Patterns of Multimorbidity in Adults: An Association Rules Analysis Using the Korea Health Panel
This study aimed to identify the prevalence and patterns of multimorbidity among Korean adults. A descriptive study design was used. Of 11,232 adults aged 18 and older extracted from the 2014 Korean Health Panel Survey, 7118 had one or more chronic conditions. The chronic conditions code uses the Ko...
Ausführliche Beschreibung
Autor*in: |
Yoonju Lee [verfasserIn] Heejin Kim [verfasserIn] Hyesun Jeong [verfasserIn] Yunhwan Noh [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: International Journal of Environmental Research and Public Health - MDPI AG, 2005, 17(2020), 2618, p 2618 |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2020 ; number:2618, p 2618 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.3390/ijerph17082618 |
---|
Katalog-ID: |
DOAJ007107560 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ007107560 | ||
003 | DE-627 | ||
005 | 20230501190336.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/ijerph17082618 |2 doi | |
035 | |a (DE-627)DOAJ007107560 | ||
035 | |a (DE-599)DOAJ5df6ac1fbd0844999e512b0dd31be9f3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Yoonju Lee |e verfasserin |4 aut | |
245 | 1 | 0 | |a Patterns of Multimorbidity in Adults: An Association Rules Analysis Using the Korea Health Panel |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This study aimed to identify the prevalence and patterns of multimorbidity among Korean adults. A descriptive study design was used. Of 11,232 adults aged 18 and older extracted from the 2014 Korean Health Panel Survey, 7118 had one or more chronic conditions. The chronic conditions code uses the Korean Standard Classification of Diseases. Association rule analysis and network analysis were conducted to identify patterns of multimorbidity among 4922 participants with multimorbidity. The prevalence of multimorbidity in the overall population was 34.8%, with a higher prevalence among women (40.8%) than men (28.6%). Hypertension had the highest prevalence in both men and women. In men, diabetes mellitus and hypertension yielded the highest probability of comorbidity (10.04%). In women, polyarthrosis and hypertension yielded the highest probability of comorbidity (12.51%). The results of the network analysis in four groups divided according to gender and age showed different characteristics for each group. Public health practitioners should adopt an integrated approach to manage multimorbidity rather than an individual disease-specific approach, along with different strategies according to age and gender groups. | ||
650 | 4 | |a multimorbidity | |
650 | 4 | |a pattern | |
650 | 4 | |a association rules analysis | |
650 | 4 | |a network analysis | |
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
700 | 0 | |a Heejin Kim |e verfasserin |4 aut | |
700 | 0 | |a Hyesun Jeong |e verfasserin |4 aut | |
700 | 0 | |a Yunhwan Noh |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t International Journal of Environmental Research and Public Health |d MDPI AG, 2005 |g 17(2020), 2618, p 2618 |w (DE-627)477992463 |w (DE-600)2175195-X |x 16604601 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2020 |g number:2618, p 2618 |
856 | 4 | 0 | |u https://doi.org/10.3390/ijerph17082618 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5df6ac1fbd0844999e512b0dd31be9f3 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1660-4601/17/8/2618 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1661-7827 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1660-4601 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 17 |j 2020 |e 2618, p 2618 |
author_variant |
y l yl h k hk h j hj y n yn |
---|---|
matchkey_str |
article:16604601:2020----::atrsfutmriiyndlsnsoitorlsnlsss |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.3390/ijerph17082618 doi (DE-627)DOAJ007107560 (DE-599)DOAJ5df6ac1fbd0844999e512b0dd31be9f3 DE-627 ger DE-627 rakwb eng Yoonju Lee verfasserin aut Patterns of Multimorbidity in Adults: An Association Rules Analysis Using the Korea Health Panel 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study aimed to identify the prevalence and patterns of multimorbidity among Korean adults. A descriptive study design was used. Of 11,232 adults aged 18 and older extracted from the 2014 Korean Health Panel Survey, 7118 had one or more chronic conditions. The chronic conditions code uses the Korean Standard Classification of Diseases. Association rule analysis and network analysis were conducted to identify patterns of multimorbidity among 4922 participants with multimorbidity. The prevalence of multimorbidity in the overall population was 34.8%, with a higher prevalence among women (40.8%) than men (28.6%). Hypertension had the highest prevalence in both men and women. In men, diabetes mellitus and hypertension yielded the highest probability of comorbidity (10.04%). In women, polyarthrosis and hypertension yielded the highest probability of comorbidity (12.51%). The results of the network analysis in four groups divided according to gender and age showed different characteristics for each group. Public health practitioners should adopt an integrated approach to manage multimorbidity rather than an individual disease-specific approach, along with different strategies according to age and gender groups. multimorbidity pattern association rules analysis network analysis Medicine R Heejin Kim verfasserin aut Hyesun Jeong verfasserin aut Yunhwan Noh verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 17(2020), 2618, p 2618 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:17 year:2020 number:2618, p 2618 https://doi.org/10.3390/ijerph17082618 kostenfrei https://doaj.org/article/5df6ac1fbd0844999e512b0dd31be9f3 kostenfrei https://www.mdpi.com/1660-4601/17/8/2618 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2020 2618, p 2618 |
spelling |
10.3390/ijerph17082618 doi (DE-627)DOAJ007107560 (DE-599)DOAJ5df6ac1fbd0844999e512b0dd31be9f3 DE-627 ger DE-627 rakwb eng Yoonju Lee verfasserin aut Patterns of Multimorbidity in Adults: An Association Rules Analysis Using the Korea Health Panel 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study aimed to identify the prevalence and patterns of multimorbidity among Korean adults. A descriptive study design was used. Of 11,232 adults aged 18 and older extracted from the 2014 Korean Health Panel Survey, 7118 had one or more chronic conditions. The chronic conditions code uses the Korean Standard Classification of Diseases. Association rule analysis and network analysis were conducted to identify patterns of multimorbidity among 4922 participants with multimorbidity. The prevalence of multimorbidity in the overall population was 34.8%, with a higher prevalence among women (40.8%) than men (28.6%). Hypertension had the highest prevalence in both men and women. In men, diabetes mellitus and hypertension yielded the highest probability of comorbidity (10.04%). In women, polyarthrosis and hypertension yielded the highest probability of comorbidity (12.51%). The results of the network analysis in four groups divided according to gender and age showed different characteristics for each group. Public health practitioners should adopt an integrated approach to manage multimorbidity rather than an individual disease-specific approach, along with different strategies according to age and gender groups. multimorbidity pattern association rules analysis network analysis Medicine R Heejin Kim verfasserin aut Hyesun Jeong verfasserin aut Yunhwan Noh verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 17(2020), 2618, p 2618 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:17 year:2020 number:2618, p 2618 https://doi.org/10.3390/ijerph17082618 kostenfrei https://doaj.org/article/5df6ac1fbd0844999e512b0dd31be9f3 kostenfrei https://www.mdpi.com/1660-4601/17/8/2618 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2020 2618, p 2618 |
allfields_unstemmed |
10.3390/ijerph17082618 doi (DE-627)DOAJ007107560 (DE-599)DOAJ5df6ac1fbd0844999e512b0dd31be9f3 DE-627 ger DE-627 rakwb eng Yoonju Lee verfasserin aut Patterns of Multimorbidity in Adults: An Association Rules Analysis Using the Korea Health Panel 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study aimed to identify the prevalence and patterns of multimorbidity among Korean adults. A descriptive study design was used. Of 11,232 adults aged 18 and older extracted from the 2014 Korean Health Panel Survey, 7118 had one or more chronic conditions. The chronic conditions code uses the Korean Standard Classification of Diseases. Association rule analysis and network analysis were conducted to identify patterns of multimorbidity among 4922 participants with multimorbidity. The prevalence of multimorbidity in the overall population was 34.8%, with a higher prevalence among women (40.8%) than men (28.6%). Hypertension had the highest prevalence in both men and women. In men, diabetes mellitus and hypertension yielded the highest probability of comorbidity (10.04%). In women, polyarthrosis and hypertension yielded the highest probability of comorbidity (12.51%). The results of the network analysis in four groups divided according to gender and age showed different characteristics for each group. Public health practitioners should adopt an integrated approach to manage multimorbidity rather than an individual disease-specific approach, along with different strategies according to age and gender groups. multimorbidity pattern association rules analysis network analysis Medicine R Heejin Kim verfasserin aut Hyesun Jeong verfasserin aut Yunhwan Noh verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 17(2020), 2618, p 2618 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:17 year:2020 number:2618, p 2618 https://doi.org/10.3390/ijerph17082618 kostenfrei https://doaj.org/article/5df6ac1fbd0844999e512b0dd31be9f3 kostenfrei https://www.mdpi.com/1660-4601/17/8/2618 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2020 2618, p 2618 |
allfieldsGer |
10.3390/ijerph17082618 doi (DE-627)DOAJ007107560 (DE-599)DOAJ5df6ac1fbd0844999e512b0dd31be9f3 DE-627 ger DE-627 rakwb eng Yoonju Lee verfasserin aut Patterns of Multimorbidity in Adults: An Association Rules Analysis Using the Korea Health Panel 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study aimed to identify the prevalence and patterns of multimorbidity among Korean adults. A descriptive study design was used. Of 11,232 adults aged 18 and older extracted from the 2014 Korean Health Panel Survey, 7118 had one or more chronic conditions. The chronic conditions code uses the Korean Standard Classification of Diseases. Association rule analysis and network analysis were conducted to identify patterns of multimorbidity among 4922 participants with multimorbidity. The prevalence of multimorbidity in the overall population was 34.8%, with a higher prevalence among women (40.8%) than men (28.6%). Hypertension had the highest prevalence in both men and women. In men, diabetes mellitus and hypertension yielded the highest probability of comorbidity (10.04%). In women, polyarthrosis and hypertension yielded the highest probability of comorbidity (12.51%). The results of the network analysis in four groups divided according to gender and age showed different characteristics for each group. Public health practitioners should adopt an integrated approach to manage multimorbidity rather than an individual disease-specific approach, along with different strategies according to age and gender groups. multimorbidity pattern association rules analysis network analysis Medicine R Heejin Kim verfasserin aut Hyesun Jeong verfasserin aut Yunhwan Noh verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 17(2020), 2618, p 2618 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:17 year:2020 number:2618, p 2618 https://doi.org/10.3390/ijerph17082618 kostenfrei https://doaj.org/article/5df6ac1fbd0844999e512b0dd31be9f3 kostenfrei https://www.mdpi.com/1660-4601/17/8/2618 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2020 2618, p 2618 |
allfieldsSound |
10.3390/ijerph17082618 doi (DE-627)DOAJ007107560 (DE-599)DOAJ5df6ac1fbd0844999e512b0dd31be9f3 DE-627 ger DE-627 rakwb eng Yoonju Lee verfasserin aut Patterns of Multimorbidity in Adults: An Association Rules Analysis Using the Korea Health Panel 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study aimed to identify the prevalence and patterns of multimorbidity among Korean adults. A descriptive study design was used. Of 11,232 adults aged 18 and older extracted from the 2014 Korean Health Panel Survey, 7118 had one or more chronic conditions. The chronic conditions code uses the Korean Standard Classification of Diseases. Association rule analysis and network analysis were conducted to identify patterns of multimorbidity among 4922 participants with multimorbidity. The prevalence of multimorbidity in the overall population was 34.8%, with a higher prevalence among women (40.8%) than men (28.6%). Hypertension had the highest prevalence in both men and women. In men, diabetes mellitus and hypertension yielded the highest probability of comorbidity (10.04%). In women, polyarthrosis and hypertension yielded the highest probability of comorbidity (12.51%). The results of the network analysis in four groups divided according to gender and age showed different characteristics for each group. Public health practitioners should adopt an integrated approach to manage multimorbidity rather than an individual disease-specific approach, along with different strategies according to age and gender groups. multimorbidity pattern association rules analysis network analysis Medicine R Heejin Kim verfasserin aut Hyesun Jeong verfasserin aut Yunhwan Noh verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 17(2020), 2618, p 2618 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:17 year:2020 number:2618, p 2618 https://doi.org/10.3390/ijerph17082618 kostenfrei https://doaj.org/article/5df6ac1fbd0844999e512b0dd31be9f3 kostenfrei https://www.mdpi.com/1660-4601/17/8/2618 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2020 2618, p 2618 |
language |
English |
source |
In International Journal of Environmental Research and Public Health 17(2020), 2618, p 2618 volume:17 year:2020 number:2618, p 2618 |
sourceStr |
In International Journal of Environmental Research and Public Health 17(2020), 2618, p 2618 volume:17 year:2020 number:2618, p 2618 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
multimorbidity pattern association rules analysis network analysis Medicine R |
isfreeaccess_bool |
true |
container_title |
International Journal of Environmental Research and Public Health |
authorswithroles_txt_mv |
Yoonju Lee @@aut@@ Heejin Kim @@aut@@ Hyesun Jeong @@aut@@ Yunhwan Noh @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
477992463 |
id |
DOAJ007107560 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007107560</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501190336.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijerph17082618</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007107560</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5df6ac1fbd0844999e512b0dd31be9f3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yoonju Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Patterns of Multimorbidity in Adults: An Association Rules Analysis Using the Korea Health Panel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study aimed to identify the prevalence and patterns of multimorbidity among Korean adults. A descriptive study design was used. Of 11,232 adults aged 18 and older extracted from the 2014 Korean Health Panel Survey, 7118 had one or more chronic conditions. The chronic conditions code uses the Korean Standard Classification of Diseases. Association rule analysis and network analysis were conducted to identify patterns of multimorbidity among 4922 participants with multimorbidity. The prevalence of multimorbidity in the overall population was 34.8%, with a higher prevalence among women (40.8%) than men (28.6%). Hypertension had the highest prevalence in both men and women. In men, diabetes mellitus and hypertension yielded the highest probability of comorbidity (10.04%). In women, polyarthrosis and hypertension yielded the highest probability of comorbidity (12.51%). The results of the network analysis in four groups divided according to gender and age showed different characteristics for each group. Public health practitioners should adopt an integrated approach to manage multimorbidity rather than an individual disease-specific approach, along with different strategies according to age and gender groups.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multimorbidity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pattern</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">association rules analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">network analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Heejin Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hyesun Jeong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yunhwan Noh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Environmental Research and Public Health</subfield><subfield code="d">MDPI AG, 2005</subfield><subfield code="g">17(2020), 2618, p 2618</subfield><subfield code="w">(DE-627)477992463</subfield><subfield code="w">(DE-600)2175195-X</subfield><subfield code="x">16604601</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2618, p 2618</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijerph17082618</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5df6ac1fbd0844999e512b0dd31be9f3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1660-4601/17/8/2618</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-7827</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1660-4601</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2020</subfield><subfield code="e">2618, p 2618</subfield></datafield></record></collection>
|
author |
Yoonju Lee |
spellingShingle |
Yoonju Lee misc multimorbidity misc pattern misc association rules analysis misc network analysis misc Medicine misc R Patterns of Multimorbidity in Adults: An Association Rules Analysis Using the Korea Health Panel |
authorStr |
Yoonju Lee |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)477992463 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
16604601 |
topic_title |
Patterns of Multimorbidity in Adults: An Association Rules Analysis Using the Korea Health Panel multimorbidity pattern association rules analysis network analysis |
topic |
misc multimorbidity misc pattern misc association rules analysis misc network analysis misc Medicine misc R |
topic_unstemmed |
misc multimorbidity misc pattern misc association rules analysis misc network analysis misc Medicine misc R |
topic_browse |
misc multimorbidity misc pattern misc association rules analysis misc network analysis misc Medicine misc R |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Environmental Research and Public Health |
hierarchy_parent_id |
477992463 |
hierarchy_top_title |
International Journal of Environmental Research and Public Health |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)477992463 (DE-600)2175195-X |
title |
Patterns of Multimorbidity in Adults: An Association Rules Analysis Using the Korea Health Panel |
ctrlnum |
(DE-627)DOAJ007107560 (DE-599)DOAJ5df6ac1fbd0844999e512b0dd31be9f3 |
title_full |
Patterns of Multimorbidity in Adults: An Association Rules Analysis Using the Korea Health Panel |
author_sort |
Yoonju Lee |
journal |
International Journal of Environmental Research and Public Health |
journalStr |
International Journal of Environmental Research and Public Health |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Yoonju Lee Heejin Kim Hyesun Jeong Yunhwan Noh |
container_volume |
17 |
format_se |
Elektronische Aufsätze |
author-letter |
Yoonju Lee |
doi_str_mv |
10.3390/ijerph17082618 |
author2-role |
verfasserin |
title_sort |
patterns of multimorbidity in adults: an association rules analysis using the korea health panel |
title_auth |
Patterns of Multimorbidity in Adults: An Association Rules Analysis Using the Korea Health Panel |
abstract |
This study aimed to identify the prevalence and patterns of multimorbidity among Korean adults. A descriptive study design was used. Of 11,232 adults aged 18 and older extracted from the 2014 Korean Health Panel Survey, 7118 had one or more chronic conditions. The chronic conditions code uses the Korean Standard Classification of Diseases. Association rule analysis and network analysis were conducted to identify patterns of multimorbidity among 4922 participants with multimorbidity. The prevalence of multimorbidity in the overall population was 34.8%, with a higher prevalence among women (40.8%) than men (28.6%). Hypertension had the highest prevalence in both men and women. In men, diabetes mellitus and hypertension yielded the highest probability of comorbidity (10.04%). In women, polyarthrosis and hypertension yielded the highest probability of comorbidity (12.51%). The results of the network analysis in four groups divided according to gender and age showed different characteristics for each group. Public health practitioners should adopt an integrated approach to manage multimorbidity rather than an individual disease-specific approach, along with different strategies according to age and gender groups. |
abstractGer |
This study aimed to identify the prevalence and patterns of multimorbidity among Korean adults. A descriptive study design was used. Of 11,232 adults aged 18 and older extracted from the 2014 Korean Health Panel Survey, 7118 had one or more chronic conditions. The chronic conditions code uses the Korean Standard Classification of Diseases. Association rule analysis and network analysis were conducted to identify patterns of multimorbidity among 4922 participants with multimorbidity. The prevalence of multimorbidity in the overall population was 34.8%, with a higher prevalence among women (40.8%) than men (28.6%). Hypertension had the highest prevalence in both men and women. In men, diabetes mellitus and hypertension yielded the highest probability of comorbidity (10.04%). In women, polyarthrosis and hypertension yielded the highest probability of comorbidity (12.51%). The results of the network analysis in four groups divided according to gender and age showed different characteristics for each group. Public health practitioners should adopt an integrated approach to manage multimorbidity rather than an individual disease-specific approach, along with different strategies according to age and gender groups. |
abstract_unstemmed |
This study aimed to identify the prevalence and patterns of multimorbidity among Korean adults. A descriptive study design was used. Of 11,232 adults aged 18 and older extracted from the 2014 Korean Health Panel Survey, 7118 had one or more chronic conditions. The chronic conditions code uses the Korean Standard Classification of Diseases. Association rule analysis and network analysis were conducted to identify patterns of multimorbidity among 4922 participants with multimorbidity. The prevalence of multimorbidity in the overall population was 34.8%, with a higher prevalence among women (40.8%) than men (28.6%). Hypertension had the highest prevalence in both men and women. In men, diabetes mellitus and hypertension yielded the highest probability of comorbidity (10.04%). In women, polyarthrosis and hypertension yielded the highest probability of comorbidity (12.51%). The results of the network analysis in four groups divided according to gender and age showed different characteristics for each group. Public health practitioners should adopt an integrated approach to manage multimorbidity rather than an individual disease-specific approach, along with different strategies according to age and gender groups. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2618, p 2618 |
title_short |
Patterns of Multimorbidity in Adults: An Association Rules Analysis Using the Korea Health Panel |
url |
https://doi.org/10.3390/ijerph17082618 https://doaj.org/article/5df6ac1fbd0844999e512b0dd31be9f3 https://www.mdpi.com/1660-4601/17/8/2618 https://doaj.org/toc/1661-7827 https://doaj.org/toc/1660-4601 |
remote_bool |
true |
author2 |
Heejin Kim Hyesun Jeong Yunhwan Noh |
author2Str |
Heejin Kim Hyesun Jeong Yunhwan Noh |
ppnlink |
477992463 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/ijerph17082618 |
up_date |
2024-07-04T00:18:24.234Z |
_version_ |
1803605564969713664 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007107560</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501190336.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijerph17082618</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007107560</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5df6ac1fbd0844999e512b0dd31be9f3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yoonju Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Patterns of Multimorbidity in Adults: An Association Rules Analysis Using the Korea Health Panel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study aimed to identify the prevalence and patterns of multimorbidity among Korean adults. A descriptive study design was used. Of 11,232 adults aged 18 and older extracted from the 2014 Korean Health Panel Survey, 7118 had one or more chronic conditions. The chronic conditions code uses the Korean Standard Classification of Diseases. Association rule analysis and network analysis were conducted to identify patterns of multimorbidity among 4922 participants with multimorbidity. The prevalence of multimorbidity in the overall population was 34.8%, with a higher prevalence among women (40.8%) than men (28.6%). Hypertension had the highest prevalence in both men and women. In men, diabetes mellitus and hypertension yielded the highest probability of comorbidity (10.04%). In women, polyarthrosis and hypertension yielded the highest probability of comorbidity (12.51%). The results of the network analysis in four groups divided according to gender and age showed different characteristics for each group. Public health practitioners should adopt an integrated approach to manage multimorbidity rather than an individual disease-specific approach, along with different strategies according to age and gender groups.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multimorbidity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pattern</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">association rules analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">network analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Heejin Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hyesun Jeong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yunhwan Noh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Environmental Research and Public Health</subfield><subfield code="d">MDPI AG, 2005</subfield><subfield code="g">17(2020), 2618, p 2618</subfield><subfield code="w">(DE-627)477992463</subfield><subfield code="w">(DE-600)2175195-X</subfield><subfield code="x">16604601</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2618, p 2618</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijerph17082618</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5df6ac1fbd0844999e512b0dd31be9f3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1660-4601/17/8/2618</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-7827</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1660-4601</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2020</subfield><subfield code="e">2618, p 2618</subfield></datafield></record></collection>
|
score |
7.4014044 |