Organotypic 3D Models of the Ovarian Cancer Tumor Microenvironment
Ovarian cancer progression involves multifaceted and variable tumor microenvironments (TMEs), from the in situ carcinoma in the fallopian tube or ovary to dissemination into the peritoneal cavity as single cells or spheroids and attachment to the mesothelial-lined surfaces of the omentum, bowel, and...
Ausführliche Beschreibung
Autor*in: |
Karen M. Watters [verfasserIn] Preety Bajwa [verfasserIn] Hilary A. Kenny [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Cancers - MDPI AG, 2010, 10(2018), 8, p 265 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2018 ; number:8, p 265 |
Links: |
---|
DOI / URN: |
10.3390/cancers10080265 |
---|
Katalog-ID: |
DOAJ007009682 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ007009682 | ||
003 | DE-627 | ||
005 | 20230502135632.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/cancers10080265 |2 doi | |
035 | |a (DE-627)DOAJ007009682 | ||
035 | |a (DE-599)DOAJ6eb4a8239a974aa09bf8a3b72f583807 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC254-282 | |
100 | 0 | |a Karen M. Watters |e verfasserin |4 aut | |
245 | 1 | 0 | |a Organotypic 3D Models of the Ovarian Cancer Tumor Microenvironment |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Ovarian cancer progression involves multifaceted and variable tumor microenvironments (TMEs), from the in situ carcinoma in the fallopian tube or ovary to dissemination into the peritoneal cavity as single cells or spheroids and attachment to the mesothelial-lined surfaces of the omentum, bowel, and abdominal wall. The TME comprises the tumor vasculature and lymphatics (including endothelial cells and pericytes), in addition to mesothelial cells, fibroblasts, immune cells, adipocytes and extracellular matrix (ECM) proteins. When generating 3D models of the ovarian cancer TME, researchers must incorporate the most relevant stromal components depending on the TME in question (e.g., early or late disease). Such complexity cannot be captured by monolayer 2D culture systems. Moreover, immortalized stromal cell lines, such as mesothelial or fibroblast cell lines, do not always behave the same as primary cells whose response in functional assays may vary from donor to donor; 3D models with primary stromal cells may have more physiological relevance than those using stromal cell lines. In the current review, we discuss the latest developments in organotypic 3D models of the ovarian cancer early metastatic microenvironment. Organotypic culture models comprise two or more interacting cell types from a particular tissue. We focus on organotypic 3D models that include at least one type of primary stromal cell type in an ECM background, such as collagen or fibronectin, plus ovarian cancer cells. We provide an overview of the two most comprehensive current models—a 3D model of the omental mesothelium and a microfluidic model. We describe the cellular and non-cellular components of the models, the incorporation of mechanical forces, and how the models have been adapted and utilized in functional assays. Finally, we review a number of 3D models that do not incorporate primary stromal cells and summarize how integration of current models may be the next essential step in tackling the complexity of the different ovarian cancer TMEs. | ||
650 | 4 | |a ovarian cancer | |
650 | 4 | |a tumor microenvironment | |
650 | 4 | |a 3D models | |
653 | 0 | |a Neoplasms. Tumors. Oncology. Including cancer and carcinogens | |
700 | 0 | |a Preety Bajwa |e verfasserin |4 aut | |
700 | 0 | |a Hilary A. Kenny |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Cancers |d MDPI AG, 2010 |g 10(2018), 8, p 265 |w (DE-627)614095670 |w (DE-600)2527080-1 |x 20726694 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2018 |g number:8, p 265 |
856 | 4 | 0 | |u https://doi.org/10.3390/cancers10080265 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6eb4a8239a974aa09bf8a3b72f583807 |z kostenfrei |
856 | 4 | 0 | |u http://www.mdpi.com/2072-6694/10/8/265 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-6694 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2018 |e 8, p 265 |
author_variant |
k m w kmw p b pb h a k hak |
---|---|
matchkey_str |
article:20726694:2018----::raoyi3mdlotevracnetmr |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
RC |
publishDate |
2018 |
allfields |
10.3390/cancers10080265 doi (DE-627)DOAJ007009682 (DE-599)DOAJ6eb4a8239a974aa09bf8a3b72f583807 DE-627 ger DE-627 rakwb eng RC254-282 Karen M. Watters verfasserin aut Organotypic 3D Models of the Ovarian Cancer Tumor Microenvironment 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ovarian cancer progression involves multifaceted and variable tumor microenvironments (TMEs), from the in situ carcinoma in the fallopian tube or ovary to dissemination into the peritoneal cavity as single cells or spheroids and attachment to the mesothelial-lined surfaces of the omentum, bowel, and abdominal wall. The TME comprises the tumor vasculature and lymphatics (including endothelial cells and pericytes), in addition to mesothelial cells, fibroblasts, immune cells, adipocytes and extracellular matrix (ECM) proteins. When generating 3D models of the ovarian cancer TME, researchers must incorporate the most relevant stromal components depending on the TME in question (e.g., early or late disease). Such complexity cannot be captured by monolayer 2D culture systems. Moreover, immortalized stromal cell lines, such as mesothelial or fibroblast cell lines, do not always behave the same as primary cells whose response in functional assays may vary from donor to donor; 3D models with primary stromal cells may have more physiological relevance than those using stromal cell lines. In the current review, we discuss the latest developments in organotypic 3D models of the ovarian cancer early metastatic microenvironment. Organotypic culture models comprise two or more interacting cell types from a particular tissue. We focus on organotypic 3D models that include at least one type of primary stromal cell type in an ECM background, such as collagen or fibronectin, plus ovarian cancer cells. We provide an overview of the two most comprehensive current models—a 3D model of the omental mesothelium and a microfluidic model. We describe the cellular and non-cellular components of the models, the incorporation of mechanical forces, and how the models have been adapted and utilized in functional assays. Finally, we review a number of 3D models that do not incorporate primary stromal cells and summarize how integration of current models may be the next essential step in tackling the complexity of the different ovarian cancer TMEs. ovarian cancer tumor microenvironment 3D models Neoplasms. Tumors. Oncology. Including cancer and carcinogens Preety Bajwa verfasserin aut Hilary A. Kenny verfasserin aut In Cancers MDPI AG, 2010 10(2018), 8, p 265 (DE-627)614095670 (DE-600)2527080-1 20726694 nnns volume:10 year:2018 number:8, p 265 https://doi.org/10.3390/cancers10080265 kostenfrei https://doaj.org/article/6eb4a8239a974aa09bf8a3b72f583807 kostenfrei http://www.mdpi.com/2072-6694/10/8/265 kostenfrei https://doaj.org/toc/2072-6694 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2018 8, p 265 |
spelling |
10.3390/cancers10080265 doi (DE-627)DOAJ007009682 (DE-599)DOAJ6eb4a8239a974aa09bf8a3b72f583807 DE-627 ger DE-627 rakwb eng RC254-282 Karen M. Watters verfasserin aut Organotypic 3D Models of the Ovarian Cancer Tumor Microenvironment 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ovarian cancer progression involves multifaceted and variable tumor microenvironments (TMEs), from the in situ carcinoma in the fallopian tube or ovary to dissemination into the peritoneal cavity as single cells or spheroids and attachment to the mesothelial-lined surfaces of the omentum, bowel, and abdominal wall. The TME comprises the tumor vasculature and lymphatics (including endothelial cells and pericytes), in addition to mesothelial cells, fibroblasts, immune cells, adipocytes and extracellular matrix (ECM) proteins. When generating 3D models of the ovarian cancer TME, researchers must incorporate the most relevant stromal components depending on the TME in question (e.g., early or late disease). Such complexity cannot be captured by monolayer 2D culture systems. Moreover, immortalized stromal cell lines, such as mesothelial or fibroblast cell lines, do not always behave the same as primary cells whose response in functional assays may vary from donor to donor; 3D models with primary stromal cells may have more physiological relevance than those using stromal cell lines. In the current review, we discuss the latest developments in organotypic 3D models of the ovarian cancer early metastatic microenvironment. Organotypic culture models comprise two or more interacting cell types from a particular tissue. We focus on organotypic 3D models that include at least one type of primary stromal cell type in an ECM background, such as collagen or fibronectin, plus ovarian cancer cells. We provide an overview of the two most comprehensive current models—a 3D model of the omental mesothelium and a microfluidic model. We describe the cellular and non-cellular components of the models, the incorporation of mechanical forces, and how the models have been adapted and utilized in functional assays. Finally, we review a number of 3D models that do not incorporate primary stromal cells and summarize how integration of current models may be the next essential step in tackling the complexity of the different ovarian cancer TMEs. ovarian cancer tumor microenvironment 3D models Neoplasms. Tumors. Oncology. Including cancer and carcinogens Preety Bajwa verfasserin aut Hilary A. Kenny verfasserin aut In Cancers MDPI AG, 2010 10(2018), 8, p 265 (DE-627)614095670 (DE-600)2527080-1 20726694 nnns volume:10 year:2018 number:8, p 265 https://doi.org/10.3390/cancers10080265 kostenfrei https://doaj.org/article/6eb4a8239a974aa09bf8a3b72f583807 kostenfrei http://www.mdpi.com/2072-6694/10/8/265 kostenfrei https://doaj.org/toc/2072-6694 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2018 8, p 265 |
allfields_unstemmed |
10.3390/cancers10080265 doi (DE-627)DOAJ007009682 (DE-599)DOAJ6eb4a8239a974aa09bf8a3b72f583807 DE-627 ger DE-627 rakwb eng RC254-282 Karen M. Watters verfasserin aut Organotypic 3D Models of the Ovarian Cancer Tumor Microenvironment 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ovarian cancer progression involves multifaceted and variable tumor microenvironments (TMEs), from the in situ carcinoma in the fallopian tube or ovary to dissemination into the peritoneal cavity as single cells or spheroids and attachment to the mesothelial-lined surfaces of the omentum, bowel, and abdominal wall. The TME comprises the tumor vasculature and lymphatics (including endothelial cells and pericytes), in addition to mesothelial cells, fibroblasts, immune cells, adipocytes and extracellular matrix (ECM) proteins. When generating 3D models of the ovarian cancer TME, researchers must incorporate the most relevant stromal components depending on the TME in question (e.g., early or late disease). Such complexity cannot be captured by monolayer 2D culture systems. Moreover, immortalized stromal cell lines, such as mesothelial or fibroblast cell lines, do not always behave the same as primary cells whose response in functional assays may vary from donor to donor; 3D models with primary stromal cells may have more physiological relevance than those using stromal cell lines. In the current review, we discuss the latest developments in organotypic 3D models of the ovarian cancer early metastatic microenvironment. Organotypic culture models comprise two or more interacting cell types from a particular tissue. We focus on organotypic 3D models that include at least one type of primary stromal cell type in an ECM background, such as collagen or fibronectin, plus ovarian cancer cells. We provide an overview of the two most comprehensive current models—a 3D model of the omental mesothelium and a microfluidic model. We describe the cellular and non-cellular components of the models, the incorporation of mechanical forces, and how the models have been adapted and utilized in functional assays. Finally, we review a number of 3D models that do not incorporate primary stromal cells and summarize how integration of current models may be the next essential step in tackling the complexity of the different ovarian cancer TMEs. ovarian cancer tumor microenvironment 3D models Neoplasms. Tumors. Oncology. Including cancer and carcinogens Preety Bajwa verfasserin aut Hilary A. Kenny verfasserin aut In Cancers MDPI AG, 2010 10(2018), 8, p 265 (DE-627)614095670 (DE-600)2527080-1 20726694 nnns volume:10 year:2018 number:8, p 265 https://doi.org/10.3390/cancers10080265 kostenfrei https://doaj.org/article/6eb4a8239a974aa09bf8a3b72f583807 kostenfrei http://www.mdpi.com/2072-6694/10/8/265 kostenfrei https://doaj.org/toc/2072-6694 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2018 8, p 265 |
allfieldsGer |
10.3390/cancers10080265 doi (DE-627)DOAJ007009682 (DE-599)DOAJ6eb4a8239a974aa09bf8a3b72f583807 DE-627 ger DE-627 rakwb eng RC254-282 Karen M. Watters verfasserin aut Organotypic 3D Models of the Ovarian Cancer Tumor Microenvironment 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ovarian cancer progression involves multifaceted and variable tumor microenvironments (TMEs), from the in situ carcinoma in the fallopian tube or ovary to dissemination into the peritoneal cavity as single cells or spheroids and attachment to the mesothelial-lined surfaces of the omentum, bowel, and abdominal wall. The TME comprises the tumor vasculature and lymphatics (including endothelial cells and pericytes), in addition to mesothelial cells, fibroblasts, immune cells, adipocytes and extracellular matrix (ECM) proteins. When generating 3D models of the ovarian cancer TME, researchers must incorporate the most relevant stromal components depending on the TME in question (e.g., early or late disease). Such complexity cannot be captured by monolayer 2D culture systems. Moreover, immortalized stromal cell lines, such as mesothelial or fibroblast cell lines, do not always behave the same as primary cells whose response in functional assays may vary from donor to donor; 3D models with primary stromal cells may have more physiological relevance than those using stromal cell lines. In the current review, we discuss the latest developments in organotypic 3D models of the ovarian cancer early metastatic microenvironment. Organotypic culture models comprise two or more interacting cell types from a particular tissue. We focus on organotypic 3D models that include at least one type of primary stromal cell type in an ECM background, such as collagen or fibronectin, plus ovarian cancer cells. We provide an overview of the two most comprehensive current models—a 3D model of the omental mesothelium and a microfluidic model. We describe the cellular and non-cellular components of the models, the incorporation of mechanical forces, and how the models have been adapted and utilized in functional assays. Finally, we review a number of 3D models that do not incorporate primary stromal cells and summarize how integration of current models may be the next essential step in tackling the complexity of the different ovarian cancer TMEs. ovarian cancer tumor microenvironment 3D models Neoplasms. Tumors. Oncology. Including cancer and carcinogens Preety Bajwa verfasserin aut Hilary A. Kenny verfasserin aut In Cancers MDPI AG, 2010 10(2018), 8, p 265 (DE-627)614095670 (DE-600)2527080-1 20726694 nnns volume:10 year:2018 number:8, p 265 https://doi.org/10.3390/cancers10080265 kostenfrei https://doaj.org/article/6eb4a8239a974aa09bf8a3b72f583807 kostenfrei http://www.mdpi.com/2072-6694/10/8/265 kostenfrei https://doaj.org/toc/2072-6694 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2018 8, p 265 |
allfieldsSound |
10.3390/cancers10080265 doi (DE-627)DOAJ007009682 (DE-599)DOAJ6eb4a8239a974aa09bf8a3b72f583807 DE-627 ger DE-627 rakwb eng RC254-282 Karen M. Watters verfasserin aut Organotypic 3D Models of the Ovarian Cancer Tumor Microenvironment 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ovarian cancer progression involves multifaceted and variable tumor microenvironments (TMEs), from the in situ carcinoma in the fallopian tube or ovary to dissemination into the peritoneal cavity as single cells or spheroids and attachment to the mesothelial-lined surfaces of the omentum, bowel, and abdominal wall. The TME comprises the tumor vasculature and lymphatics (including endothelial cells and pericytes), in addition to mesothelial cells, fibroblasts, immune cells, adipocytes and extracellular matrix (ECM) proteins. When generating 3D models of the ovarian cancer TME, researchers must incorporate the most relevant stromal components depending on the TME in question (e.g., early or late disease). Such complexity cannot be captured by monolayer 2D culture systems. Moreover, immortalized stromal cell lines, such as mesothelial or fibroblast cell lines, do not always behave the same as primary cells whose response in functional assays may vary from donor to donor; 3D models with primary stromal cells may have more physiological relevance than those using stromal cell lines. In the current review, we discuss the latest developments in organotypic 3D models of the ovarian cancer early metastatic microenvironment. Organotypic culture models comprise two or more interacting cell types from a particular tissue. We focus on organotypic 3D models that include at least one type of primary stromal cell type in an ECM background, such as collagen or fibronectin, plus ovarian cancer cells. We provide an overview of the two most comprehensive current models—a 3D model of the omental mesothelium and a microfluidic model. We describe the cellular and non-cellular components of the models, the incorporation of mechanical forces, and how the models have been adapted and utilized in functional assays. Finally, we review a number of 3D models that do not incorporate primary stromal cells and summarize how integration of current models may be the next essential step in tackling the complexity of the different ovarian cancer TMEs. ovarian cancer tumor microenvironment 3D models Neoplasms. Tumors. Oncology. Including cancer and carcinogens Preety Bajwa verfasserin aut Hilary A. Kenny verfasserin aut In Cancers MDPI AG, 2010 10(2018), 8, p 265 (DE-627)614095670 (DE-600)2527080-1 20726694 nnns volume:10 year:2018 number:8, p 265 https://doi.org/10.3390/cancers10080265 kostenfrei https://doaj.org/article/6eb4a8239a974aa09bf8a3b72f583807 kostenfrei http://www.mdpi.com/2072-6694/10/8/265 kostenfrei https://doaj.org/toc/2072-6694 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2018 8, p 265 |
language |
English |
source |
In Cancers 10(2018), 8, p 265 volume:10 year:2018 number:8, p 265 |
sourceStr |
In Cancers 10(2018), 8, p 265 volume:10 year:2018 number:8, p 265 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
ovarian cancer tumor microenvironment 3D models Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
isfreeaccess_bool |
true |
container_title |
Cancers |
authorswithroles_txt_mv |
Karen M. Watters @@aut@@ Preety Bajwa @@aut@@ Hilary A. Kenny @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
614095670 |
id |
DOAJ007009682 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007009682</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502135632.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/cancers10080265</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007009682</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6eb4a8239a974aa09bf8a3b72f583807</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC254-282</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Karen M. Watters</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Organotypic 3D Models of the Ovarian Cancer Tumor Microenvironment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ovarian cancer progression involves multifaceted and variable tumor microenvironments (TMEs), from the in situ carcinoma in the fallopian tube or ovary to dissemination into the peritoneal cavity as single cells or spheroids and attachment to the mesothelial-lined surfaces of the omentum, bowel, and abdominal wall. The TME comprises the tumor vasculature and lymphatics (including endothelial cells and pericytes), in addition to mesothelial cells, fibroblasts, immune cells, adipocytes and extracellular matrix (ECM) proteins. When generating 3D models of the ovarian cancer TME, researchers must incorporate the most relevant stromal components depending on the TME in question (e.g., early or late disease). Such complexity cannot be captured by monolayer 2D culture systems. Moreover, immortalized stromal cell lines, such as mesothelial or fibroblast cell lines, do not always behave the same as primary cells whose response in functional assays may vary from donor to donor; 3D models with primary stromal cells may have more physiological relevance than those using stromal cell lines. In the current review, we discuss the latest developments in organotypic 3D models of the ovarian cancer early metastatic microenvironment. Organotypic culture models comprise two or more interacting cell types from a particular tissue. We focus on organotypic 3D models that include at least one type of primary stromal cell type in an ECM background, such as collagen or fibronectin, plus ovarian cancer cells. We provide an overview of the two most comprehensive current models&mdash;a 3D model of the omental mesothelium and a microfluidic model. We describe the cellular and non-cellular components of the models, the incorporation of mechanical forces, and how the models have been adapted and utilized in functional assays. Finally, we review a number of 3D models that do not incorporate primary stromal cells and summarize how integration of current models may be the next essential step in tackling the complexity of the different ovarian cancer TMEs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ovarian cancer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tumor microenvironment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D models</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Preety Bajwa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hilary A. Kenny</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Cancers</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">10(2018), 8, p 265</subfield><subfield code="w">(DE-627)614095670</subfield><subfield code="w">(DE-600)2527080-1</subfield><subfield code="x">20726694</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:8, p 265</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/cancers10080265</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6eb4a8239a974aa09bf8a3b72f583807</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2072-6694/10/8/265</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-6694</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2018</subfield><subfield code="e">8, p 265</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Karen M. Watters |
spellingShingle |
Karen M. Watters misc RC254-282 misc ovarian cancer misc tumor microenvironment misc 3D models misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens Organotypic 3D Models of the Ovarian Cancer Tumor Microenvironment |
authorStr |
Karen M. Watters |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)614095670 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC254-282 |
illustrated |
Not Illustrated |
issn |
20726694 |
topic_title |
RC254-282 Organotypic 3D Models of the Ovarian Cancer Tumor Microenvironment ovarian cancer tumor microenvironment 3D models |
topic |
misc RC254-282 misc ovarian cancer misc tumor microenvironment misc 3D models misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
topic_unstemmed |
misc RC254-282 misc ovarian cancer misc tumor microenvironment misc 3D models misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
topic_browse |
misc RC254-282 misc ovarian cancer misc tumor microenvironment misc 3D models misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Cancers |
hierarchy_parent_id |
614095670 |
hierarchy_top_title |
Cancers |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)614095670 (DE-600)2527080-1 |
title |
Organotypic 3D Models of the Ovarian Cancer Tumor Microenvironment |
ctrlnum |
(DE-627)DOAJ007009682 (DE-599)DOAJ6eb4a8239a974aa09bf8a3b72f583807 |
title_full |
Organotypic 3D Models of the Ovarian Cancer Tumor Microenvironment |
author_sort |
Karen M. Watters |
journal |
Cancers |
journalStr |
Cancers |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Karen M. Watters Preety Bajwa Hilary A. Kenny |
container_volume |
10 |
class |
RC254-282 |
format_se |
Elektronische Aufsätze |
author-letter |
Karen M. Watters |
doi_str_mv |
10.3390/cancers10080265 |
author2-role |
verfasserin |
title_sort |
organotypic 3d models of the ovarian cancer tumor microenvironment |
callnumber |
RC254-282 |
title_auth |
Organotypic 3D Models of the Ovarian Cancer Tumor Microenvironment |
abstract |
Ovarian cancer progression involves multifaceted and variable tumor microenvironments (TMEs), from the in situ carcinoma in the fallopian tube or ovary to dissemination into the peritoneal cavity as single cells or spheroids and attachment to the mesothelial-lined surfaces of the omentum, bowel, and abdominal wall. The TME comprises the tumor vasculature and lymphatics (including endothelial cells and pericytes), in addition to mesothelial cells, fibroblasts, immune cells, adipocytes and extracellular matrix (ECM) proteins. When generating 3D models of the ovarian cancer TME, researchers must incorporate the most relevant stromal components depending on the TME in question (e.g., early or late disease). Such complexity cannot be captured by monolayer 2D culture systems. Moreover, immortalized stromal cell lines, such as mesothelial or fibroblast cell lines, do not always behave the same as primary cells whose response in functional assays may vary from donor to donor; 3D models with primary stromal cells may have more physiological relevance than those using stromal cell lines. In the current review, we discuss the latest developments in organotypic 3D models of the ovarian cancer early metastatic microenvironment. Organotypic culture models comprise two or more interacting cell types from a particular tissue. We focus on organotypic 3D models that include at least one type of primary stromal cell type in an ECM background, such as collagen or fibronectin, plus ovarian cancer cells. We provide an overview of the two most comprehensive current models—a 3D model of the omental mesothelium and a microfluidic model. We describe the cellular and non-cellular components of the models, the incorporation of mechanical forces, and how the models have been adapted and utilized in functional assays. Finally, we review a number of 3D models that do not incorporate primary stromal cells and summarize how integration of current models may be the next essential step in tackling the complexity of the different ovarian cancer TMEs. |
abstractGer |
Ovarian cancer progression involves multifaceted and variable tumor microenvironments (TMEs), from the in situ carcinoma in the fallopian tube or ovary to dissemination into the peritoneal cavity as single cells or spheroids and attachment to the mesothelial-lined surfaces of the omentum, bowel, and abdominal wall. The TME comprises the tumor vasculature and lymphatics (including endothelial cells and pericytes), in addition to mesothelial cells, fibroblasts, immune cells, adipocytes and extracellular matrix (ECM) proteins. When generating 3D models of the ovarian cancer TME, researchers must incorporate the most relevant stromal components depending on the TME in question (e.g., early or late disease). Such complexity cannot be captured by monolayer 2D culture systems. Moreover, immortalized stromal cell lines, such as mesothelial or fibroblast cell lines, do not always behave the same as primary cells whose response in functional assays may vary from donor to donor; 3D models with primary stromal cells may have more physiological relevance than those using stromal cell lines. In the current review, we discuss the latest developments in organotypic 3D models of the ovarian cancer early metastatic microenvironment. Organotypic culture models comprise two or more interacting cell types from a particular tissue. We focus on organotypic 3D models that include at least one type of primary stromal cell type in an ECM background, such as collagen or fibronectin, plus ovarian cancer cells. We provide an overview of the two most comprehensive current models—a 3D model of the omental mesothelium and a microfluidic model. We describe the cellular and non-cellular components of the models, the incorporation of mechanical forces, and how the models have been adapted and utilized in functional assays. Finally, we review a number of 3D models that do not incorporate primary stromal cells and summarize how integration of current models may be the next essential step in tackling the complexity of the different ovarian cancer TMEs. |
abstract_unstemmed |
Ovarian cancer progression involves multifaceted and variable tumor microenvironments (TMEs), from the in situ carcinoma in the fallopian tube or ovary to dissemination into the peritoneal cavity as single cells or spheroids and attachment to the mesothelial-lined surfaces of the omentum, bowel, and abdominal wall. The TME comprises the tumor vasculature and lymphatics (including endothelial cells and pericytes), in addition to mesothelial cells, fibroblasts, immune cells, adipocytes and extracellular matrix (ECM) proteins. When generating 3D models of the ovarian cancer TME, researchers must incorporate the most relevant stromal components depending on the TME in question (e.g., early or late disease). Such complexity cannot be captured by monolayer 2D culture systems. Moreover, immortalized stromal cell lines, such as mesothelial or fibroblast cell lines, do not always behave the same as primary cells whose response in functional assays may vary from donor to donor; 3D models with primary stromal cells may have more physiological relevance than those using stromal cell lines. In the current review, we discuss the latest developments in organotypic 3D models of the ovarian cancer early metastatic microenvironment. Organotypic culture models comprise two or more interacting cell types from a particular tissue. We focus on organotypic 3D models that include at least one type of primary stromal cell type in an ECM background, such as collagen or fibronectin, plus ovarian cancer cells. We provide an overview of the two most comprehensive current models—a 3D model of the omental mesothelium and a microfluidic model. We describe the cellular and non-cellular components of the models, the incorporation of mechanical forces, and how the models have been adapted and utilized in functional assays. Finally, we review a number of 3D models that do not incorporate primary stromal cells and summarize how integration of current models may be the next essential step in tackling the complexity of the different ovarian cancer TMEs. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8, p 265 |
title_short |
Organotypic 3D Models of the Ovarian Cancer Tumor Microenvironment |
url |
https://doi.org/10.3390/cancers10080265 https://doaj.org/article/6eb4a8239a974aa09bf8a3b72f583807 http://www.mdpi.com/2072-6694/10/8/265 https://doaj.org/toc/2072-6694 |
remote_bool |
true |
author2 |
Preety Bajwa Hilary A. Kenny |
author2Str |
Preety Bajwa Hilary A. Kenny |
ppnlink |
614095670 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/cancers10080265 |
callnumber-a |
RC254-282 |
up_date |
2024-07-03T23:54:50.146Z |
_version_ |
1803604082195169280 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007009682</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502135632.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/cancers10080265</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007009682</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6eb4a8239a974aa09bf8a3b72f583807</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC254-282</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Karen M. Watters</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Organotypic 3D Models of the Ovarian Cancer Tumor Microenvironment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ovarian cancer progression involves multifaceted and variable tumor microenvironments (TMEs), from the in situ carcinoma in the fallopian tube or ovary to dissemination into the peritoneal cavity as single cells or spheroids and attachment to the mesothelial-lined surfaces of the omentum, bowel, and abdominal wall. The TME comprises the tumor vasculature and lymphatics (including endothelial cells and pericytes), in addition to mesothelial cells, fibroblasts, immune cells, adipocytes and extracellular matrix (ECM) proteins. When generating 3D models of the ovarian cancer TME, researchers must incorporate the most relevant stromal components depending on the TME in question (e.g., early or late disease). Such complexity cannot be captured by monolayer 2D culture systems. Moreover, immortalized stromal cell lines, such as mesothelial or fibroblast cell lines, do not always behave the same as primary cells whose response in functional assays may vary from donor to donor; 3D models with primary stromal cells may have more physiological relevance than those using stromal cell lines. In the current review, we discuss the latest developments in organotypic 3D models of the ovarian cancer early metastatic microenvironment. Organotypic culture models comprise two or more interacting cell types from a particular tissue. We focus on organotypic 3D models that include at least one type of primary stromal cell type in an ECM background, such as collagen or fibronectin, plus ovarian cancer cells. We provide an overview of the two most comprehensive current models&mdash;a 3D model of the omental mesothelium and a microfluidic model. We describe the cellular and non-cellular components of the models, the incorporation of mechanical forces, and how the models have been adapted and utilized in functional assays. Finally, we review a number of 3D models that do not incorporate primary stromal cells and summarize how integration of current models may be the next essential step in tackling the complexity of the different ovarian cancer TMEs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ovarian cancer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tumor microenvironment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D models</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Preety Bajwa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hilary A. Kenny</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Cancers</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">10(2018), 8, p 265</subfield><subfield code="w">(DE-627)614095670</subfield><subfield code="w">(DE-600)2527080-1</subfield><subfield code="x">20726694</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:8, p 265</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/cancers10080265</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6eb4a8239a974aa09bf8a3b72f583807</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2072-6694/10/8/265</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-6694</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2018</subfield><subfield code="e">8, p 265</subfield></datafield></record></collection>
|
score |
7.399723 |