/proceedings2221371 |
up_date |
2024-07-03T18:18:42.335Z |
_version_ |
1803582934712582144 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ005987903</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309195153.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/proceedings2221371</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ005987903</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ203ca679e70c4b44ac56e8247a09c173</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gaurav Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sustainable Development: Evaluating Optimal Technique for Spatial Data Forecast</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper is an approach to forecast the spatial data in time series domain. Normally in GIS (Geographical Information System), we need raster forecasting. Moving average, exponential smoothing, and linear regression methods of forecasting are used over one-dimensional data. Present work concentrates on using these methods on satellite images applying them from pixel to pixel of historical temporal satellite data. An example set of satellite images from years 2011 to 2015 has been used to forecast the image in the year 2016. GIS tools have been developed in ArcGIS 10.1 using python to implement the methods of forecasting. Forecasted and actual images of the year 2016 have been compared by calculating the Normalized Difference Vegetation Indices (NDVI) and change detection to identify the best method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time series extrapolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GIS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">raster forecasting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NDVI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">change detection</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">General Works</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">A</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rajiv Gupta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Proceedings</subfield><subfield code="d">MDPI AG, 2018</subfield><subfield code="g">2(2018), 22, p 1371</subfield><subfield code="w">(DE-627)896671828</subfield><subfield code="w">(DE-600)2904077-2</subfield><subfield code="x">25043900</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:22, p 1371</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/proceedings2221371</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/203ca679e70c4b44ac56e8247a09c173</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2504-3900/2/22/1371</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2504-3900</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2018</subfield><subfield code="e">22, p 1371</subfield></datafield></record></collection>
|
score |
7.399441 |