Implementation of a Highly-Sensitive and Wide-Range Frequency Measurement Using a Si<sub<3</sub<N<sub<4</sub< MDR-Based Optoelectronic Oscillator
Microwave photonic technologies have been introduced for achieving broadband radio-frequency signal measurement. However, few of the proposed schemes mention the low-power radio-frequency signal detection, which stringently limits their practical applications in certain areas. In this paper, we desi...
Ausführliche Beschreibung
Autor*in: |
Pengcheng Liu [verfasserIn] Pengfei Zheng [verfasserIn] Dongdong Lin [verfasserIn] Jing Li [verfasserIn] Xuemeng Xu [verfasserIn] Guohua Hu [verfasserIn] Binfeng Yun [verfasserIn] Yiping Cui [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Photonics Journal - IEEE, 2015, 11(2019), 6, Seite 8 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2019 ; number:6 ; pages:8 |
Links: |
---|
DOI / URN: |
10.1109/JPHOT.2019.2955928 |
---|
Katalog-ID: |
DOAJ007058381 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ007058381 | ||
003 | DE-627 | ||
005 | 20230502230501.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/JPHOT.2019.2955928 |2 doi | |
035 | |a (DE-627)DOAJ007058381 | ||
035 | |a (DE-599)DOAJ92cafb3995384fef8f9f6171b8cbf362 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1501-1820 | |
050 | 0 | |a QC350-467 | |
100 | 0 | |a Pengcheng Liu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Implementation of a Highly-Sensitive and Wide-Range Frequency Measurement Using a Si<sub<3</sub<N<sub<4</sub< MDR-Based Optoelectronic Oscillator |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Microwave photonic technologies have been introduced for achieving broadband radio-frequency signal measurement. However, few of the proposed schemes mention the low-power radio-frequency signal detection, which stringently limits their practical applications in certain areas. In this paper, we designed and demonstrated a wideband low-power radio-frequency signal measurement system with optoelectronic oscillator. Here, the unknown radio-frequency signal matched the potential oscillation mode is allowable to be detected, amplified and estimated. The key component in the tunable optoelectronic oscillator is a silicon nitride micro-disk resonator with a very high Q-factor, which is utilized to achieve frequency selection as a microwave filter. A frequency measurement system range from 1 ~ 20 GHz with radio frequency power as low as -105 dBm, measurement errors of ±375 MHz and the maximum gain of 61.7 dB were realized experimentally. | ||
650 | 4 | |a Micro-disk resonator | |
650 | 4 | |a optoelectronic oscillator | |
650 | 4 | |a frequency measurement. | |
653 | 0 | |a Applied optics. Photonics | |
653 | 0 | |a Optics. Light | |
700 | 0 | |a Pengfei Zheng |e verfasserin |4 aut | |
700 | 0 | |a Dongdong Lin |e verfasserin |4 aut | |
700 | 0 | |a Jing Li |e verfasserin |4 aut | |
700 | 0 | |a Xuemeng Xu |e verfasserin |4 aut | |
700 | 0 | |a Guohua Hu |e verfasserin |4 aut | |
700 | 0 | |a Binfeng Yun |e verfasserin |4 aut | |
700 | 0 | |a Yiping Cui |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Photonics Journal |d IEEE, 2015 |g 11(2019), 6, Seite 8 |w (DE-627)600310272 |w (DE-600)2495610-7 |x 19430655 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2019 |g number:6 |g pages:8 |
856 | 4 | 0 | |u https://doi.org/10.1109/JPHOT.2019.2955928 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/92cafb3995384fef8f9f6171b8cbf362 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8913578/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1943-0655 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2019 |e 6 |h 8 |
author_variant |
p l pl p z pz d l dl j l jl x x xx g h gh b y by y c yc |
---|---|
matchkey_str |
article:19430655:2019----::mlmnainfhglsniienwdrnerqecmaueetsnaiu3unu4u |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TA |
publishDate |
2019 |
allfields |
10.1109/JPHOT.2019.2955928 doi (DE-627)DOAJ007058381 (DE-599)DOAJ92cafb3995384fef8f9f6171b8cbf362 DE-627 ger DE-627 rakwb eng TA1501-1820 QC350-467 Pengcheng Liu verfasserin aut Implementation of a Highly-Sensitive and Wide-Range Frequency Measurement Using a Si<sub<3</sub<N<sub<4</sub< MDR-Based Optoelectronic Oscillator 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Microwave photonic technologies have been introduced for achieving broadband radio-frequency signal measurement. However, few of the proposed schemes mention the low-power radio-frequency signal detection, which stringently limits their practical applications in certain areas. In this paper, we designed and demonstrated a wideband low-power radio-frequency signal measurement system with optoelectronic oscillator. Here, the unknown radio-frequency signal matched the potential oscillation mode is allowable to be detected, amplified and estimated. The key component in the tunable optoelectronic oscillator is a silicon nitride micro-disk resonator with a very high Q-factor, which is utilized to achieve frequency selection as a microwave filter. A frequency measurement system range from 1 ~ 20 GHz with radio frequency power as low as -105 dBm, measurement errors of ±375 MHz and the maximum gain of 61.7 dB were realized experimentally. Micro-disk resonator optoelectronic oscillator frequency measurement. Applied optics. Photonics Optics. Light Pengfei Zheng verfasserin aut Dongdong Lin verfasserin aut Jing Li verfasserin aut Xuemeng Xu verfasserin aut Guohua Hu verfasserin aut Binfeng Yun verfasserin aut Yiping Cui verfasserin aut In IEEE Photonics Journal IEEE, 2015 11(2019), 6, Seite 8 (DE-627)600310272 (DE-600)2495610-7 19430655 nnns volume:11 year:2019 number:6 pages:8 https://doi.org/10.1109/JPHOT.2019.2955928 kostenfrei https://doaj.org/article/92cafb3995384fef8f9f6171b8cbf362 kostenfrei https://ieeexplore.ieee.org/document/8913578/ kostenfrei https://doaj.org/toc/1943-0655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2019 6 8 |
spelling |
10.1109/JPHOT.2019.2955928 doi (DE-627)DOAJ007058381 (DE-599)DOAJ92cafb3995384fef8f9f6171b8cbf362 DE-627 ger DE-627 rakwb eng TA1501-1820 QC350-467 Pengcheng Liu verfasserin aut Implementation of a Highly-Sensitive and Wide-Range Frequency Measurement Using a Si<sub<3</sub<N<sub<4</sub< MDR-Based Optoelectronic Oscillator 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Microwave photonic technologies have been introduced for achieving broadband radio-frequency signal measurement. However, few of the proposed schemes mention the low-power radio-frequency signal detection, which stringently limits their practical applications in certain areas. In this paper, we designed and demonstrated a wideband low-power radio-frequency signal measurement system with optoelectronic oscillator. Here, the unknown radio-frequency signal matched the potential oscillation mode is allowable to be detected, amplified and estimated. The key component in the tunable optoelectronic oscillator is a silicon nitride micro-disk resonator with a very high Q-factor, which is utilized to achieve frequency selection as a microwave filter. A frequency measurement system range from 1 ~ 20 GHz with radio frequency power as low as -105 dBm, measurement errors of ±375 MHz and the maximum gain of 61.7 dB were realized experimentally. Micro-disk resonator optoelectronic oscillator frequency measurement. Applied optics. Photonics Optics. Light Pengfei Zheng verfasserin aut Dongdong Lin verfasserin aut Jing Li verfasserin aut Xuemeng Xu verfasserin aut Guohua Hu verfasserin aut Binfeng Yun verfasserin aut Yiping Cui verfasserin aut In IEEE Photonics Journal IEEE, 2015 11(2019), 6, Seite 8 (DE-627)600310272 (DE-600)2495610-7 19430655 nnns volume:11 year:2019 number:6 pages:8 https://doi.org/10.1109/JPHOT.2019.2955928 kostenfrei https://doaj.org/article/92cafb3995384fef8f9f6171b8cbf362 kostenfrei https://ieeexplore.ieee.org/document/8913578/ kostenfrei https://doaj.org/toc/1943-0655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2019 6 8 |
allfields_unstemmed |
10.1109/JPHOT.2019.2955928 doi (DE-627)DOAJ007058381 (DE-599)DOAJ92cafb3995384fef8f9f6171b8cbf362 DE-627 ger DE-627 rakwb eng TA1501-1820 QC350-467 Pengcheng Liu verfasserin aut Implementation of a Highly-Sensitive and Wide-Range Frequency Measurement Using a Si<sub<3</sub<N<sub<4</sub< MDR-Based Optoelectronic Oscillator 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Microwave photonic technologies have been introduced for achieving broadband radio-frequency signal measurement. However, few of the proposed schemes mention the low-power radio-frequency signal detection, which stringently limits their practical applications in certain areas. In this paper, we designed and demonstrated a wideband low-power radio-frequency signal measurement system with optoelectronic oscillator. Here, the unknown radio-frequency signal matched the potential oscillation mode is allowable to be detected, amplified and estimated. The key component in the tunable optoelectronic oscillator is a silicon nitride micro-disk resonator with a very high Q-factor, which is utilized to achieve frequency selection as a microwave filter. A frequency measurement system range from 1 ~ 20 GHz with radio frequency power as low as -105 dBm, measurement errors of ±375 MHz and the maximum gain of 61.7 dB were realized experimentally. Micro-disk resonator optoelectronic oscillator frequency measurement. Applied optics. Photonics Optics. Light Pengfei Zheng verfasserin aut Dongdong Lin verfasserin aut Jing Li verfasserin aut Xuemeng Xu verfasserin aut Guohua Hu verfasserin aut Binfeng Yun verfasserin aut Yiping Cui verfasserin aut In IEEE Photonics Journal IEEE, 2015 11(2019), 6, Seite 8 (DE-627)600310272 (DE-600)2495610-7 19430655 nnns volume:11 year:2019 number:6 pages:8 https://doi.org/10.1109/JPHOT.2019.2955928 kostenfrei https://doaj.org/article/92cafb3995384fef8f9f6171b8cbf362 kostenfrei https://ieeexplore.ieee.org/document/8913578/ kostenfrei https://doaj.org/toc/1943-0655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2019 6 8 |
allfieldsGer |
10.1109/JPHOT.2019.2955928 doi (DE-627)DOAJ007058381 (DE-599)DOAJ92cafb3995384fef8f9f6171b8cbf362 DE-627 ger DE-627 rakwb eng TA1501-1820 QC350-467 Pengcheng Liu verfasserin aut Implementation of a Highly-Sensitive and Wide-Range Frequency Measurement Using a Si<sub<3</sub<N<sub<4</sub< MDR-Based Optoelectronic Oscillator 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Microwave photonic technologies have been introduced for achieving broadband radio-frequency signal measurement. However, few of the proposed schemes mention the low-power radio-frequency signal detection, which stringently limits their practical applications in certain areas. In this paper, we designed and demonstrated a wideband low-power radio-frequency signal measurement system with optoelectronic oscillator. Here, the unknown radio-frequency signal matched the potential oscillation mode is allowable to be detected, amplified and estimated. The key component in the tunable optoelectronic oscillator is a silicon nitride micro-disk resonator with a very high Q-factor, which is utilized to achieve frequency selection as a microwave filter. A frequency measurement system range from 1 ~ 20 GHz with radio frequency power as low as -105 dBm, measurement errors of ±375 MHz and the maximum gain of 61.7 dB were realized experimentally. Micro-disk resonator optoelectronic oscillator frequency measurement. Applied optics. Photonics Optics. Light Pengfei Zheng verfasserin aut Dongdong Lin verfasserin aut Jing Li verfasserin aut Xuemeng Xu verfasserin aut Guohua Hu verfasserin aut Binfeng Yun verfasserin aut Yiping Cui verfasserin aut In IEEE Photonics Journal IEEE, 2015 11(2019), 6, Seite 8 (DE-627)600310272 (DE-600)2495610-7 19430655 nnns volume:11 year:2019 number:6 pages:8 https://doi.org/10.1109/JPHOT.2019.2955928 kostenfrei https://doaj.org/article/92cafb3995384fef8f9f6171b8cbf362 kostenfrei https://ieeexplore.ieee.org/document/8913578/ kostenfrei https://doaj.org/toc/1943-0655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2019 6 8 |
allfieldsSound |
10.1109/JPHOT.2019.2955928 doi (DE-627)DOAJ007058381 (DE-599)DOAJ92cafb3995384fef8f9f6171b8cbf362 DE-627 ger DE-627 rakwb eng TA1501-1820 QC350-467 Pengcheng Liu verfasserin aut Implementation of a Highly-Sensitive and Wide-Range Frequency Measurement Using a Si<sub<3</sub<N<sub<4</sub< MDR-Based Optoelectronic Oscillator 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Microwave photonic technologies have been introduced for achieving broadband radio-frequency signal measurement. However, few of the proposed schemes mention the low-power radio-frequency signal detection, which stringently limits their practical applications in certain areas. In this paper, we designed and demonstrated a wideband low-power radio-frequency signal measurement system with optoelectronic oscillator. Here, the unknown radio-frequency signal matched the potential oscillation mode is allowable to be detected, amplified and estimated. The key component in the tunable optoelectronic oscillator is a silicon nitride micro-disk resonator with a very high Q-factor, which is utilized to achieve frequency selection as a microwave filter. A frequency measurement system range from 1 ~ 20 GHz with radio frequency power as low as -105 dBm, measurement errors of ±375 MHz and the maximum gain of 61.7 dB were realized experimentally. Micro-disk resonator optoelectronic oscillator frequency measurement. Applied optics. Photonics Optics. Light Pengfei Zheng verfasserin aut Dongdong Lin verfasserin aut Jing Li verfasserin aut Xuemeng Xu verfasserin aut Guohua Hu verfasserin aut Binfeng Yun verfasserin aut Yiping Cui verfasserin aut In IEEE Photonics Journal IEEE, 2015 11(2019), 6, Seite 8 (DE-627)600310272 (DE-600)2495610-7 19430655 nnns volume:11 year:2019 number:6 pages:8 https://doi.org/10.1109/JPHOT.2019.2955928 kostenfrei https://doaj.org/article/92cafb3995384fef8f9f6171b8cbf362 kostenfrei https://ieeexplore.ieee.org/document/8913578/ kostenfrei https://doaj.org/toc/1943-0655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2019 6 8 |
language |
English |
source |
In IEEE Photonics Journal 11(2019), 6, Seite 8 volume:11 year:2019 number:6 pages:8 |
sourceStr |
In IEEE Photonics Journal 11(2019), 6, Seite 8 volume:11 year:2019 number:6 pages:8 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Micro-disk resonator optoelectronic oscillator frequency measurement. Applied optics. Photonics Optics. Light |
isfreeaccess_bool |
true |
container_title |
IEEE Photonics Journal |
authorswithroles_txt_mv |
Pengcheng Liu @@aut@@ Pengfei Zheng @@aut@@ Dongdong Lin @@aut@@ Jing Li @@aut@@ Xuemeng Xu @@aut@@ Guohua Hu @@aut@@ Binfeng Yun @@aut@@ Yiping Cui @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
600310272 |
id |
DOAJ007058381 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007058381</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502230501.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JPHOT.2019.2955928</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007058381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ92cafb3995384fef8f9f6171b8cbf362</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1501-1820</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC350-467</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Pengcheng Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Implementation of a Highly-Sensitive and Wide-Range Frequency Measurement Using a Si<sub<3</sub<N<sub<4</sub< MDR-Based Optoelectronic Oscillator</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Microwave photonic technologies have been introduced for achieving broadband radio-frequency signal measurement. However, few of the proposed schemes mention the low-power radio-frequency signal detection, which stringently limits their practical applications in certain areas. In this paper, we designed and demonstrated a wideband low-power radio-frequency signal measurement system with optoelectronic oscillator. Here, the unknown radio-frequency signal matched the potential oscillation mode is allowable to be detected, amplified and estimated. The key component in the tunable optoelectronic oscillator is a silicon nitride micro-disk resonator with a very high Q-factor, which is utilized to achieve frequency selection as a microwave filter. A frequency measurement system range from 1 ~ 20 GHz with radio frequency power as low as -105 dBm, measurement errors of ±375 MHz and the maximum gain of 61.7 dB were realized experimentally.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Micro-disk resonator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optoelectronic oscillator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency measurement.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applied optics. Photonics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Optics. Light</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pengfei Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dongdong Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuemeng Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guohua Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Binfeng Yun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yiping Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Photonics Journal</subfield><subfield code="d">IEEE, 2015</subfield><subfield code="g">11(2019), 6, Seite 8</subfield><subfield code="w">(DE-627)600310272</subfield><subfield code="w">(DE-600)2495610-7</subfield><subfield code="x">19430655</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/JPHOT.2019.2955928</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/92cafb3995384fef8f9f6171b8cbf362</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8913578/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1943-0655</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2019</subfield><subfield code="e">6</subfield><subfield code="h">8</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Pengcheng Liu |
spellingShingle |
Pengcheng Liu misc TA1501-1820 misc QC350-467 misc Micro-disk resonator misc optoelectronic oscillator misc frequency measurement. misc Applied optics. Photonics misc Optics. Light Implementation of a Highly-Sensitive and Wide-Range Frequency Measurement Using a Si<sub<3</sub<N<sub<4</sub< MDR-Based Optoelectronic Oscillator |
authorStr |
Pengcheng Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)600310272 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1501-1820 |
illustrated |
Not Illustrated |
issn |
19430655 |
topic_title |
TA1501-1820 QC350-467 Implementation of a Highly-Sensitive and Wide-Range Frequency Measurement Using a Si<sub<3</sub<N<sub<4</sub< MDR-Based Optoelectronic Oscillator Micro-disk resonator optoelectronic oscillator frequency measurement |
topic |
misc TA1501-1820 misc QC350-467 misc Micro-disk resonator misc optoelectronic oscillator misc frequency measurement. misc Applied optics. Photonics misc Optics. Light |
topic_unstemmed |
misc TA1501-1820 misc QC350-467 misc Micro-disk resonator misc optoelectronic oscillator misc frequency measurement. misc Applied optics. Photonics misc Optics. Light |
topic_browse |
misc TA1501-1820 misc QC350-467 misc Micro-disk resonator misc optoelectronic oscillator misc frequency measurement. misc Applied optics. Photonics misc Optics. Light |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Photonics Journal |
hierarchy_parent_id |
600310272 |
hierarchy_top_title |
IEEE Photonics Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)600310272 (DE-600)2495610-7 |
title |
Implementation of a Highly-Sensitive and Wide-Range Frequency Measurement Using a Si<sub<3</sub<N<sub<4</sub< MDR-Based Optoelectronic Oscillator |
ctrlnum |
(DE-627)DOAJ007058381 (DE-599)DOAJ92cafb3995384fef8f9f6171b8cbf362 |
title_full |
Implementation of a Highly-Sensitive and Wide-Range Frequency Measurement Using a Si<sub<3</sub<N<sub<4</sub< MDR-Based Optoelectronic Oscillator |
author_sort |
Pengcheng Liu |
journal |
IEEE Photonics Journal |
journalStr |
IEEE Photonics Journal |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
8 |
author_browse |
Pengcheng Liu Pengfei Zheng Dongdong Lin Jing Li Xuemeng Xu Guohua Hu Binfeng Yun Yiping Cui |
container_volume |
11 |
class |
TA1501-1820 QC350-467 |
format_se |
Elektronische Aufsätze |
author-letter |
Pengcheng Liu |
doi_str_mv |
10.1109/JPHOT.2019.2955928 |
author2-role |
verfasserin |
title_sort |
implementation of a highly-sensitive and wide-range frequency measurement using a si<sub<3</sub<n<sub<4</sub< mdr-based optoelectronic oscillator |
callnumber |
TA1501-1820 |
title_auth |
Implementation of a Highly-Sensitive and Wide-Range Frequency Measurement Using a Si<sub<3</sub<N<sub<4</sub< MDR-Based Optoelectronic Oscillator |
abstract |
Microwave photonic technologies have been introduced for achieving broadband radio-frequency signal measurement. However, few of the proposed schemes mention the low-power radio-frequency signal detection, which stringently limits their practical applications in certain areas. In this paper, we designed and demonstrated a wideband low-power radio-frequency signal measurement system with optoelectronic oscillator. Here, the unknown radio-frequency signal matched the potential oscillation mode is allowable to be detected, amplified and estimated. The key component in the tunable optoelectronic oscillator is a silicon nitride micro-disk resonator with a very high Q-factor, which is utilized to achieve frequency selection as a microwave filter. A frequency measurement system range from 1 ~ 20 GHz with radio frequency power as low as -105 dBm, measurement errors of ±375 MHz and the maximum gain of 61.7 dB were realized experimentally. |
abstractGer |
Microwave photonic technologies have been introduced for achieving broadband radio-frequency signal measurement. However, few of the proposed schemes mention the low-power radio-frequency signal detection, which stringently limits their practical applications in certain areas. In this paper, we designed and demonstrated a wideband low-power radio-frequency signal measurement system with optoelectronic oscillator. Here, the unknown radio-frequency signal matched the potential oscillation mode is allowable to be detected, amplified and estimated. The key component in the tunable optoelectronic oscillator is a silicon nitride micro-disk resonator with a very high Q-factor, which is utilized to achieve frequency selection as a microwave filter. A frequency measurement system range from 1 ~ 20 GHz with radio frequency power as low as -105 dBm, measurement errors of ±375 MHz and the maximum gain of 61.7 dB were realized experimentally. |
abstract_unstemmed |
Microwave photonic technologies have been introduced for achieving broadband radio-frequency signal measurement. However, few of the proposed schemes mention the low-power radio-frequency signal detection, which stringently limits their practical applications in certain areas. In this paper, we designed and demonstrated a wideband low-power radio-frequency signal measurement system with optoelectronic oscillator. Here, the unknown radio-frequency signal matched the potential oscillation mode is allowable to be detected, amplified and estimated. The key component in the tunable optoelectronic oscillator is a silicon nitride micro-disk resonator with a very high Q-factor, which is utilized to achieve frequency selection as a microwave filter. A frequency measurement system range from 1 ~ 20 GHz with radio frequency power as low as -105 dBm, measurement errors of ±375 MHz and the maximum gain of 61.7 dB were realized experimentally. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Implementation of a Highly-Sensitive and Wide-Range Frequency Measurement Using a Si<sub<3</sub<N<sub<4</sub< MDR-Based Optoelectronic Oscillator |
url |
https://doi.org/10.1109/JPHOT.2019.2955928 https://doaj.org/article/92cafb3995384fef8f9f6171b8cbf362 https://ieeexplore.ieee.org/document/8913578/ https://doaj.org/toc/1943-0655 |
remote_bool |
true |
author2 |
Pengfei Zheng Dongdong Lin Jing Li Xuemeng Xu Guohua Hu Binfeng Yun Yiping Cui |
author2Str |
Pengfei Zheng Dongdong Lin Jing Li Xuemeng Xu Guohua Hu Binfeng Yun Yiping Cui |
ppnlink |
600310272 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/JPHOT.2019.2955928 |
callnumber-a |
TA1501-1820 |
up_date |
2024-07-04T00:06:43.145Z |
_version_ |
1803604829821468672 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007058381</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502230501.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JPHOT.2019.2955928</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007058381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ92cafb3995384fef8f9f6171b8cbf362</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1501-1820</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC350-467</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Pengcheng Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Implementation of a Highly-Sensitive and Wide-Range Frequency Measurement Using a Si<sub<3</sub<N<sub<4</sub< MDR-Based Optoelectronic Oscillator</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Microwave photonic technologies have been introduced for achieving broadband radio-frequency signal measurement. However, few of the proposed schemes mention the low-power radio-frequency signal detection, which stringently limits their practical applications in certain areas. In this paper, we designed and demonstrated a wideband low-power radio-frequency signal measurement system with optoelectronic oscillator. Here, the unknown radio-frequency signal matched the potential oscillation mode is allowable to be detected, amplified and estimated. The key component in the tunable optoelectronic oscillator is a silicon nitride micro-disk resonator with a very high Q-factor, which is utilized to achieve frequency selection as a microwave filter. A frequency measurement system range from 1 ~ 20 GHz with radio frequency power as low as -105 dBm, measurement errors of ±375 MHz and the maximum gain of 61.7 dB were realized experimentally.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Micro-disk resonator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optoelectronic oscillator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency measurement.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applied optics. Photonics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Optics. Light</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pengfei Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dongdong Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuemeng Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guohua Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Binfeng Yun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yiping Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Photonics Journal</subfield><subfield code="d">IEEE, 2015</subfield><subfield code="g">11(2019), 6, Seite 8</subfield><subfield code="w">(DE-627)600310272</subfield><subfield code="w">(DE-600)2495610-7</subfield><subfield code="x">19430655</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/JPHOT.2019.2955928</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/92cafb3995384fef8f9f6171b8cbf362</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8913578/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1943-0655</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2019</subfield><subfield code="e">6</subfield><subfield code="h">8</subfield></datafield></record></collection>
|
score |
7.400222 |