Configuration Optimization for Manipulator Kinematic Calibration Based on Comprehensive Quality Index
Kinematic calibration performance is heavily dependent on two factors-the ability of calibration configurations mapping kinematic parameter errors, and the un-modeled errors including joint clearance, thermal expansion, and measurement noise. Therefore, this paper deals with the calibration configur...
Ausführliche Beschreibung
Autor*in: |
Gang Chen [verfasserIn] Lei Wang [verfasserIn] Bonan Yuan [verfasserIn] Dan Liu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 7(2019), Seite 50179-50197 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2019 ; pages:50179-50197 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2019.2910325 |
---|
Katalog-ID: |
DOAJ007134886 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ007134886 | ||
003 | DE-627 | ||
005 | 20230309213536.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2019.2910325 |2 doi | |
035 | |a (DE-627)DOAJ007134886 | ||
035 | |a (DE-599)DOAJ28327dede5a64c02b39d0af01c4039be | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Gang Chen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Configuration Optimization for Manipulator Kinematic Calibration Based on Comprehensive Quality Index |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Kinematic calibration performance is heavily dependent on two factors-the ability of calibration configurations mapping kinematic parameter errors, and the un-modeled errors including joint clearance, thermal expansion, and measurement noise. Therefore, this paper deals with the calibration configuration optimization to reduce the impact of the two factors on calibration performance. We pay particular attention to establish an index for evaluating calibration configuration's quality. Different from other works, the proposed comprehensive quality index can simultaneously reflect configurations' observability and globality. Furthermore, the numerical methods are used to analyze the relationships between the comprehensive quality index and configuration number, and the relationships between calibration performance and configuration number. Based on the above relationships, we provide a feasible solution for determining the calibration configuration number of a specific manipulator. Based on the above work, configuration optimization model is established and solved by particle swarm optimization. The simulation of an eight degree-of-freedom manipulator illustrates the advantages of the proposed method. In 100 calibration simulations, optimized configurations perform better than random configurations, with the position accuracy increased by 43.86% and the attitude accuracy increased by 14.29%. | ||
650 | 4 | |a Calibration configuration | |
650 | 4 | |a comprehensive quality index | |
650 | 4 | |a kinematic calibration | |
650 | 4 | |a particle swarm optimization | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Lei Wang |e verfasserin |4 aut | |
700 | 0 | |a Bonan Yuan |e verfasserin |4 aut | |
700 | 0 | |a Dan Liu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 7(2019), Seite 50179-50197 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2019 |g pages:50179-50197 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2019.2910325 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/28327dede5a64c02b39d0af01c4039be |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8686085/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2019 |h 50179-50197 |
author_variant |
g c gc l w lw b y by d l dl |
---|---|
matchkey_str |
article:21693536:2019----::ofgrtootmztofraiuaoknmtcairtobsdn |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TK |
publishDate |
2019 |
allfields |
10.1109/ACCESS.2019.2910325 doi (DE-627)DOAJ007134886 (DE-599)DOAJ28327dede5a64c02b39d0af01c4039be DE-627 ger DE-627 rakwb eng TK1-9971 Gang Chen verfasserin aut Configuration Optimization for Manipulator Kinematic Calibration Based on Comprehensive Quality Index 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Kinematic calibration performance is heavily dependent on two factors-the ability of calibration configurations mapping kinematic parameter errors, and the un-modeled errors including joint clearance, thermal expansion, and measurement noise. Therefore, this paper deals with the calibration configuration optimization to reduce the impact of the two factors on calibration performance. We pay particular attention to establish an index for evaluating calibration configuration's quality. Different from other works, the proposed comprehensive quality index can simultaneously reflect configurations' observability and globality. Furthermore, the numerical methods are used to analyze the relationships between the comprehensive quality index and configuration number, and the relationships between calibration performance and configuration number. Based on the above relationships, we provide a feasible solution for determining the calibration configuration number of a specific manipulator. Based on the above work, configuration optimization model is established and solved by particle swarm optimization. The simulation of an eight degree-of-freedom manipulator illustrates the advantages of the proposed method. In 100 calibration simulations, optimized configurations perform better than random configurations, with the position accuracy increased by 43.86% and the attitude accuracy increased by 14.29%. Calibration configuration comprehensive quality index kinematic calibration particle swarm optimization Electrical engineering. Electronics. Nuclear engineering Lei Wang verfasserin aut Bonan Yuan verfasserin aut Dan Liu verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 50179-50197 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:50179-50197 https://doi.org/10.1109/ACCESS.2019.2910325 kostenfrei https://doaj.org/article/28327dede5a64c02b39d0af01c4039be kostenfrei https://ieeexplore.ieee.org/document/8686085/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 50179-50197 |
spelling |
10.1109/ACCESS.2019.2910325 doi (DE-627)DOAJ007134886 (DE-599)DOAJ28327dede5a64c02b39d0af01c4039be DE-627 ger DE-627 rakwb eng TK1-9971 Gang Chen verfasserin aut Configuration Optimization for Manipulator Kinematic Calibration Based on Comprehensive Quality Index 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Kinematic calibration performance is heavily dependent on two factors-the ability of calibration configurations mapping kinematic parameter errors, and the un-modeled errors including joint clearance, thermal expansion, and measurement noise. Therefore, this paper deals with the calibration configuration optimization to reduce the impact of the two factors on calibration performance. We pay particular attention to establish an index for evaluating calibration configuration's quality. Different from other works, the proposed comprehensive quality index can simultaneously reflect configurations' observability and globality. Furthermore, the numerical methods are used to analyze the relationships between the comprehensive quality index and configuration number, and the relationships between calibration performance and configuration number. Based on the above relationships, we provide a feasible solution for determining the calibration configuration number of a specific manipulator. Based on the above work, configuration optimization model is established and solved by particle swarm optimization. The simulation of an eight degree-of-freedom manipulator illustrates the advantages of the proposed method. In 100 calibration simulations, optimized configurations perform better than random configurations, with the position accuracy increased by 43.86% and the attitude accuracy increased by 14.29%. Calibration configuration comprehensive quality index kinematic calibration particle swarm optimization Electrical engineering. Electronics. Nuclear engineering Lei Wang verfasserin aut Bonan Yuan verfasserin aut Dan Liu verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 50179-50197 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:50179-50197 https://doi.org/10.1109/ACCESS.2019.2910325 kostenfrei https://doaj.org/article/28327dede5a64c02b39d0af01c4039be kostenfrei https://ieeexplore.ieee.org/document/8686085/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 50179-50197 |
allfields_unstemmed |
10.1109/ACCESS.2019.2910325 doi (DE-627)DOAJ007134886 (DE-599)DOAJ28327dede5a64c02b39d0af01c4039be DE-627 ger DE-627 rakwb eng TK1-9971 Gang Chen verfasserin aut Configuration Optimization for Manipulator Kinematic Calibration Based on Comprehensive Quality Index 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Kinematic calibration performance is heavily dependent on two factors-the ability of calibration configurations mapping kinematic parameter errors, and the un-modeled errors including joint clearance, thermal expansion, and measurement noise. Therefore, this paper deals with the calibration configuration optimization to reduce the impact of the two factors on calibration performance. We pay particular attention to establish an index for evaluating calibration configuration's quality. Different from other works, the proposed comprehensive quality index can simultaneously reflect configurations' observability and globality. Furthermore, the numerical methods are used to analyze the relationships between the comprehensive quality index and configuration number, and the relationships between calibration performance and configuration number. Based on the above relationships, we provide a feasible solution for determining the calibration configuration number of a specific manipulator. Based on the above work, configuration optimization model is established and solved by particle swarm optimization. The simulation of an eight degree-of-freedom manipulator illustrates the advantages of the proposed method. In 100 calibration simulations, optimized configurations perform better than random configurations, with the position accuracy increased by 43.86% and the attitude accuracy increased by 14.29%. Calibration configuration comprehensive quality index kinematic calibration particle swarm optimization Electrical engineering. Electronics. Nuclear engineering Lei Wang verfasserin aut Bonan Yuan verfasserin aut Dan Liu verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 50179-50197 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:50179-50197 https://doi.org/10.1109/ACCESS.2019.2910325 kostenfrei https://doaj.org/article/28327dede5a64c02b39d0af01c4039be kostenfrei https://ieeexplore.ieee.org/document/8686085/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 50179-50197 |
allfieldsGer |
10.1109/ACCESS.2019.2910325 doi (DE-627)DOAJ007134886 (DE-599)DOAJ28327dede5a64c02b39d0af01c4039be DE-627 ger DE-627 rakwb eng TK1-9971 Gang Chen verfasserin aut Configuration Optimization for Manipulator Kinematic Calibration Based on Comprehensive Quality Index 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Kinematic calibration performance is heavily dependent on two factors-the ability of calibration configurations mapping kinematic parameter errors, and the un-modeled errors including joint clearance, thermal expansion, and measurement noise. Therefore, this paper deals with the calibration configuration optimization to reduce the impact of the two factors on calibration performance. We pay particular attention to establish an index for evaluating calibration configuration's quality. Different from other works, the proposed comprehensive quality index can simultaneously reflect configurations' observability and globality. Furthermore, the numerical methods are used to analyze the relationships between the comprehensive quality index and configuration number, and the relationships between calibration performance and configuration number. Based on the above relationships, we provide a feasible solution for determining the calibration configuration number of a specific manipulator. Based on the above work, configuration optimization model is established and solved by particle swarm optimization. The simulation of an eight degree-of-freedom manipulator illustrates the advantages of the proposed method. In 100 calibration simulations, optimized configurations perform better than random configurations, with the position accuracy increased by 43.86% and the attitude accuracy increased by 14.29%. Calibration configuration comprehensive quality index kinematic calibration particle swarm optimization Electrical engineering. Electronics. Nuclear engineering Lei Wang verfasserin aut Bonan Yuan verfasserin aut Dan Liu verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 50179-50197 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:50179-50197 https://doi.org/10.1109/ACCESS.2019.2910325 kostenfrei https://doaj.org/article/28327dede5a64c02b39d0af01c4039be kostenfrei https://ieeexplore.ieee.org/document/8686085/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 50179-50197 |
allfieldsSound |
10.1109/ACCESS.2019.2910325 doi (DE-627)DOAJ007134886 (DE-599)DOAJ28327dede5a64c02b39d0af01c4039be DE-627 ger DE-627 rakwb eng TK1-9971 Gang Chen verfasserin aut Configuration Optimization for Manipulator Kinematic Calibration Based on Comprehensive Quality Index 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Kinematic calibration performance is heavily dependent on two factors-the ability of calibration configurations mapping kinematic parameter errors, and the un-modeled errors including joint clearance, thermal expansion, and measurement noise. Therefore, this paper deals with the calibration configuration optimization to reduce the impact of the two factors on calibration performance. We pay particular attention to establish an index for evaluating calibration configuration's quality. Different from other works, the proposed comprehensive quality index can simultaneously reflect configurations' observability and globality. Furthermore, the numerical methods are used to analyze the relationships between the comprehensive quality index and configuration number, and the relationships between calibration performance and configuration number. Based on the above relationships, we provide a feasible solution for determining the calibration configuration number of a specific manipulator. Based on the above work, configuration optimization model is established and solved by particle swarm optimization. The simulation of an eight degree-of-freedom manipulator illustrates the advantages of the proposed method. In 100 calibration simulations, optimized configurations perform better than random configurations, with the position accuracy increased by 43.86% and the attitude accuracy increased by 14.29%. Calibration configuration comprehensive quality index kinematic calibration particle swarm optimization Electrical engineering. Electronics. Nuclear engineering Lei Wang verfasserin aut Bonan Yuan verfasserin aut Dan Liu verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 50179-50197 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:50179-50197 https://doi.org/10.1109/ACCESS.2019.2910325 kostenfrei https://doaj.org/article/28327dede5a64c02b39d0af01c4039be kostenfrei https://ieeexplore.ieee.org/document/8686085/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 50179-50197 |
language |
English |
source |
In IEEE Access 7(2019), Seite 50179-50197 volume:7 year:2019 pages:50179-50197 |
sourceStr |
In IEEE Access 7(2019), Seite 50179-50197 volume:7 year:2019 pages:50179-50197 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Calibration configuration comprehensive quality index kinematic calibration particle swarm optimization Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Gang Chen @@aut@@ Lei Wang @@aut@@ Bonan Yuan @@aut@@ Dan Liu @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ007134886 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007134886</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309213536.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2910325</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007134886</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ28327dede5a64c02b39d0af01c4039be</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gang Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Configuration Optimization for Manipulator Kinematic Calibration Based on Comprehensive Quality Index</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Kinematic calibration performance is heavily dependent on two factors-the ability of calibration configurations mapping kinematic parameter errors, and the un-modeled errors including joint clearance, thermal expansion, and measurement noise. Therefore, this paper deals with the calibration configuration optimization to reduce the impact of the two factors on calibration performance. We pay particular attention to establish an index for evaluating calibration configuration's quality. Different from other works, the proposed comprehensive quality index can simultaneously reflect configurations' observability and globality. Furthermore, the numerical methods are used to analyze the relationships between the comprehensive quality index and configuration number, and the relationships between calibration performance and configuration number. Based on the above relationships, we provide a feasible solution for determining the calibration configuration number of a specific manipulator. Based on the above work, configuration optimization model is established and solved by particle swarm optimization. The simulation of an eight degree-of-freedom manipulator illustrates the advantages of the proposed method. In 100 calibration simulations, optimized configurations perform better than random configurations, with the position accuracy increased by 43.86% and the attitude accuracy increased by 14.29%.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calibration configuration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">comprehensive quality index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">kinematic calibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">particle swarm optimization</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bonan Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 50179-50197</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:50179-50197</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2910325</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/28327dede5a64c02b39d0af01c4039be</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8686085/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">50179-50197</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Gang Chen |
spellingShingle |
Gang Chen misc TK1-9971 misc Calibration configuration misc comprehensive quality index misc kinematic calibration misc particle swarm optimization misc Electrical engineering. Electronics. Nuclear engineering Configuration Optimization for Manipulator Kinematic Calibration Based on Comprehensive Quality Index |
authorStr |
Gang Chen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Configuration Optimization for Manipulator Kinematic Calibration Based on Comprehensive Quality Index Calibration configuration comprehensive quality index kinematic calibration particle swarm optimization |
topic |
misc TK1-9971 misc Calibration configuration misc comprehensive quality index misc kinematic calibration misc particle swarm optimization misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Calibration configuration misc comprehensive quality index misc kinematic calibration misc particle swarm optimization misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Calibration configuration misc comprehensive quality index misc kinematic calibration misc particle swarm optimization misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Configuration Optimization for Manipulator Kinematic Calibration Based on Comprehensive Quality Index |
ctrlnum |
(DE-627)DOAJ007134886 (DE-599)DOAJ28327dede5a64c02b39d0af01c4039be |
title_full |
Configuration Optimization for Manipulator Kinematic Calibration Based on Comprehensive Quality Index |
author_sort |
Gang Chen |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
50179 |
author_browse |
Gang Chen Lei Wang Bonan Yuan Dan Liu |
container_volume |
7 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Gang Chen |
doi_str_mv |
10.1109/ACCESS.2019.2910325 |
author2-role |
verfasserin |
title_sort |
configuration optimization for manipulator kinematic calibration based on comprehensive quality index |
callnumber |
TK1-9971 |
title_auth |
Configuration Optimization for Manipulator Kinematic Calibration Based on Comprehensive Quality Index |
abstract |
Kinematic calibration performance is heavily dependent on two factors-the ability of calibration configurations mapping kinematic parameter errors, and the un-modeled errors including joint clearance, thermal expansion, and measurement noise. Therefore, this paper deals with the calibration configuration optimization to reduce the impact of the two factors on calibration performance. We pay particular attention to establish an index for evaluating calibration configuration's quality. Different from other works, the proposed comprehensive quality index can simultaneously reflect configurations' observability and globality. Furthermore, the numerical methods are used to analyze the relationships between the comprehensive quality index and configuration number, and the relationships between calibration performance and configuration number. Based on the above relationships, we provide a feasible solution for determining the calibration configuration number of a specific manipulator. Based on the above work, configuration optimization model is established and solved by particle swarm optimization. The simulation of an eight degree-of-freedom manipulator illustrates the advantages of the proposed method. In 100 calibration simulations, optimized configurations perform better than random configurations, with the position accuracy increased by 43.86% and the attitude accuracy increased by 14.29%. |
abstractGer |
Kinematic calibration performance is heavily dependent on two factors-the ability of calibration configurations mapping kinematic parameter errors, and the un-modeled errors including joint clearance, thermal expansion, and measurement noise. Therefore, this paper deals with the calibration configuration optimization to reduce the impact of the two factors on calibration performance. We pay particular attention to establish an index for evaluating calibration configuration's quality. Different from other works, the proposed comprehensive quality index can simultaneously reflect configurations' observability and globality. Furthermore, the numerical methods are used to analyze the relationships between the comprehensive quality index and configuration number, and the relationships between calibration performance and configuration number. Based on the above relationships, we provide a feasible solution for determining the calibration configuration number of a specific manipulator. Based on the above work, configuration optimization model is established and solved by particle swarm optimization. The simulation of an eight degree-of-freedom manipulator illustrates the advantages of the proposed method. In 100 calibration simulations, optimized configurations perform better than random configurations, with the position accuracy increased by 43.86% and the attitude accuracy increased by 14.29%. |
abstract_unstemmed |
Kinematic calibration performance is heavily dependent on two factors-the ability of calibration configurations mapping kinematic parameter errors, and the un-modeled errors including joint clearance, thermal expansion, and measurement noise. Therefore, this paper deals with the calibration configuration optimization to reduce the impact of the two factors on calibration performance. We pay particular attention to establish an index for evaluating calibration configuration's quality. Different from other works, the proposed comprehensive quality index can simultaneously reflect configurations' observability and globality. Furthermore, the numerical methods are used to analyze the relationships between the comprehensive quality index and configuration number, and the relationships between calibration performance and configuration number. Based on the above relationships, we provide a feasible solution for determining the calibration configuration number of a specific manipulator. Based on the above work, configuration optimization model is established and solved by particle swarm optimization. The simulation of an eight degree-of-freedom manipulator illustrates the advantages of the proposed method. In 100 calibration simulations, optimized configurations perform better than random configurations, with the position accuracy increased by 43.86% and the attitude accuracy increased by 14.29%. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Configuration Optimization for Manipulator Kinematic Calibration Based on Comprehensive Quality Index |
url |
https://doi.org/10.1109/ACCESS.2019.2910325 https://doaj.org/article/28327dede5a64c02b39d0af01c4039be https://ieeexplore.ieee.org/document/8686085/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Lei Wang Bonan Yuan Dan Liu |
author2Str |
Lei Wang Bonan Yuan Dan Liu |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2019.2910325 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T00:24:41.483Z |
_version_ |
1803605960539766784 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007134886</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309213536.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2910325</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007134886</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ28327dede5a64c02b39d0af01c4039be</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gang Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Configuration Optimization for Manipulator Kinematic Calibration Based on Comprehensive Quality Index</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Kinematic calibration performance is heavily dependent on two factors-the ability of calibration configurations mapping kinematic parameter errors, and the un-modeled errors including joint clearance, thermal expansion, and measurement noise. Therefore, this paper deals with the calibration configuration optimization to reduce the impact of the two factors on calibration performance. We pay particular attention to establish an index for evaluating calibration configuration's quality. Different from other works, the proposed comprehensive quality index can simultaneously reflect configurations' observability and globality. Furthermore, the numerical methods are used to analyze the relationships between the comprehensive quality index and configuration number, and the relationships between calibration performance and configuration number. Based on the above relationships, we provide a feasible solution for determining the calibration configuration number of a specific manipulator. Based on the above work, configuration optimization model is established and solved by particle swarm optimization. The simulation of an eight degree-of-freedom manipulator illustrates the advantages of the proposed method. In 100 calibration simulations, optimized configurations perform better than random configurations, with the position accuracy increased by 43.86% and the attitude accuracy increased by 14.29%.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calibration configuration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">comprehensive quality index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">kinematic calibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">particle swarm optimization</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bonan Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 50179-50197</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:50179-50197</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2910325</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/28327dede5a64c02b39d0af01c4039be</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8686085/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">50179-50197</subfield></datafield></record></collection>
|
score |
7.399624 |