Magneto-Rotational Augmentation of Bioconvective Transport in Plasma-Nanofluid Flowing through a Penetrable Spinning Disc
The phenomenon of bioconvective transport through the manipulation of motile microorganisms is considered a promising process control technique in several biological processes and microdevices. Inducing convective transport in self-propelling microbes could be tailored to improve mixing, reaction pr...
Ausführliche Beschreibung
Autor*in: |
Ebenezer Olubunmi Ige [verfasserIn] Isaac Folorunso Odesola [verfasserIn] Sikiru Babatunde Ayedun [verfasserIn] Olusegun M. Ilori [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Übergeordnetes Werk: |
In: Journal of Engineering - Hindawi Limited, 2013, (2022) |
---|---|
Übergeordnetes Werk: |
year:2022 |
Links: |
---|
DOI / URN: |
10.1155/2022/3499192 |
---|
Katalog-ID: |
DOAJ006684025 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ006684025 | ||
003 | DE-627 | ||
005 | 20230307023729.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1155/2022/3499192 |2 doi | |
035 | |a (DE-627)DOAJ006684025 | ||
035 | |a (DE-599)DOAJ532224b50ec24b6c88ceda6c5984995d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
100 | 0 | |a Ebenezer Olubunmi Ige |e verfasserin |4 aut | |
245 | 1 | 0 | |a Magneto-Rotational Augmentation of Bioconvective Transport in Plasma-Nanofluid Flowing through a Penetrable Spinning Disc |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The phenomenon of bioconvective transport through the manipulation of motile microorganisms is considered a promising process control technique in several biological processes and microdevices. Inducing convective transport in self-propelling microbes could be tailored to improve mixing, reaction propensity, and concentration transport within the media. This paper examined the combined effect of magnetic and rotational fields on the argumentation of bioconvective transport in the nanofluid-mediated plasma flow. A detailed analysis of the transport and dynamics of reactive forces during bioconvection in a rotary disc-like microchannel is presented. The physics of the problem was described by coupled nonlinear ordinary differential equations, which were numerically computed using the spectral relaxation scheme of the spectral homotopy analysis method. It was observed that the imposition of a magnetic field constituted viscous drag in the plasma-nanofluid media, which consequently increases the thermophoretic parameter in the bioconvective flow. It was ascertained that coupled magnetic and rotational effects significantly augmented the motility of microorganisms and translated to growth in momentum and concentration fields which is noticeable in the generation of stretching effect on the bacterium-containing plasma-nanofluid flow. The findings of this study could provide an essential basis for the design of bioreactors, centrifugal microfluidics technologies, and microdevices for use in a broad spectrum of biotechnology. | ||
653 | 0 | |a Engineering (General). Civil engineering (General) | |
700 | 0 | |a Isaac Folorunso Odesola |e verfasserin |4 aut | |
700 | 0 | |a Sikiru Babatunde Ayedun |e verfasserin |4 aut | |
700 | 0 | |a Olusegun M. Ilori |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Engineering |d Hindawi Limited, 2013 |g (2022) |w (DE-627)770026338 |w (DE-600)2736230-9 |x 23144912 |7 nnns |
773 | 1 | 8 | |g year:2022 |
856 | 4 | 0 | |u https://doi.org/10.1155/2022/3499192 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/532224b50ec24b6c88ceda6c5984995d |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1155/2022/3499192 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2314-4912 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2022 |
author_variant |
e o i eoi i f o ifo s b a sba o m i omi |
---|---|
matchkey_str |
article:23144912:2022----::antrttoaagettooboovciernpripamnnfudlwnt |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TA |
publishDate |
2022 |
allfields |
10.1155/2022/3499192 doi (DE-627)DOAJ006684025 (DE-599)DOAJ532224b50ec24b6c88ceda6c5984995d DE-627 ger DE-627 rakwb eng TA1-2040 Ebenezer Olubunmi Ige verfasserin aut Magneto-Rotational Augmentation of Bioconvective Transport in Plasma-Nanofluid Flowing through a Penetrable Spinning Disc 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The phenomenon of bioconvective transport through the manipulation of motile microorganisms is considered a promising process control technique in several biological processes and microdevices. Inducing convective transport in self-propelling microbes could be tailored to improve mixing, reaction propensity, and concentration transport within the media. This paper examined the combined effect of magnetic and rotational fields on the argumentation of bioconvective transport in the nanofluid-mediated plasma flow. A detailed analysis of the transport and dynamics of reactive forces during bioconvection in a rotary disc-like microchannel is presented. The physics of the problem was described by coupled nonlinear ordinary differential equations, which were numerically computed using the spectral relaxation scheme of the spectral homotopy analysis method. It was observed that the imposition of a magnetic field constituted viscous drag in the plasma-nanofluid media, which consequently increases the thermophoretic parameter in the bioconvective flow. It was ascertained that coupled magnetic and rotational effects significantly augmented the motility of microorganisms and translated to growth in momentum and concentration fields which is noticeable in the generation of stretching effect on the bacterium-containing plasma-nanofluid flow. The findings of this study could provide an essential basis for the design of bioreactors, centrifugal microfluidics technologies, and microdevices for use in a broad spectrum of biotechnology. Engineering (General). Civil engineering (General) Isaac Folorunso Odesola verfasserin aut Sikiru Babatunde Ayedun verfasserin aut Olusegun M. Ilori verfasserin aut In Journal of Engineering Hindawi Limited, 2013 (2022) (DE-627)770026338 (DE-600)2736230-9 23144912 nnns year:2022 https://doi.org/10.1155/2022/3499192 kostenfrei https://doaj.org/article/532224b50ec24b6c88ceda6c5984995d kostenfrei http://dx.doi.org/10.1155/2022/3499192 kostenfrei https://doaj.org/toc/2314-4912 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 |
spelling |
10.1155/2022/3499192 doi (DE-627)DOAJ006684025 (DE-599)DOAJ532224b50ec24b6c88ceda6c5984995d DE-627 ger DE-627 rakwb eng TA1-2040 Ebenezer Olubunmi Ige verfasserin aut Magneto-Rotational Augmentation of Bioconvective Transport in Plasma-Nanofluid Flowing through a Penetrable Spinning Disc 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The phenomenon of bioconvective transport through the manipulation of motile microorganisms is considered a promising process control technique in several biological processes and microdevices. Inducing convective transport in self-propelling microbes could be tailored to improve mixing, reaction propensity, and concentration transport within the media. This paper examined the combined effect of magnetic and rotational fields on the argumentation of bioconvective transport in the nanofluid-mediated plasma flow. A detailed analysis of the transport and dynamics of reactive forces during bioconvection in a rotary disc-like microchannel is presented. The physics of the problem was described by coupled nonlinear ordinary differential equations, which were numerically computed using the spectral relaxation scheme of the spectral homotopy analysis method. It was observed that the imposition of a magnetic field constituted viscous drag in the plasma-nanofluid media, which consequently increases the thermophoretic parameter in the bioconvective flow. It was ascertained that coupled magnetic and rotational effects significantly augmented the motility of microorganisms and translated to growth in momentum and concentration fields which is noticeable in the generation of stretching effect on the bacterium-containing plasma-nanofluid flow. The findings of this study could provide an essential basis for the design of bioreactors, centrifugal microfluidics technologies, and microdevices for use in a broad spectrum of biotechnology. Engineering (General). Civil engineering (General) Isaac Folorunso Odesola verfasserin aut Sikiru Babatunde Ayedun verfasserin aut Olusegun M. Ilori verfasserin aut In Journal of Engineering Hindawi Limited, 2013 (2022) (DE-627)770026338 (DE-600)2736230-9 23144912 nnns year:2022 https://doi.org/10.1155/2022/3499192 kostenfrei https://doaj.org/article/532224b50ec24b6c88ceda6c5984995d kostenfrei http://dx.doi.org/10.1155/2022/3499192 kostenfrei https://doaj.org/toc/2314-4912 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 |
allfields_unstemmed |
10.1155/2022/3499192 doi (DE-627)DOAJ006684025 (DE-599)DOAJ532224b50ec24b6c88ceda6c5984995d DE-627 ger DE-627 rakwb eng TA1-2040 Ebenezer Olubunmi Ige verfasserin aut Magneto-Rotational Augmentation of Bioconvective Transport in Plasma-Nanofluid Flowing through a Penetrable Spinning Disc 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The phenomenon of bioconvective transport through the manipulation of motile microorganisms is considered a promising process control technique in several biological processes and microdevices. Inducing convective transport in self-propelling microbes could be tailored to improve mixing, reaction propensity, and concentration transport within the media. This paper examined the combined effect of magnetic and rotational fields on the argumentation of bioconvective transport in the nanofluid-mediated plasma flow. A detailed analysis of the transport and dynamics of reactive forces during bioconvection in a rotary disc-like microchannel is presented. The physics of the problem was described by coupled nonlinear ordinary differential equations, which were numerically computed using the spectral relaxation scheme of the spectral homotopy analysis method. It was observed that the imposition of a magnetic field constituted viscous drag in the plasma-nanofluid media, which consequently increases the thermophoretic parameter in the bioconvective flow. It was ascertained that coupled magnetic and rotational effects significantly augmented the motility of microorganisms and translated to growth in momentum and concentration fields which is noticeable in the generation of stretching effect on the bacterium-containing plasma-nanofluid flow. The findings of this study could provide an essential basis for the design of bioreactors, centrifugal microfluidics technologies, and microdevices for use in a broad spectrum of biotechnology. Engineering (General). Civil engineering (General) Isaac Folorunso Odesola verfasserin aut Sikiru Babatunde Ayedun verfasserin aut Olusegun M. Ilori verfasserin aut In Journal of Engineering Hindawi Limited, 2013 (2022) (DE-627)770026338 (DE-600)2736230-9 23144912 nnns year:2022 https://doi.org/10.1155/2022/3499192 kostenfrei https://doaj.org/article/532224b50ec24b6c88ceda6c5984995d kostenfrei http://dx.doi.org/10.1155/2022/3499192 kostenfrei https://doaj.org/toc/2314-4912 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 |
allfieldsGer |
10.1155/2022/3499192 doi (DE-627)DOAJ006684025 (DE-599)DOAJ532224b50ec24b6c88ceda6c5984995d DE-627 ger DE-627 rakwb eng TA1-2040 Ebenezer Olubunmi Ige verfasserin aut Magneto-Rotational Augmentation of Bioconvective Transport in Plasma-Nanofluid Flowing through a Penetrable Spinning Disc 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The phenomenon of bioconvective transport through the manipulation of motile microorganisms is considered a promising process control technique in several biological processes and microdevices. Inducing convective transport in self-propelling microbes could be tailored to improve mixing, reaction propensity, and concentration transport within the media. This paper examined the combined effect of magnetic and rotational fields on the argumentation of bioconvective transport in the nanofluid-mediated plasma flow. A detailed analysis of the transport and dynamics of reactive forces during bioconvection in a rotary disc-like microchannel is presented. The physics of the problem was described by coupled nonlinear ordinary differential equations, which were numerically computed using the spectral relaxation scheme of the spectral homotopy analysis method. It was observed that the imposition of a magnetic field constituted viscous drag in the plasma-nanofluid media, which consequently increases the thermophoretic parameter in the bioconvective flow. It was ascertained that coupled magnetic and rotational effects significantly augmented the motility of microorganisms and translated to growth in momentum and concentration fields which is noticeable in the generation of stretching effect on the bacterium-containing plasma-nanofluid flow. The findings of this study could provide an essential basis for the design of bioreactors, centrifugal microfluidics technologies, and microdevices for use in a broad spectrum of biotechnology. Engineering (General). Civil engineering (General) Isaac Folorunso Odesola verfasserin aut Sikiru Babatunde Ayedun verfasserin aut Olusegun M. Ilori verfasserin aut In Journal of Engineering Hindawi Limited, 2013 (2022) (DE-627)770026338 (DE-600)2736230-9 23144912 nnns year:2022 https://doi.org/10.1155/2022/3499192 kostenfrei https://doaj.org/article/532224b50ec24b6c88ceda6c5984995d kostenfrei http://dx.doi.org/10.1155/2022/3499192 kostenfrei https://doaj.org/toc/2314-4912 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 |
allfieldsSound |
10.1155/2022/3499192 doi (DE-627)DOAJ006684025 (DE-599)DOAJ532224b50ec24b6c88ceda6c5984995d DE-627 ger DE-627 rakwb eng TA1-2040 Ebenezer Olubunmi Ige verfasserin aut Magneto-Rotational Augmentation of Bioconvective Transport in Plasma-Nanofluid Flowing through a Penetrable Spinning Disc 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The phenomenon of bioconvective transport through the manipulation of motile microorganisms is considered a promising process control technique in several biological processes and microdevices. Inducing convective transport in self-propelling microbes could be tailored to improve mixing, reaction propensity, and concentration transport within the media. This paper examined the combined effect of magnetic and rotational fields on the argumentation of bioconvective transport in the nanofluid-mediated plasma flow. A detailed analysis of the transport and dynamics of reactive forces during bioconvection in a rotary disc-like microchannel is presented. The physics of the problem was described by coupled nonlinear ordinary differential equations, which were numerically computed using the spectral relaxation scheme of the spectral homotopy analysis method. It was observed that the imposition of a magnetic field constituted viscous drag in the plasma-nanofluid media, which consequently increases the thermophoretic parameter in the bioconvective flow. It was ascertained that coupled magnetic and rotational effects significantly augmented the motility of microorganisms and translated to growth in momentum and concentration fields which is noticeable in the generation of stretching effect on the bacterium-containing plasma-nanofluid flow. The findings of this study could provide an essential basis for the design of bioreactors, centrifugal microfluidics technologies, and microdevices for use in a broad spectrum of biotechnology. Engineering (General). Civil engineering (General) Isaac Folorunso Odesola verfasserin aut Sikiru Babatunde Ayedun verfasserin aut Olusegun M. Ilori verfasserin aut In Journal of Engineering Hindawi Limited, 2013 (2022) (DE-627)770026338 (DE-600)2736230-9 23144912 nnns year:2022 https://doi.org/10.1155/2022/3499192 kostenfrei https://doaj.org/article/532224b50ec24b6c88ceda6c5984995d kostenfrei http://dx.doi.org/10.1155/2022/3499192 kostenfrei https://doaj.org/toc/2314-4912 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 |
language |
English |
source |
In Journal of Engineering (2022) year:2022 |
sourceStr |
In Journal of Engineering (2022) year:2022 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Engineering (General). Civil engineering (General) |
isfreeaccess_bool |
true |
container_title |
Journal of Engineering |
authorswithroles_txt_mv |
Ebenezer Olubunmi Ige @@aut@@ Isaac Folorunso Odesola @@aut@@ Sikiru Babatunde Ayedun @@aut@@ Olusegun M. Ilori @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
770026338 |
id |
DOAJ006684025 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ006684025</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307023729.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2022/3499192</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ006684025</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ532224b50ec24b6c88ceda6c5984995d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ebenezer Olubunmi Ige</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Magneto-Rotational Augmentation of Bioconvective Transport in Plasma-Nanofluid Flowing through a Penetrable Spinning Disc</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The phenomenon of bioconvective transport through the manipulation of motile microorganisms is considered a promising process control technique in several biological processes and microdevices. Inducing convective transport in self-propelling microbes could be tailored to improve mixing, reaction propensity, and concentration transport within the media. This paper examined the combined effect of magnetic and rotational fields on the argumentation of bioconvective transport in the nanofluid-mediated plasma flow. A detailed analysis of the transport and dynamics of reactive forces during bioconvection in a rotary disc-like microchannel is presented. The physics of the problem was described by coupled nonlinear ordinary differential equations, which were numerically computed using the spectral relaxation scheme of the spectral homotopy analysis method. It was observed that the imposition of a magnetic field constituted viscous drag in the plasma-nanofluid media, which consequently increases the thermophoretic parameter in the bioconvective flow. It was ascertained that coupled magnetic and rotational effects significantly augmented the motility of microorganisms and translated to growth in momentum and concentration fields which is noticeable in the generation of stretching effect on the bacterium-containing plasma-nanofluid flow. The findings of this study could provide an essential basis for the design of bioreactors, centrifugal microfluidics technologies, and microdevices for use in a broad spectrum of biotechnology.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Isaac Folorunso Odesola</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sikiru Babatunde Ayedun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Olusegun M. Ilori</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Engineering</subfield><subfield code="d">Hindawi Limited, 2013</subfield><subfield code="g">(2022)</subfield><subfield code="w">(DE-627)770026338</subfield><subfield code="w">(DE-600)2736230-9</subfield><subfield code="x">23144912</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2022/3499192</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/532224b50ec24b6c88ceda6c5984995d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2022/3499192</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2314-4912</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2022</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Ebenezer Olubunmi Ige |
spellingShingle |
Ebenezer Olubunmi Ige misc TA1-2040 misc Engineering (General). Civil engineering (General) Magneto-Rotational Augmentation of Bioconvective Transport in Plasma-Nanofluid Flowing through a Penetrable Spinning Disc |
authorStr |
Ebenezer Olubunmi Ige |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)770026338 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
23144912 |
topic_title |
TA1-2040 Magneto-Rotational Augmentation of Bioconvective Transport in Plasma-Nanofluid Flowing through a Penetrable Spinning Disc |
topic |
misc TA1-2040 misc Engineering (General). Civil engineering (General) |
topic_unstemmed |
misc TA1-2040 misc Engineering (General). Civil engineering (General) |
topic_browse |
misc TA1-2040 misc Engineering (General). Civil engineering (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Engineering |
hierarchy_parent_id |
770026338 |
hierarchy_top_title |
Journal of Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)770026338 (DE-600)2736230-9 |
title |
Magneto-Rotational Augmentation of Bioconvective Transport in Plasma-Nanofluid Flowing through a Penetrable Spinning Disc |
ctrlnum |
(DE-627)DOAJ006684025 (DE-599)DOAJ532224b50ec24b6c88ceda6c5984995d |
title_full |
Magneto-Rotational Augmentation of Bioconvective Transport in Plasma-Nanofluid Flowing through a Penetrable Spinning Disc |
author_sort |
Ebenezer Olubunmi Ige |
journal |
Journal of Engineering |
journalStr |
Journal of Engineering |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Ebenezer Olubunmi Ige Isaac Folorunso Odesola Sikiru Babatunde Ayedun Olusegun M. Ilori |
class |
TA1-2040 |
format_se |
Elektronische Aufsätze |
author-letter |
Ebenezer Olubunmi Ige |
doi_str_mv |
10.1155/2022/3499192 |
author2-role |
verfasserin |
title_sort |
magneto-rotational augmentation of bioconvective transport in plasma-nanofluid flowing through a penetrable spinning disc |
callnumber |
TA1-2040 |
title_auth |
Magneto-Rotational Augmentation of Bioconvective Transport in Plasma-Nanofluid Flowing through a Penetrable Spinning Disc |
abstract |
The phenomenon of bioconvective transport through the manipulation of motile microorganisms is considered a promising process control technique in several biological processes and microdevices. Inducing convective transport in self-propelling microbes could be tailored to improve mixing, reaction propensity, and concentration transport within the media. This paper examined the combined effect of magnetic and rotational fields on the argumentation of bioconvective transport in the nanofluid-mediated plasma flow. A detailed analysis of the transport and dynamics of reactive forces during bioconvection in a rotary disc-like microchannel is presented. The physics of the problem was described by coupled nonlinear ordinary differential equations, which were numerically computed using the spectral relaxation scheme of the spectral homotopy analysis method. It was observed that the imposition of a magnetic field constituted viscous drag in the plasma-nanofluid media, which consequently increases the thermophoretic parameter in the bioconvective flow. It was ascertained that coupled magnetic and rotational effects significantly augmented the motility of microorganisms and translated to growth in momentum and concentration fields which is noticeable in the generation of stretching effect on the bacterium-containing plasma-nanofluid flow. The findings of this study could provide an essential basis for the design of bioreactors, centrifugal microfluidics technologies, and microdevices for use in a broad spectrum of biotechnology. |
abstractGer |
The phenomenon of bioconvective transport through the manipulation of motile microorganisms is considered a promising process control technique in several biological processes and microdevices. Inducing convective transport in self-propelling microbes could be tailored to improve mixing, reaction propensity, and concentration transport within the media. This paper examined the combined effect of magnetic and rotational fields on the argumentation of bioconvective transport in the nanofluid-mediated plasma flow. A detailed analysis of the transport and dynamics of reactive forces during bioconvection in a rotary disc-like microchannel is presented. The physics of the problem was described by coupled nonlinear ordinary differential equations, which were numerically computed using the spectral relaxation scheme of the spectral homotopy analysis method. It was observed that the imposition of a magnetic field constituted viscous drag in the plasma-nanofluid media, which consequently increases the thermophoretic parameter in the bioconvective flow. It was ascertained that coupled magnetic and rotational effects significantly augmented the motility of microorganisms and translated to growth in momentum and concentration fields which is noticeable in the generation of stretching effect on the bacterium-containing plasma-nanofluid flow. The findings of this study could provide an essential basis for the design of bioreactors, centrifugal microfluidics technologies, and microdevices for use in a broad spectrum of biotechnology. |
abstract_unstemmed |
The phenomenon of bioconvective transport through the manipulation of motile microorganisms is considered a promising process control technique in several biological processes and microdevices. Inducing convective transport in self-propelling microbes could be tailored to improve mixing, reaction propensity, and concentration transport within the media. This paper examined the combined effect of magnetic and rotational fields on the argumentation of bioconvective transport in the nanofluid-mediated plasma flow. A detailed analysis of the transport and dynamics of reactive forces during bioconvection in a rotary disc-like microchannel is presented. The physics of the problem was described by coupled nonlinear ordinary differential equations, which were numerically computed using the spectral relaxation scheme of the spectral homotopy analysis method. It was observed that the imposition of a magnetic field constituted viscous drag in the plasma-nanofluid media, which consequently increases the thermophoretic parameter in the bioconvective flow. It was ascertained that coupled magnetic and rotational effects significantly augmented the motility of microorganisms and translated to growth in momentum and concentration fields which is noticeable in the generation of stretching effect on the bacterium-containing plasma-nanofluid flow. The findings of this study could provide an essential basis for the design of bioreactors, centrifugal microfluidics technologies, and microdevices for use in a broad spectrum of biotechnology. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Magneto-Rotational Augmentation of Bioconvective Transport in Plasma-Nanofluid Flowing through a Penetrable Spinning Disc |
url |
https://doi.org/10.1155/2022/3499192 https://doaj.org/article/532224b50ec24b6c88ceda6c5984995d http://dx.doi.org/10.1155/2022/3499192 https://doaj.org/toc/2314-4912 |
remote_bool |
true |
author2 |
Isaac Folorunso Odesola Sikiru Babatunde Ayedun Olusegun M. Ilori |
author2Str |
Isaac Folorunso Odesola Sikiru Babatunde Ayedun Olusegun M. Ilori |
ppnlink |
770026338 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1155/2022/3499192 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T22:21:43.205Z |
_version_ |
1803598223860826112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ006684025</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307023729.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2022/3499192</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ006684025</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ532224b50ec24b6c88ceda6c5984995d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ebenezer Olubunmi Ige</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Magneto-Rotational Augmentation of Bioconvective Transport in Plasma-Nanofluid Flowing through a Penetrable Spinning Disc</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The phenomenon of bioconvective transport through the manipulation of motile microorganisms is considered a promising process control technique in several biological processes and microdevices. Inducing convective transport in self-propelling microbes could be tailored to improve mixing, reaction propensity, and concentration transport within the media. This paper examined the combined effect of magnetic and rotational fields on the argumentation of bioconvective transport in the nanofluid-mediated plasma flow. A detailed analysis of the transport and dynamics of reactive forces during bioconvection in a rotary disc-like microchannel is presented. The physics of the problem was described by coupled nonlinear ordinary differential equations, which were numerically computed using the spectral relaxation scheme of the spectral homotopy analysis method. It was observed that the imposition of a magnetic field constituted viscous drag in the plasma-nanofluid media, which consequently increases the thermophoretic parameter in the bioconvective flow. It was ascertained that coupled magnetic and rotational effects significantly augmented the motility of microorganisms and translated to growth in momentum and concentration fields which is noticeable in the generation of stretching effect on the bacterium-containing plasma-nanofluid flow. The findings of this study could provide an essential basis for the design of bioreactors, centrifugal microfluidics technologies, and microdevices for use in a broad spectrum of biotechnology.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Isaac Folorunso Odesola</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sikiru Babatunde Ayedun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Olusegun M. Ilori</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Engineering</subfield><subfield code="d">Hindawi Limited, 2013</subfield><subfield code="g">(2022)</subfield><subfield code="w">(DE-627)770026338</subfield><subfield code="w">(DE-600)2736230-9</subfield><subfield code="x">23144912</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2022/3499192</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/532224b50ec24b6c88ceda6c5984995d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2022/3499192</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2314-4912</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2022</subfield></datafield></record></collection>
|
score |
7.4000044 |