A Robust Random Noise Suppression Method for Seismic Data Using Sparse Low-Rank Estimation in the Time-Frequency Domain
The noise separation from seismic data is of significant importance in geophysics. In most cases, the random noise always overlaps the seismic reflections over time, which makes it challenging to suppress. To enhance seismic signal, we propose a robust noise suppression method based on high-order sy...
Ausführliche Beschreibung
Autor*in: |
Pingping Bing [verfasserIn] Wei Liu [verfasserIn] Zhihua Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
High-order synchrosqueezing transform |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 8(2020), Seite 183546-183556 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; pages:183546-183556 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2020.3028145 |
---|
Katalog-ID: |
DOAJ006471900 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ006471900 | ||
003 | DE-627 | ||
005 | 20230309203828.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2020.3028145 |2 doi | |
035 | |a (DE-627)DOAJ006471900 | ||
035 | |a (DE-599)DOAJffefff49e17c4020885d612d15b1f487 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Pingping Bing |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Robust Random Noise Suppression Method for Seismic Data Using Sparse Low-Rank Estimation in the Time-Frequency Domain |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The noise separation from seismic data is of significant importance in geophysics. In most cases, the random noise always overlaps the seismic reflections over time, which makes it challenging to suppress. To enhance seismic signal, we propose a robust noise suppression method based on high-order synchrosqueezing transform (FSSTH) and robust principal component analysis (RPCA). Firstly, the noisy seismic data is transformed into a sparse time-frequency matrix (TFM) using the FSSTH. Then, the RPCA algorithm is employed to decompose the sparse TFM into a low-rank matrix and a sparse matrix that can be used to depict the useful signal and noise, respectively. Finally, the denoised signal can be obtained by back-transforming the low-rank matrix to the time domain via the inverse FSSTH. We utilize a synthetic data and two field datasets to demonstrate the robustness and superiority of our method, and compare with the conventional denoising algorithms such as f-x denconvolution and f-x$ singular spectrum analysis (SSA). The obtained results indicate that the proposed method is capable of achieving an excellent tadeoff between random noise suppression and seismic signal preservation. | ||
650 | 4 | |a High-order synchrosqueezing transform | |
650 | 4 | |a robust principal component analysis | |
650 | 4 | |a low rank matrix | |
650 | 4 | |a noise suppression | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Wei Liu |e verfasserin |4 aut | |
700 | 0 | |a Zhihua Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 8(2020), Seite 183546-183556 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g pages:183546-183556 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2020.3028145 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ffefff49e17c4020885d612d15b1f487 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9210485/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |h 183546-183556 |
author_variant |
p b pb w l wl z z zz |
---|---|
matchkey_str |
article:21693536:2020----::rbsrnonieupesomtofresidtuigpreornetmt |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TK |
publishDate |
2020 |
allfields |
10.1109/ACCESS.2020.3028145 doi (DE-627)DOAJ006471900 (DE-599)DOAJffefff49e17c4020885d612d15b1f487 DE-627 ger DE-627 rakwb eng TK1-9971 Pingping Bing verfasserin aut A Robust Random Noise Suppression Method for Seismic Data Using Sparse Low-Rank Estimation in the Time-Frequency Domain 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The noise separation from seismic data is of significant importance in geophysics. In most cases, the random noise always overlaps the seismic reflections over time, which makes it challenging to suppress. To enhance seismic signal, we propose a robust noise suppression method based on high-order synchrosqueezing transform (FSSTH) and robust principal component analysis (RPCA). Firstly, the noisy seismic data is transformed into a sparse time-frequency matrix (TFM) using the FSSTH. Then, the RPCA algorithm is employed to decompose the sparse TFM into a low-rank matrix and a sparse matrix that can be used to depict the useful signal and noise, respectively. Finally, the denoised signal can be obtained by back-transforming the low-rank matrix to the time domain via the inverse FSSTH. We utilize a synthetic data and two field datasets to demonstrate the robustness and superiority of our method, and compare with the conventional denoising algorithms such as f-x denconvolution and f-x$ singular spectrum analysis (SSA). The obtained results indicate that the proposed method is capable of achieving an excellent tadeoff between random noise suppression and seismic signal preservation. High-order synchrosqueezing transform robust principal component analysis low rank matrix noise suppression Electrical engineering. Electronics. Nuclear engineering Wei Liu verfasserin aut Zhihua Zhang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 183546-183556 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:183546-183556 https://doi.org/10.1109/ACCESS.2020.3028145 kostenfrei https://doaj.org/article/ffefff49e17c4020885d612d15b1f487 kostenfrei https://ieeexplore.ieee.org/document/9210485/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 183546-183556 |
spelling |
10.1109/ACCESS.2020.3028145 doi (DE-627)DOAJ006471900 (DE-599)DOAJffefff49e17c4020885d612d15b1f487 DE-627 ger DE-627 rakwb eng TK1-9971 Pingping Bing verfasserin aut A Robust Random Noise Suppression Method for Seismic Data Using Sparse Low-Rank Estimation in the Time-Frequency Domain 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The noise separation from seismic data is of significant importance in geophysics. In most cases, the random noise always overlaps the seismic reflections over time, which makes it challenging to suppress. To enhance seismic signal, we propose a robust noise suppression method based on high-order synchrosqueezing transform (FSSTH) and robust principal component analysis (RPCA). Firstly, the noisy seismic data is transformed into a sparse time-frequency matrix (TFM) using the FSSTH. Then, the RPCA algorithm is employed to decompose the sparse TFM into a low-rank matrix and a sparse matrix that can be used to depict the useful signal and noise, respectively. Finally, the denoised signal can be obtained by back-transforming the low-rank matrix to the time domain via the inverse FSSTH. We utilize a synthetic data and two field datasets to demonstrate the robustness and superiority of our method, and compare with the conventional denoising algorithms such as f-x denconvolution and f-x$ singular spectrum analysis (SSA). The obtained results indicate that the proposed method is capable of achieving an excellent tadeoff between random noise suppression and seismic signal preservation. High-order synchrosqueezing transform robust principal component analysis low rank matrix noise suppression Electrical engineering. Electronics. Nuclear engineering Wei Liu verfasserin aut Zhihua Zhang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 183546-183556 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:183546-183556 https://doi.org/10.1109/ACCESS.2020.3028145 kostenfrei https://doaj.org/article/ffefff49e17c4020885d612d15b1f487 kostenfrei https://ieeexplore.ieee.org/document/9210485/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 183546-183556 |
allfields_unstemmed |
10.1109/ACCESS.2020.3028145 doi (DE-627)DOAJ006471900 (DE-599)DOAJffefff49e17c4020885d612d15b1f487 DE-627 ger DE-627 rakwb eng TK1-9971 Pingping Bing verfasserin aut A Robust Random Noise Suppression Method for Seismic Data Using Sparse Low-Rank Estimation in the Time-Frequency Domain 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The noise separation from seismic data is of significant importance in geophysics. In most cases, the random noise always overlaps the seismic reflections over time, which makes it challenging to suppress. To enhance seismic signal, we propose a robust noise suppression method based on high-order synchrosqueezing transform (FSSTH) and robust principal component analysis (RPCA). Firstly, the noisy seismic data is transformed into a sparse time-frequency matrix (TFM) using the FSSTH. Then, the RPCA algorithm is employed to decompose the sparse TFM into a low-rank matrix and a sparse matrix that can be used to depict the useful signal and noise, respectively. Finally, the denoised signal can be obtained by back-transforming the low-rank matrix to the time domain via the inverse FSSTH. We utilize a synthetic data and two field datasets to demonstrate the robustness and superiority of our method, and compare with the conventional denoising algorithms such as f-x denconvolution and f-x$ singular spectrum analysis (SSA). The obtained results indicate that the proposed method is capable of achieving an excellent tadeoff between random noise suppression and seismic signal preservation. High-order synchrosqueezing transform robust principal component analysis low rank matrix noise suppression Electrical engineering. Electronics. Nuclear engineering Wei Liu verfasserin aut Zhihua Zhang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 183546-183556 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:183546-183556 https://doi.org/10.1109/ACCESS.2020.3028145 kostenfrei https://doaj.org/article/ffefff49e17c4020885d612d15b1f487 kostenfrei https://ieeexplore.ieee.org/document/9210485/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 183546-183556 |
allfieldsGer |
10.1109/ACCESS.2020.3028145 doi (DE-627)DOAJ006471900 (DE-599)DOAJffefff49e17c4020885d612d15b1f487 DE-627 ger DE-627 rakwb eng TK1-9971 Pingping Bing verfasserin aut A Robust Random Noise Suppression Method for Seismic Data Using Sparse Low-Rank Estimation in the Time-Frequency Domain 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The noise separation from seismic data is of significant importance in geophysics. In most cases, the random noise always overlaps the seismic reflections over time, which makes it challenging to suppress. To enhance seismic signal, we propose a robust noise suppression method based on high-order synchrosqueezing transform (FSSTH) and robust principal component analysis (RPCA). Firstly, the noisy seismic data is transformed into a sparse time-frequency matrix (TFM) using the FSSTH. Then, the RPCA algorithm is employed to decompose the sparse TFM into a low-rank matrix and a sparse matrix that can be used to depict the useful signal and noise, respectively. Finally, the denoised signal can be obtained by back-transforming the low-rank matrix to the time domain via the inverse FSSTH. We utilize a synthetic data and two field datasets to demonstrate the robustness and superiority of our method, and compare with the conventional denoising algorithms such as f-x denconvolution and f-x$ singular spectrum analysis (SSA). The obtained results indicate that the proposed method is capable of achieving an excellent tadeoff between random noise suppression and seismic signal preservation. High-order synchrosqueezing transform robust principal component analysis low rank matrix noise suppression Electrical engineering. Electronics. Nuclear engineering Wei Liu verfasserin aut Zhihua Zhang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 183546-183556 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:183546-183556 https://doi.org/10.1109/ACCESS.2020.3028145 kostenfrei https://doaj.org/article/ffefff49e17c4020885d612d15b1f487 kostenfrei https://ieeexplore.ieee.org/document/9210485/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 183546-183556 |
allfieldsSound |
10.1109/ACCESS.2020.3028145 doi (DE-627)DOAJ006471900 (DE-599)DOAJffefff49e17c4020885d612d15b1f487 DE-627 ger DE-627 rakwb eng TK1-9971 Pingping Bing verfasserin aut A Robust Random Noise Suppression Method for Seismic Data Using Sparse Low-Rank Estimation in the Time-Frequency Domain 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The noise separation from seismic data is of significant importance in geophysics. In most cases, the random noise always overlaps the seismic reflections over time, which makes it challenging to suppress. To enhance seismic signal, we propose a robust noise suppression method based on high-order synchrosqueezing transform (FSSTH) and robust principal component analysis (RPCA). Firstly, the noisy seismic data is transformed into a sparse time-frequency matrix (TFM) using the FSSTH. Then, the RPCA algorithm is employed to decompose the sparse TFM into a low-rank matrix and a sparse matrix that can be used to depict the useful signal and noise, respectively. Finally, the denoised signal can be obtained by back-transforming the low-rank matrix to the time domain via the inverse FSSTH. We utilize a synthetic data and two field datasets to demonstrate the robustness and superiority of our method, and compare with the conventional denoising algorithms such as f-x denconvolution and f-x$ singular spectrum analysis (SSA). The obtained results indicate that the proposed method is capable of achieving an excellent tadeoff between random noise suppression and seismic signal preservation. High-order synchrosqueezing transform robust principal component analysis low rank matrix noise suppression Electrical engineering. Electronics. Nuclear engineering Wei Liu verfasserin aut Zhihua Zhang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 183546-183556 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:183546-183556 https://doi.org/10.1109/ACCESS.2020.3028145 kostenfrei https://doaj.org/article/ffefff49e17c4020885d612d15b1f487 kostenfrei https://ieeexplore.ieee.org/document/9210485/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 183546-183556 |
language |
English |
source |
In IEEE Access 8(2020), Seite 183546-183556 volume:8 year:2020 pages:183546-183556 |
sourceStr |
In IEEE Access 8(2020), Seite 183546-183556 volume:8 year:2020 pages:183546-183556 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
High-order synchrosqueezing transform robust principal component analysis low rank matrix noise suppression Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Pingping Bing @@aut@@ Wei Liu @@aut@@ Zhihua Zhang @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ006471900 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ006471900</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309203828.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.3028145</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ006471900</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJffefff49e17c4020885d612d15b1f487</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Pingping Bing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Robust Random Noise Suppression Method for Seismic Data Using Sparse Low-Rank Estimation in the Time-Frequency Domain</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The noise separation from seismic data is of significant importance in geophysics. In most cases, the random noise always overlaps the seismic reflections over time, which makes it challenging to suppress. To enhance seismic signal, we propose a robust noise suppression method based on high-order synchrosqueezing transform (FSSTH) and robust principal component analysis (RPCA). Firstly, the noisy seismic data is transformed into a sparse time-frequency matrix (TFM) using the FSSTH. Then, the RPCA algorithm is employed to decompose the sparse TFM into a low-rank matrix and a sparse matrix that can be used to depict the useful signal and noise, respectively. Finally, the denoised signal can be obtained by back-transforming the low-rank matrix to the time domain via the inverse FSSTH. We utilize a synthetic data and two field datasets to demonstrate the robustness and superiority of our method, and compare with the conventional denoising algorithms such as f-x denconvolution and f-x$ singular spectrum analysis (SSA). The obtained results indicate that the proposed method is capable of achieving an excellent tadeoff between random noise suppression and seismic signal preservation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-order synchrosqueezing transform</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">robust principal component analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low rank matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">noise suppression</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhihua Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 183546-183556</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:183546-183556</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.3028145</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ffefff49e17c4020885d612d15b1f487</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9210485/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">183546-183556</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Pingping Bing |
spellingShingle |
Pingping Bing misc TK1-9971 misc High-order synchrosqueezing transform misc robust principal component analysis misc low rank matrix misc noise suppression misc Electrical engineering. Electronics. Nuclear engineering A Robust Random Noise Suppression Method for Seismic Data Using Sparse Low-Rank Estimation in the Time-Frequency Domain |
authorStr |
Pingping Bing |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 A Robust Random Noise Suppression Method for Seismic Data Using Sparse Low-Rank Estimation in the Time-Frequency Domain High-order synchrosqueezing transform robust principal component analysis low rank matrix noise suppression |
topic |
misc TK1-9971 misc High-order synchrosqueezing transform misc robust principal component analysis misc low rank matrix misc noise suppression misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc High-order synchrosqueezing transform misc robust principal component analysis misc low rank matrix misc noise suppression misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc High-order synchrosqueezing transform misc robust principal component analysis misc low rank matrix misc noise suppression misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
A Robust Random Noise Suppression Method for Seismic Data Using Sparse Low-Rank Estimation in the Time-Frequency Domain |
ctrlnum |
(DE-627)DOAJ006471900 (DE-599)DOAJffefff49e17c4020885d612d15b1f487 |
title_full |
A Robust Random Noise Suppression Method for Seismic Data Using Sparse Low-Rank Estimation in the Time-Frequency Domain |
author_sort |
Pingping Bing |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
183546 |
author_browse |
Pingping Bing Wei Liu Zhihua Zhang |
container_volume |
8 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Pingping Bing |
doi_str_mv |
10.1109/ACCESS.2020.3028145 |
author2-role |
verfasserin |
title_sort |
robust random noise suppression method for seismic data using sparse low-rank estimation in the time-frequency domain |
callnumber |
TK1-9971 |
title_auth |
A Robust Random Noise Suppression Method for Seismic Data Using Sparse Low-Rank Estimation in the Time-Frequency Domain |
abstract |
The noise separation from seismic data is of significant importance in geophysics. In most cases, the random noise always overlaps the seismic reflections over time, which makes it challenging to suppress. To enhance seismic signal, we propose a robust noise suppression method based on high-order synchrosqueezing transform (FSSTH) and robust principal component analysis (RPCA). Firstly, the noisy seismic data is transformed into a sparse time-frequency matrix (TFM) using the FSSTH. Then, the RPCA algorithm is employed to decompose the sparse TFM into a low-rank matrix and a sparse matrix that can be used to depict the useful signal and noise, respectively. Finally, the denoised signal can be obtained by back-transforming the low-rank matrix to the time domain via the inverse FSSTH. We utilize a synthetic data and two field datasets to demonstrate the robustness and superiority of our method, and compare with the conventional denoising algorithms such as f-x denconvolution and f-x$ singular spectrum analysis (SSA). The obtained results indicate that the proposed method is capable of achieving an excellent tadeoff between random noise suppression and seismic signal preservation. |
abstractGer |
The noise separation from seismic data is of significant importance in geophysics. In most cases, the random noise always overlaps the seismic reflections over time, which makes it challenging to suppress. To enhance seismic signal, we propose a robust noise suppression method based on high-order synchrosqueezing transform (FSSTH) and robust principal component analysis (RPCA). Firstly, the noisy seismic data is transformed into a sparse time-frequency matrix (TFM) using the FSSTH. Then, the RPCA algorithm is employed to decompose the sparse TFM into a low-rank matrix and a sparse matrix that can be used to depict the useful signal and noise, respectively. Finally, the denoised signal can be obtained by back-transforming the low-rank matrix to the time domain via the inverse FSSTH. We utilize a synthetic data and two field datasets to demonstrate the robustness and superiority of our method, and compare with the conventional denoising algorithms such as f-x denconvolution and f-x$ singular spectrum analysis (SSA). The obtained results indicate that the proposed method is capable of achieving an excellent tadeoff between random noise suppression and seismic signal preservation. |
abstract_unstemmed |
The noise separation from seismic data is of significant importance in geophysics. In most cases, the random noise always overlaps the seismic reflections over time, which makes it challenging to suppress. To enhance seismic signal, we propose a robust noise suppression method based on high-order synchrosqueezing transform (FSSTH) and robust principal component analysis (RPCA). Firstly, the noisy seismic data is transformed into a sparse time-frequency matrix (TFM) using the FSSTH. Then, the RPCA algorithm is employed to decompose the sparse TFM into a low-rank matrix and a sparse matrix that can be used to depict the useful signal and noise, respectively. Finally, the denoised signal can be obtained by back-transforming the low-rank matrix to the time domain via the inverse FSSTH. We utilize a synthetic data and two field datasets to demonstrate the robustness and superiority of our method, and compare with the conventional denoising algorithms such as f-x denconvolution and f-x$ singular spectrum analysis (SSA). The obtained results indicate that the proposed method is capable of achieving an excellent tadeoff between random noise suppression and seismic signal preservation. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
A Robust Random Noise Suppression Method for Seismic Data Using Sparse Low-Rank Estimation in the Time-Frequency Domain |
url |
https://doi.org/10.1109/ACCESS.2020.3028145 https://doaj.org/article/ffefff49e17c4020885d612d15b1f487 https://ieeexplore.ieee.org/document/9210485/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Wei Liu Zhihua Zhang |
author2Str |
Wei Liu Zhihua Zhang |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2020.3028145 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T21:07:50.011Z |
_version_ |
1803593575313702912 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ006471900</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309203828.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.3028145</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ006471900</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJffefff49e17c4020885d612d15b1f487</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Pingping Bing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Robust Random Noise Suppression Method for Seismic Data Using Sparse Low-Rank Estimation in the Time-Frequency Domain</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The noise separation from seismic data is of significant importance in geophysics. In most cases, the random noise always overlaps the seismic reflections over time, which makes it challenging to suppress. To enhance seismic signal, we propose a robust noise suppression method based on high-order synchrosqueezing transform (FSSTH) and robust principal component analysis (RPCA). Firstly, the noisy seismic data is transformed into a sparse time-frequency matrix (TFM) using the FSSTH. Then, the RPCA algorithm is employed to decompose the sparse TFM into a low-rank matrix and a sparse matrix that can be used to depict the useful signal and noise, respectively. Finally, the denoised signal can be obtained by back-transforming the low-rank matrix to the time domain via the inverse FSSTH. We utilize a synthetic data and two field datasets to demonstrate the robustness and superiority of our method, and compare with the conventional denoising algorithms such as f-x denconvolution and f-x$ singular spectrum analysis (SSA). The obtained results indicate that the proposed method is capable of achieving an excellent tadeoff between random noise suppression and seismic signal preservation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-order synchrosqueezing transform</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">robust principal component analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low rank matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">noise suppression</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhihua Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 183546-183556</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:183546-183556</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.3028145</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ffefff49e17c4020885d612d15b1f487</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9210485/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">183546-183556</subfield></datafield></record></collection>
|
score |
7.401639 |