Hemodynamic variability in soldiers with trauma: Implications for functional MRI connectivity studies
Functional MRI (fMRI) is an indirect measure of neural activity as a result of the convolution of the hemodynamic response function (HRF) and latent (unmeasured) neural activity. Recent studies have shown variability of HRF across brain regions (intra-subject spatial variability) and between subject...
Ausführliche Beschreibung
Autor*in: |
D. Rangaprakash [verfasserIn] Michael N. Dretsch [verfasserIn] Wenjing Yan [verfasserIn] Jeffrey S. Katz [verfasserIn] Thomas S. Denney, Jr. [verfasserIn] Gopikrishna Deshpande [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Übergeordnetes Werk: |
In: NeuroImage: Clinical - Elsevier, 2015, 16(2017), Seite 409-417 |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2017 ; pages:409-417 |
Links: |
---|
DOI / URN: |
10.1016/j.nicl.2017.07.016 |
---|
Katalog-ID: |
DOAJ006469914 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ006469914 | ||
003 | DE-627 | ||
005 | 20230309203818.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.nicl.2017.07.016 |2 doi | |
035 | |a (DE-627)DOAJ006469914 | ||
035 | |a (DE-599)DOAJd4cf719226284d118b158e271aabf8a4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a R858-859.7 | |
050 | 0 | |a RC346-429 | |
100 | 0 | |a D. Rangaprakash |e verfasserin |4 aut | |
245 | 1 | 0 | |a Hemodynamic variability in soldiers with trauma: Implications for functional MRI connectivity studies |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Functional MRI (fMRI) is an indirect measure of neural activity as a result of the convolution of the hemodynamic response function (HRF) and latent (unmeasured) neural activity. Recent studies have shown variability of HRF across brain regions (intra-subject spatial variability) and between subjects (inter-subject variability). Ignoring this HRF variability during data analysis could impair the reliability of such fMRI results. Using whole-brain resting-state fMRI (rs-fMRI), we employed hemodynamic deconvolution to estimate voxel-wise HRF. Studying the impact of mental disorders on HRF variability, we identified HRF aberrations in soldiers (N=87) with posttraumatic stress disorder (PTSD) and mild-traumatic brain injury (mTBI) compared to combat controls. Certain subcortical and default-mode regions were found to have significant HRF aberrations in the clinical groups. These brain regions have been previously associated with neurochemical alterations in PTSD, which are known to impact the shape of the HRF. We followed-up these findings with seed-based functional connectivity (FC) analysis using regions-of-interest (ROIs) whose HRFs differed between the groups. We found that part of the connectivity group differences reported from traditional FC analysis (no deconvolution) were attributable to HRF variability. These findings raise the question of the degree of reliability of findings from conventional rs-fMRI studies (especially in psychiatric populations like PTSD and mTBI), which are corrupted by HRF variability. We also report and discus, for the first time, voxel-level HRF alterations in PTSD and mTBI. To the best of our knowledge, this is the first study to report evidence for the impact of HRF variability on connectivity group differences. Our work has implications for rs-fMRI connectivity studies. We encourage researchers to incorporate hemodynamic deconvolution during pre-processing to minimize the impact of HRF variability. Keywords: Functional magnetic resonance imaging, Hemodynamic response function variability, Functional connectivity, Posttraumatic stress disorder, Mild-traumatic brain injury | ||
653 | 0 | |a Computer applications to medicine. Medical informatics | |
653 | 0 | |a Neurology. Diseases of the nervous system | |
700 | 0 | |a Michael N. Dretsch |e verfasserin |4 aut | |
700 | 0 | |a Wenjing Yan |e verfasserin |4 aut | |
700 | 0 | |a Jeffrey S. Katz |e verfasserin |4 aut | |
700 | 0 | |a Thomas S. Denney, Jr. |e verfasserin |4 aut | |
700 | 0 | |a Gopikrishna Deshpande |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t NeuroImage: Clinical |d Elsevier, 2015 |g 16(2017), Seite 409-417 |w (DE-627)735358869 |w (DE-600)2701571-3 |x 22131582 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2017 |g pages:409-417 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.nicl.2017.07.016 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/d4cf719226284d118b158e271aabf8a4 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2213158217301821 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2213-1582 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 2017 |h 409-417 |
author_variant |
d r dr m n d mnd w y wy j s k jsk s d j t sdj sdjt g d gd |
---|---|
matchkey_str |
article:22131582:2017----::eoyaivraiiynodesihruamlctosofntoa |
hierarchy_sort_str |
2017 |
callnumber-subject-code |
R |
publishDate |
2017 |
allfields |
10.1016/j.nicl.2017.07.016 doi (DE-627)DOAJ006469914 (DE-599)DOAJd4cf719226284d118b158e271aabf8a4 DE-627 ger DE-627 rakwb eng R858-859.7 RC346-429 D. Rangaprakash verfasserin aut Hemodynamic variability in soldiers with trauma: Implications for functional MRI connectivity studies 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Functional MRI (fMRI) is an indirect measure of neural activity as a result of the convolution of the hemodynamic response function (HRF) and latent (unmeasured) neural activity. Recent studies have shown variability of HRF across brain regions (intra-subject spatial variability) and between subjects (inter-subject variability). Ignoring this HRF variability during data analysis could impair the reliability of such fMRI results. Using whole-brain resting-state fMRI (rs-fMRI), we employed hemodynamic deconvolution to estimate voxel-wise HRF. Studying the impact of mental disorders on HRF variability, we identified HRF aberrations in soldiers (N=87) with posttraumatic stress disorder (PTSD) and mild-traumatic brain injury (mTBI) compared to combat controls. Certain subcortical and default-mode regions were found to have significant HRF aberrations in the clinical groups. These brain regions have been previously associated with neurochemical alterations in PTSD, which are known to impact the shape of the HRF. We followed-up these findings with seed-based functional connectivity (FC) analysis using regions-of-interest (ROIs) whose HRFs differed between the groups. We found that part of the connectivity group differences reported from traditional FC analysis (no deconvolution) were attributable to HRF variability. These findings raise the question of the degree of reliability of findings from conventional rs-fMRI studies (especially in psychiatric populations like PTSD and mTBI), which are corrupted by HRF variability. We also report and discus, for the first time, voxel-level HRF alterations in PTSD and mTBI. To the best of our knowledge, this is the first study to report evidence for the impact of HRF variability on connectivity group differences. Our work has implications for rs-fMRI connectivity studies. We encourage researchers to incorporate hemodynamic deconvolution during pre-processing to minimize the impact of HRF variability. Keywords: Functional magnetic resonance imaging, Hemodynamic response function variability, Functional connectivity, Posttraumatic stress disorder, Mild-traumatic brain injury Computer applications to medicine. Medical informatics Neurology. Diseases of the nervous system Michael N. Dretsch verfasserin aut Wenjing Yan verfasserin aut Jeffrey S. Katz verfasserin aut Thomas S. Denney, Jr. verfasserin aut Gopikrishna Deshpande verfasserin aut In NeuroImage: Clinical Elsevier, 2015 16(2017), Seite 409-417 (DE-627)735358869 (DE-600)2701571-3 22131582 nnns volume:16 year:2017 pages:409-417 https://doi.org/10.1016/j.nicl.2017.07.016 kostenfrei https://doaj.org/article/d4cf719226284d118b158e271aabf8a4 kostenfrei http://www.sciencedirect.com/science/article/pii/S2213158217301821 kostenfrei https://doaj.org/toc/2213-1582 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 16 2017 409-417 |
spelling |
10.1016/j.nicl.2017.07.016 doi (DE-627)DOAJ006469914 (DE-599)DOAJd4cf719226284d118b158e271aabf8a4 DE-627 ger DE-627 rakwb eng R858-859.7 RC346-429 D. Rangaprakash verfasserin aut Hemodynamic variability in soldiers with trauma: Implications for functional MRI connectivity studies 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Functional MRI (fMRI) is an indirect measure of neural activity as a result of the convolution of the hemodynamic response function (HRF) and latent (unmeasured) neural activity. Recent studies have shown variability of HRF across brain regions (intra-subject spatial variability) and between subjects (inter-subject variability). Ignoring this HRF variability during data analysis could impair the reliability of such fMRI results. Using whole-brain resting-state fMRI (rs-fMRI), we employed hemodynamic deconvolution to estimate voxel-wise HRF. Studying the impact of mental disorders on HRF variability, we identified HRF aberrations in soldiers (N=87) with posttraumatic stress disorder (PTSD) and mild-traumatic brain injury (mTBI) compared to combat controls. Certain subcortical and default-mode regions were found to have significant HRF aberrations in the clinical groups. These brain regions have been previously associated with neurochemical alterations in PTSD, which are known to impact the shape of the HRF. We followed-up these findings with seed-based functional connectivity (FC) analysis using regions-of-interest (ROIs) whose HRFs differed between the groups. We found that part of the connectivity group differences reported from traditional FC analysis (no deconvolution) were attributable to HRF variability. These findings raise the question of the degree of reliability of findings from conventional rs-fMRI studies (especially in psychiatric populations like PTSD and mTBI), which are corrupted by HRF variability. We also report and discus, for the first time, voxel-level HRF alterations in PTSD and mTBI. To the best of our knowledge, this is the first study to report evidence for the impact of HRF variability on connectivity group differences. Our work has implications for rs-fMRI connectivity studies. We encourage researchers to incorporate hemodynamic deconvolution during pre-processing to minimize the impact of HRF variability. Keywords: Functional magnetic resonance imaging, Hemodynamic response function variability, Functional connectivity, Posttraumatic stress disorder, Mild-traumatic brain injury Computer applications to medicine. Medical informatics Neurology. Diseases of the nervous system Michael N. Dretsch verfasserin aut Wenjing Yan verfasserin aut Jeffrey S. Katz verfasserin aut Thomas S. Denney, Jr. verfasserin aut Gopikrishna Deshpande verfasserin aut In NeuroImage: Clinical Elsevier, 2015 16(2017), Seite 409-417 (DE-627)735358869 (DE-600)2701571-3 22131582 nnns volume:16 year:2017 pages:409-417 https://doi.org/10.1016/j.nicl.2017.07.016 kostenfrei https://doaj.org/article/d4cf719226284d118b158e271aabf8a4 kostenfrei http://www.sciencedirect.com/science/article/pii/S2213158217301821 kostenfrei https://doaj.org/toc/2213-1582 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 16 2017 409-417 |
allfields_unstemmed |
10.1016/j.nicl.2017.07.016 doi (DE-627)DOAJ006469914 (DE-599)DOAJd4cf719226284d118b158e271aabf8a4 DE-627 ger DE-627 rakwb eng R858-859.7 RC346-429 D. Rangaprakash verfasserin aut Hemodynamic variability in soldiers with trauma: Implications for functional MRI connectivity studies 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Functional MRI (fMRI) is an indirect measure of neural activity as a result of the convolution of the hemodynamic response function (HRF) and latent (unmeasured) neural activity. Recent studies have shown variability of HRF across brain regions (intra-subject spatial variability) and between subjects (inter-subject variability). Ignoring this HRF variability during data analysis could impair the reliability of such fMRI results. Using whole-brain resting-state fMRI (rs-fMRI), we employed hemodynamic deconvolution to estimate voxel-wise HRF. Studying the impact of mental disorders on HRF variability, we identified HRF aberrations in soldiers (N=87) with posttraumatic stress disorder (PTSD) and mild-traumatic brain injury (mTBI) compared to combat controls. Certain subcortical and default-mode regions were found to have significant HRF aberrations in the clinical groups. These brain regions have been previously associated with neurochemical alterations in PTSD, which are known to impact the shape of the HRF. We followed-up these findings with seed-based functional connectivity (FC) analysis using regions-of-interest (ROIs) whose HRFs differed between the groups. We found that part of the connectivity group differences reported from traditional FC analysis (no deconvolution) were attributable to HRF variability. These findings raise the question of the degree of reliability of findings from conventional rs-fMRI studies (especially in psychiatric populations like PTSD and mTBI), which are corrupted by HRF variability. We also report and discus, for the first time, voxel-level HRF alterations in PTSD and mTBI. To the best of our knowledge, this is the first study to report evidence for the impact of HRF variability on connectivity group differences. Our work has implications for rs-fMRI connectivity studies. We encourage researchers to incorporate hemodynamic deconvolution during pre-processing to minimize the impact of HRF variability. Keywords: Functional magnetic resonance imaging, Hemodynamic response function variability, Functional connectivity, Posttraumatic stress disorder, Mild-traumatic brain injury Computer applications to medicine. Medical informatics Neurology. Diseases of the nervous system Michael N. Dretsch verfasserin aut Wenjing Yan verfasserin aut Jeffrey S. Katz verfasserin aut Thomas S. Denney, Jr. verfasserin aut Gopikrishna Deshpande verfasserin aut In NeuroImage: Clinical Elsevier, 2015 16(2017), Seite 409-417 (DE-627)735358869 (DE-600)2701571-3 22131582 nnns volume:16 year:2017 pages:409-417 https://doi.org/10.1016/j.nicl.2017.07.016 kostenfrei https://doaj.org/article/d4cf719226284d118b158e271aabf8a4 kostenfrei http://www.sciencedirect.com/science/article/pii/S2213158217301821 kostenfrei https://doaj.org/toc/2213-1582 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 16 2017 409-417 |
allfieldsGer |
10.1016/j.nicl.2017.07.016 doi (DE-627)DOAJ006469914 (DE-599)DOAJd4cf719226284d118b158e271aabf8a4 DE-627 ger DE-627 rakwb eng R858-859.7 RC346-429 D. Rangaprakash verfasserin aut Hemodynamic variability in soldiers with trauma: Implications for functional MRI connectivity studies 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Functional MRI (fMRI) is an indirect measure of neural activity as a result of the convolution of the hemodynamic response function (HRF) and latent (unmeasured) neural activity. Recent studies have shown variability of HRF across brain regions (intra-subject spatial variability) and between subjects (inter-subject variability). Ignoring this HRF variability during data analysis could impair the reliability of such fMRI results. Using whole-brain resting-state fMRI (rs-fMRI), we employed hemodynamic deconvolution to estimate voxel-wise HRF. Studying the impact of mental disorders on HRF variability, we identified HRF aberrations in soldiers (N=87) with posttraumatic stress disorder (PTSD) and mild-traumatic brain injury (mTBI) compared to combat controls. Certain subcortical and default-mode regions were found to have significant HRF aberrations in the clinical groups. These brain regions have been previously associated with neurochemical alterations in PTSD, which are known to impact the shape of the HRF. We followed-up these findings with seed-based functional connectivity (FC) analysis using regions-of-interest (ROIs) whose HRFs differed between the groups. We found that part of the connectivity group differences reported from traditional FC analysis (no deconvolution) were attributable to HRF variability. These findings raise the question of the degree of reliability of findings from conventional rs-fMRI studies (especially in psychiatric populations like PTSD and mTBI), which are corrupted by HRF variability. We also report and discus, for the first time, voxel-level HRF alterations in PTSD and mTBI. To the best of our knowledge, this is the first study to report evidence for the impact of HRF variability on connectivity group differences. Our work has implications for rs-fMRI connectivity studies. We encourage researchers to incorporate hemodynamic deconvolution during pre-processing to minimize the impact of HRF variability. Keywords: Functional magnetic resonance imaging, Hemodynamic response function variability, Functional connectivity, Posttraumatic stress disorder, Mild-traumatic brain injury Computer applications to medicine. Medical informatics Neurology. Diseases of the nervous system Michael N. Dretsch verfasserin aut Wenjing Yan verfasserin aut Jeffrey S. Katz verfasserin aut Thomas S. Denney, Jr. verfasserin aut Gopikrishna Deshpande verfasserin aut In NeuroImage: Clinical Elsevier, 2015 16(2017), Seite 409-417 (DE-627)735358869 (DE-600)2701571-3 22131582 nnns volume:16 year:2017 pages:409-417 https://doi.org/10.1016/j.nicl.2017.07.016 kostenfrei https://doaj.org/article/d4cf719226284d118b158e271aabf8a4 kostenfrei http://www.sciencedirect.com/science/article/pii/S2213158217301821 kostenfrei https://doaj.org/toc/2213-1582 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 16 2017 409-417 |
allfieldsSound |
10.1016/j.nicl.2017.07.016 doi (DE-627)DOAJ006469914 (DE-599)DOAJd4cf719226284d118b158e271aabf8a4 DE-627 ger DE-627 rakwb eng R858-859.7 RC346-429 D. Rangaprakash verfasserin aut Hemodynamic variability in soldiers with trauma: Implications for functional MRI connectivity studies 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Functional MRI (fMRI) is an indirect measure of neural activity as a result of the convolution of the hemodynamic response function (HRF) and latent (unmeasured) neural activity. Recent studies have shown variability of HRF across brain regions (intra-subject spatial variability) and between subjects (inter-subject variability). Ignoring this HRF variability during data analysis could impair the reliability of such fMRI results. Using whole-brain resting-state fMRI (rs-fMRI), we employed hemodynamic deconvolution to estimate voxel-wise HRF. Studying the impact of mental disorders on HRF variability, we identified HRF aberrations in soldiers (N=87) with posttraumatic stress disorder (PTSD) and mild-traumatic brain injury (mTBI) compared to combat controls. Certain subcortical and default-mode regions were found to have significant HRF aberrations in the clinical groups. These brain regions have been previously associated with neurochemical alterations in PTSD, which are known to impact the shape of the HRF. We followed-up these findings with seed-based functional connectivity (FC) analysis using regions-of-interest (ROIs) whose HRFs differed between the groups. We found that part of the connectivity group differences reported from traditional FC analysis (no deconvolution) were attributable to HRF variability. These findings raise the question of the degree of reliability of findings from conventional rs-fMRI studies (especially in psychiatric populations like PTSD and mTBI), which are corrupted by HRF variability. We also report and discus, for the first time, voxel-level HRF alterations in PTSD and mTBI. To the best of our knowledge, this is the first study to report evidence for the impact of HRF variability on connectivity group differences. Our work has implications for rs-fMRI connectivity studies. We encourage researchers to incorporate hemodynamic deconvolution during pre-processing to minimize the impact of HRF variability. Keywords: Functional magnetic resonance imaging, Hemodynamic response function variability, Functional connectivity, Posttraumatic stress disorder, Mild-traumatic brain injury Computer applications to medicine. Medical informatics Neurology. Diseases of the nervous system Michael N. Dretsch verfasserin aut Wenjing Yan verfasserin aut Jeffrey S. Katz verfasserin aut Thomas S. Denney, Jr. verfasserin aut Gopikrishna Deshpande verfasserin aut In NeuroImage: Clinical Elsevier, 2015 16(2017), Seite 409-417 (DE-627)735358869 (DE-600)2701571-3 22131582 nnns volume:16 year:2017 pages:409-417 https://doi.org/10.1016/j.nicl.2017.07.016 kostenfrei https://doaj.org/article/d4cf719226284d118b158e271aabf8a4 kostenfrei http://www.sciencedirect.com/science/article/pii/S2213158217301821 kostenfrei https://doaj.org/toc/2213-1582 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 16 2017 409-417 |
language |
English |
source |
In NeuroImage: Clinical 16(2017), Seite 409-417 volume:16 year:2017 pages:409-417 |
sourceStr |
In NeuroImage: Clinical 16(2017), Seite 409-417 volume:16 year:2017 pages:409-417 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Computer applications to medicine. Medical informatics Neurology. Diseases of the nervous system |
isfreeaccess_bool |
true |
container_title |
NeuroImage: Clinical |
authorswithroles_txt_mv |
D. Rangaprakash @@aut@@ Michael N. Dretsch @@aut@@ Wenjing Yan @@aut@@ Jeffrey S. Katz @@aut@@ Thomas S. Denney, Jr. @@aut@@ Gopikrishna Deshpande @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
735358869 |
id |
DOAJ006469914 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ006469914</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309203818.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nicl.2017.07.016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ006469914</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd4cf719226284d118b158e271aabf8a4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R858-859.7</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC346-429</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">D. Rangaprakash</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hemodynamic variability in soldiers with trauma: Implications for functional MRI connectivity studies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Functional MRI (fMRI) is an indirect measure of neural activity as a result of the convolution of the hemodynamic response function (HRF) and latent (unmeasured) neural activity. Recent studies have shown variability of HRF across brain regions (intra-subject spatial variability) and between subjects (inter-subject variability). Ignoring this HRF variability during data analysis could impair the reliability of such fMRI results. Using whole-brain resting-state fMRI (rs-fMRI), we employed hemodynamic deconvolution to estimate voxel-wise HRF. Studying the impact of mental disorders on HRF variability, we identified HRF aberrations in soldiers (N=87) with posttraumatic stress disorder (PTSD) and mild-traumatic brain injury (mTBI) compared to combat controls. Certain subcortical and default-mode regions were found to have significant HRF aberrations in the clinical groups. These brain regions have been previously associated with neurochemical alterations in PTSD, which are known to impact the shape of the HRF. We followed-up these findings with seed-based functional connectivity (FC) analysis using regions-of-interest (ROIs) whose HRFs differed between the groups. We found that part of the connectivity group differences reported from traditional FC analysis (no deconvolution) were attributable to HRF variability. These findings raise the question of the degree of reliability of findings from conventional rs-fMRI studies (especially in psychiatric populations like PTSD and mTBI), which are corrupted by HRF variability. We also report and discus, for the first time, voxel-level HRF alterations in PTSD and mTBI. To the best of our knowledge, this is the first study to report evidence for the impact of HRF variability on connectivity group differences. Our work has implications for rs-fMRI connectivity studies. We encourage researchers to incorporate hemodynamic deconvolution during pre-processing to minimize the impact of HRF variability. Keywords: Functional magnetic resonance imaging, Hemodynamic response function variability, Functional connectivity, Posttraumatic stress disorder, Mild-traumatic brain injury</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer applications to medicine. Medical informatics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neurology. Diseases of the nervous system</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michael N. Dretsch</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenjing Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jeffrey S. Katz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thomas S. Denney, Jr.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gopikrishna Deshpande</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">NeuroImage: Clinical</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">16(2017), Seite 409-417</subfield><subfield code="w">(DE-627)735358869</subfield><subfield code="w">(DE-600)2701571-3</subfield><subfield code="x">22131582</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:409-417</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.nicl.2017.07.016</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d4cf719226284d118b158e271aabf8a4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2213158217301821</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2213-1582</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2017</subfield><subfield code="h">409-417</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
D. Rangaprakash |
spellingShingle |
D. Rangaprakash misc R858-859.7 misc RC346-429 misc Computer applications to medicine. Medical informatics misc Neurology. Diseases of the nervous system Hemodynamic variability in soldiers with trauma: Implications for functional MRI connectivity studies |
authorStr |
D. Rangaprakash |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)735358869 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
R858-859 |
illustrated |
Not Illustrated |
issn |
22131582 |
topic_title |
R858-859.7 RC346-429 Hemodynamic variability in soldiers with trauma: Implications for functional MRI connectivity studies |
topic |
misc R858-859.7 misc RC346-429 misc Computer applications to medicine. Medical informatics misc Neurology. Diseases of the nervous system |
topic_unstemmed |
misc R858-859.7 misc RC346-429 misc Computer applications to medicine. Medical informatics misc Neurology. Diseases of the nervous system |
topic_browse |
misc R858-859.7 misc RC346-429 misc Computer applications to medicine. Medical informatics misc Neurology. Diseases of the nervous system |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
NeuroImage: Clinical |
hierarchy_parent_id |
735358869 |
hierarchy_top_title |
NeuroImage: Clinical |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)735358869 (DE-600)2701571-3 |
title |
Hemodynamic variability in soldiers with trauma: Implications for functional MRI connectivity studies |
ctrlnum |
(DE-627)DOAJ006469914 (DE-599)DOAJd4cf719226284d118b158e271aabf8a4 |
title_full |
Hemodynamic variability in soldiers with trauma: Implications for functional MRI connectivity studies |
author_sort |
D. Rangaprakash |
journal |
NeuroImage: Clinical |
journalStr |
NeuroImage: Clinical |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
409 |
author_browse |
D. Rangaprakash Michael N. Dretsch Wenjing Yan Jeffrey S. Katz Thomas S. Denney, Jr. Gopikrishna Deshpande |
container_volume |
16 |
class |
R858-859.7 RC346-429 |
format_se |
Elektronische Aufsätze |
author-letter |
D. Rangaprakash |
doi_str_mv |
10.1016/j.nicl.2017.07.016 |
author2-role |
verfasserin |
title_sort |
hemodynamic variability in soldiers with trauma: implications for functional mri connectivity studies |
callnumber |
R858-859.7 |
title_auth |
Hemodynamic variability in soldiers with trauma: Implications for functional MRI connectivity studies |
abstract |
Functional MRI (fMRI) is an indirect measure of neural activity as a result of the convolution of the hemodynamic response function (HRF) and latent (unmeasured) neural activity. Recent studies have shown variability of HRF across brain regions (intra-subject spatial variability) and between subjects (inter-subject variability). Ignoring this HRF variability during data analysis could impair the reliability of such fMRI results. Using whole-brain resting-state fMRI (rs-fMRI), we employed hemodynamic deconvolution to estimate voxel-wise HRF. Studying the impact of mental disorders on HRF variability, we identified HRF aberrations in soldiers (N=87) with posttraumatic stress disorder (PTSD) and mild-traumatic brain injury (mTBI) compared to combat controls. Certain subcortical and default-mode regions were found to have significant HRF aberrations in the clinical groups. These brain regions have been previously associated with neurochemical alterations in PTSD, which are known to impact the shape of the HRF. We followed-up these findings with seed-based functional connectivity (FC) analysis using regions-of-interest (ROIs) whose HRFs differed between the groups. We found that part of the connectivity group differences reported from traditional FC analysis (no deconvolution) were attributable to HRF variability. These findings raise the question of the degree of reliability of findings from conventional rs-fMRI studies (especially in psychiatric populations like PTSD and mTBI), which are corrupted by HRF variability. We also report and discus, for the first time, voxel-level HRF alterations in PTSD and mTBI. To the best of our knowledge, this is the first study to report evidence for the impact of HRF variability on connectivity group differences. Our work has implications for rs-fMRI connectivity studies. We encourage researchers to incorporate hemodynamic deconvolution during pre-processing to minimize the impact of HRF variability. Keywords: Functional magnetic resonance imaging, Hemodynamic response function variability, Functional connectivity, Posttraumatic stress disorder, Mild-traumatic brain injury |
abstractGer |
Functional MRI (fMRI) is an indirect measure of neural activity as a result of the convolution of the hemodynamic response function (HRF) and latent (unmeasured) neural activity. Recent studies have shown variability of HRF across brain regions (intra-subject spatial variability) and between subjects (inter-subject variability). Ignoring this HRF variability during data analysis could impair the reliability of such fMRI results. Using whole-brain resting-state fMRI (rs-fMRI), we employed hemodynamic deconvolution to estimate voxel-wise HRF. Studying the impact of mental disorders on HRF variability, we identified HRF aberrations in soldiers (N=87) with posttraumatic stress disorder (PTSD) and mild-traumatic brain injury (mTBI) compared to combat controls. Certain subcortical and default-mode regions were found to have significant HRF aberrations in the clinical groups. These brain regions have been previously associated with neurochemical alterations in PTSD, which are known to impact the shape of the HRF. We followed-up these findings with seed-based functional connectivity (FC) analysis using regions-of-interest (ROIs) whose HRFs differed between the groups. We found that part of the connectivity group differences reported from traditional FC analysis (no deconvolution) were attributable to HRF variability. These findings raise the question of the degree of reliability of findings from conventional rs-fMRI studies (especially in psychiatric populations like PTSD and mTBI), which are corrupted by HRF variability. We also report and discus, for the first time, voxel-level HRF alterations in PTSD and mTBI. To the best of our knowledge, this is the first study to report evidence for the impact of HRF variability on connectivity group differences. Our work has implications for rs-fMRI connectivity studies. We encourage researchers to incorporate hemodynamic deconvolution during pre-processing to minimize the impact of HRF variability. Keywords: Functional magnetic resonance imaging, Hemodynamic response function variability, Functional connectivity, Posttraumatic stress disorder, Mild-traumatic brain injury |
abstract_unstemmed |
Functional MRI (fMRI) is an indirect measure of neural activity as a result of the convolution of the hemodynamic response function (HRF) and latent (unmeasured) neural activity. Recent studies have shown variability of HRF across brain regions (intra-subject spatial variability) and between subjects (inter-subject variability). Ignoring this HRF variability during data analysis could impair the reliability of such fMRI results. Using whole-brain resting-state fMRI (rs-fMRI), we employed hemodynamic deconvolution to estimate voxel-wise HRF. Studying the impact of mental disorders on HRF variability, we identified HRF aberrations in soldiers (N=87) with posttraumatic stress disorder (PTSD) and mild-traumatic brain injury (mTBI) compared to combat controls. Certain subcortical and default-mode regions were found to have significant HRF aberrations in the clinical groups. These brain regions have been previously associated with neurochemical alterations in PTSD, which are known to impact the shape of the HRF. We followed-up these findings with seed-based functional connectivity (FC) analysis using regions-of-interest (ROIs) whose HRFs differed between the groups. We found that part of the connectivity group differences reported from traditional FC analysis (no deconvolution) were attributable to HRF variability. These findings raise the question of the degree of reliability of findings from conventional rs-fMRI studies (especially in psychiatric populations like PTSD and mTBI), which are corrupted by HRF variability. We also report and discus, for the first time, voxel-level HRF alterations in PTSD and mTBI. To the best of our knowledge, this is the first study to report evidence for the impact of HRF variability on connectivity group differences. Our work has implications for rs-fMRI connectivity studies. We encourage researchers to incorporate hemodynamic deconvolution during pre-processing to minimize the impact of HRF variability. Keywords: Functional magnetic resonance imaging, Hemodynamic response function variability, Functional connectivity, Posttraumatic stress disorder, Mild-traumatic brain injury |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Hemodynamic variability in soldiers with trauma: Implications for functional MRI connectivity studies |
url |
https://doi.org/10.1016/j.nicl.2017.07.016 https://doaj.org/article/d4cf719226284d118b158e271aabf8a4 http://www.sciencedirect.com/science/article/pii/S2213158217301821 https://doaj.org/toc/2213-1582 |
remote_bool |
true |
author2 |
Michael N. Dretsch Wenjing Yan Jeffrey S. Katz Thomas S. Denney, Jr. Gopikrishna Deshpande |
author2Str |
Michael N. Dretsch Wenjing Yan Jeffrey S. Katz Thomas S. Denney, Jr. Gopikrishna Deshpande |
ppnlink |
735358869 |
callnumber-subject |
R - General Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.nicl.2017.07.016 |
callnumber-a |
R858-859.7 |
up_date |
2024-07-03T21:07:11.383Z |
_version_ |
1803593534809309184 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ006469914</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309203818.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nicl.2017.07.016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ006469914</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd4cf719226284d118b158e271aabf8a4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R858-859.7</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC346-429</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">D. Rangaprakash</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hemodynamic variability in soldiers with trauma: Implications for functional MRI connectivity studies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Functional MRI (fMRI) is an indirect measure of neural activity as a result of the convolution of the hemodynamic response function (HRF) and latent (unmeasured) neural activity. Recent studies have shown variability of HRF across brain regions (intra-subject spatial variability) and between subjects (inter-subject variability). Ignoring this HRF variability during data analysis could impair the reliability of such fMRI results. Using whole-brain resting-state fMRI (rs-fMRI), we employed hemodynamic deconvolution to estimate voxel-wise HRF. Studying the impact of mental disorders on HRF variability, we identified HRF aberrations in soldiers (N=87) with posttraumatic stress disorder (PTSD) and mild-traumatic brain injury (mTBI) compared to combat controls. Certain subcortical and default-mode regions were found to have significant HRF aberrations in the clinical groups. These brain regions have been previously associated with neurochemical alterations in PTSD, which are known to impact the shape of the HRF. We followed-up these findings with seed-based functional connectivity (FC) analysis using regions-of-interest (ROIs) whose HRFs differed between the groups. We found that part of the connectivity group differences reported from traditional FC analysis (no deconvolution) were attributable to HRF variability. These findings raise the question of the degree of reliability of findings from conventional rs-fMRI studies (especially in psychiatric populations like PTSD and mTBI), which are corrupted by HRF variability. We also report and discus, for the first time, voxel-level HRF alterations in PTSD and mTBI. To the best of our knowledge, this is the first study to report evidence for the impact of HRF variability on connectivity group differences. Our work has implications for rs-fMRI connectivity studies. We encourage researchers to incorporate hemodynamic deconvolution during pre-processing to minimize the impact of HRF variability. Keywords: Functional magnetic resonance imaging, Hemodynamic response function variability, Functional connectivity, Posttraumatic stress disorder, Mild-traumatic brain injury</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer applications to medicine. Medical informatics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neurology. Diseases of the nervous system</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michael N. Dretsch</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenjing Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jeffrey S. Katz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thomas S. Denney, Jr.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gopikrishna Deshpande</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">NeuroImage: Clinical</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">16(2017), Seite 409-417</subfield><subfield code="w">(DE-627)735358869</subfield><subfield code="w">(DE-600)2701571-3</subfield><subfield code="x">22131582</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:409-417</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.nicl.2017.07.016</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d4cf719226284d118b158e271aabf8a4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2213158217301821</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2213-1582</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2017</subfield><subfield code="h">409-417</subfield></datafield></record></collection>
|
score |
7.400917 |