Realistic Multi-Scale Modeling of Household Electricity Behaviors
To improve the management and reliability of power distribution networks, there is a strong demand for models simulating energy loads in a realistic way. In this paper, we present a novel multi-scale model to generate realistic residential load profiles at different spatial-temporal resolutions. By...
Ausführliche Beschreibung
Autor*in: |
Lorenzo Bottaccioli [verfasserIn] Santa Di Cataldo [verfasserIn] Andrea Acquaviva [verfasserIn] Edoardo Patti [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 7(2019), Seite 2467-2489 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2019 ; pages:2467-2489 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2018.2886201 |
---|
Katalog-ID: |
DOAJ007148623 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ007148623 | ||
003 | DE-627 | ||
005 | 20230309213758.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2018.2886201 |2 doi | |
035 | |a (DE-627)DOAJ007148623 | ||
035 | |a (DE-599)DOAJ4c360e30262a4dac97b7316929212a7b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Lorenzo Bottaccioli |e verfasserin |4 aut | |
245 | 1 | 0 | |a Realistic Multi-Scale Modeling of Household Electricity Behaviors |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a To improve the management and reliability of power distribution networks, there is a strong demand for models simulating energy loads in a realistic way. In this paper, we present a novel multi-scale model to generate realistic residential load profiles at different spatial-temporal resolutions. By taking advantage of the information from census and national surveys, we generate statistically consistent populations of heterogeneous families with their respective appliances. Exploiting a bottom-up approach based on Monte Carlo Non-Homogeneous Semi-Markov, we provide household end-user behaviors and realistic households load profiles on a daily as well as on a weekly basis, for weekdays and weekends. The proposed approach overcomes the limitations of the state-of-the-art solutions that consider neither the time-dependency of the probability of performing specific activities in a house, nor their duration or are limited in the type of probability distributions they can model. On top of that, it provides outcomes that are not limited to a per-day basis. The range of available space and time resolutions span from single household to district and from second to year, respectively, featuring multi-level aggregation of the simulation outcomes. To demonstrate the accuracy of our model, we present experimental results obtained by simulating realistic populations in a period covering a whole calendar year and analyze our model’s outcome at different scales. Then, we compare such results with three different data-sets that provide real load consumption at the household, national, and European levels, respectively. | ||
650 | 4 | |a Household load profile | |
650 | 4 | |a Non Homogeneous Semi-Markov Model | |
650 | 4 | |a Monte Carlo | |
650 | 4 | |a time use survey | |
650 | 4 | |a use of energy | |
650 | 4 | |a load modeling | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Santa Di Cataldo |e verfasserin |4 aut | |
700 | 0 | |a Andrea Acquaviva |e verfasserin |4 aut | |
700 | 0 | |a Edoardo Patti |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 7(2019), Seite 2467-2489 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2019 |g pages:2467-2489 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2018.2886201 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4c360e30262a4dac97b7316929212a7b |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8573766/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2019 |h 2467-2489 |
author_variant |
l b lb s d c sdc a a aa e p ep |
---|---|
matchkey_str |
article:21693536:2019----::elsimliclmdlnohueodlc |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TK |
publishDate |
2019 |
allfields |
10.1109/ACCESS.2018.2886201 doi (DE-627)DOAJ007148623 (DE-599)DOAJ4c360e30262a4dac97b7316929212a7b DE-627 ger DE-627 rakwb eng TK1-9971 Lorenzo Bottaccioli verfasserin aut Realistic Multi-Scale Modeling of Household Electricity Behaviors 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To improve the management and reliability of power distribution networks, there is a strong demand for models simulating energy loads in a realistic way. In this paper, we present a novel multi-scale model to generate realistic residential load profiles at different spatial-temporal resolutions. By taking advantage of the information from census and national surveys, we generate statistically consistent populations of heterogeneous families with their respective appliances. Exploiting a bottom-up approach based on Monte Carlo Non-Homogeneous Semi-Markov, we provide household end-user behaviors and realistic households load profiles on a daily as well as on a weekly basis, for weekdays and weekends. The proposed approach overcomes the limitations of the state-of-the-art solutions that consider neither the time-dependency of the probability of performing specific activities in a house, nor their duration or are limited in the type of probability distributions they can model. On top of that, it provides outcomes that are not limited to a per-day basis. The range of available space and time resolutions span from single household to district and from second to year, respectively, featuring multi-level aggregation of the simulation outcomes. To demonstrate the accuracy of our model, we present experimental results obtained by simulating realistic populations in a period covering a whole calendar year and analyze our model’s outcome at different scales. Then, we compare such results with three different data-sets that provide real load consumption at the household, national, and European levels, respectively. Household load profile Non Homogeneous Semi-Markov Model Monte Carlo time use survey use of energy load modeling Electrical engineering. Electronics. Nuclear engineering Santa Di Cataldo verfasserin aut Andrea Acquaviva verfasserin aut Edoardo Patti verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 2467-2489 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:2467-2489 https://doi.org/10.1109/ACCESS.2018.2886201 kostenfrei https://doaj.org/article/4c360e30262a4dac97b7316929212a7b kostenfrei https://ieeexplore.ieee.org/document/8573766/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 2467-2489 |
spelling |
10.1109/ACCESS.2018.2886201 doi (DE-627)DOAJ007148623 (DE-599)DOAJ4c360e30262a4dac97b7316929212a7b DE-627 ger DE-627 rakwb eng TK1-9971 Lorenzo Bottaccioli verfasserin aut Realistic Multi-Scale Modeling of Household Electricity Behaviors 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To improve the management and reliability of power distribution networks, there is a strong demand for models simulating energy loads in a realistic way. In this paper, we present a novel multi-scale model to generate realistic residential load profiles at different spatial-temporal resolutions. By taking advantage of the information from census and national surveys, we generate statistically consistent populations of heterogeneous families with their respective appliances. Exploiting a bottom-up approach based on Monte Carlo Non-Homogeneous Semi-Markov, we provide household end-user behaviors and realistic households load profiles on a daily as well as on a weekly basis, for weekdays and weekends. The proposed approach overcomes the limitations of the state-of-the-art solutions that consider neither the time-dependency of the probability of performing specific activities in a house, nor their duration or are limited in the type of probability distributions they can model. On top of that, it provides outcomes that are not limited to a per-day basis. The range of available space and time resolutions span from single household to district and from second to year, respectively, featuring multi-level aggregation of the simulation outcomes. To demonstrate the accuracy of our model, we present experimental results obtained by simulating realistic populations in a period covering a whole calendar year and analyze our model’s outcome at different scales. Then, we compare such results with three different data-sets that provide real load consumption at the household, national, and European levels, respectively. Household load profile Non Homogeneous Semi-Markov Model Monte Carlo time use survey use of energy load modeling Electrical engineering. Electronics. Nuclear engineering Santa Di Cataldo verfasserin aut Andrea Acquaviva verfasserin aut Edoardo Patti verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 2467-2489 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:2467-2489 https://doi.org/10.1109/ACCESS.2018.2886201 kostenfrei https://doaj.org/article/4c360e30262a4dac97b7316929212a7b kostenfrei https://ieeexplore.ieee.org/document/8573766/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 2467-2489 |
allfields_unstemmed |
10.1109/ACCESS.2018.2886201 doi (DE-627)DOAJ007148623 (DE-599)DOAJ4c360e30262a4dac97b7316929212a7b DE-627 ger DE-627 rakwb eng TK1-9971 Lorenzo Bottaccioli verfasserin aut Realistic Multi-Scale Modeling of Household Electricity Behaviors 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To improve the management and reliability of power distribution networks, there is a strong demand for models simulating energy loads in a realistic way. In this paper, we present a novel multi-scale model to generate realistic residential load profiles at different spatial-temporal resolutions. By taking advantage of the information from census and national surveys, we generate statistically consistent populations of heterogeneous families with their respective appliances. Exploiting a bottom-up approach based on Monte Carlo Non-Homogeneous Semi-Markov, we provide household end-user behaviors and realistic households load profiles on a daily as well as on a weekly basis, for weekdays and weekends. The proposed approach overcomes the limitations of the state-of-the-art solutions that consider neither the time-dependency of the probability of performing specific activities in a house, nor their duration or are limited in the type of probability distributions they can model. On top of that, it provides outcomes that are not limited to a per-day basis. The range of available space and time resolutions span from single household to district and from second to year, respectively, featuring multi-level aggregation of the simulation outcomes. To demonstrate the accuracy of our model, we present experimental results obtained by simulating realistic populations in a period covering a whole calendar year and analyze our model’s outcome at different scales. Then, we compare such results with three different data-sets that provide real load consumption at the household, national, and European levels, respectively. Household load profile Non Homogeneous Semi-Markov Model Monte Carlo time use survey use of energy load modeling Electrical engineering. Electronics. Nuclear engineering Santa Di Cataldo verfasserin aut Andrea Acquaviva verfasserin aut Edoardo Patti verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 2467-2489 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:2467-2489 https://doi.org/10.1109/ACCESS.2018.2886201 kostenfrei https://doaj.org/article/4c360e30262a4dac97b7316929212a7b kostenfrei https://ieeexplore.ieee.org/document/8573766/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 2467-2489 |
allfieldsGer |
10.1109/ACCESS.2018.2886201 doi (DE-627)DOAJ007148623 (DE-599)DOAJ4c360e30262a4dac97b7316929212a7b DE-627 ger DE-627 rakwb eng TK1-9971 Lorenzo Bottaccioli verfasserin aut Realistic Multi-Scale Modeling of Household Electricity Behaviors 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To improve the management and reliability of power distribution networks, there is a strong demand for models simulating energy loads in a realistic way. In this paper, we present a novel multi-scale model to generate realistic residential load profiles at different spatial-temporal resolutions. By taking advantage of the information from census and national surveys, we generate statistically consistent populations of heterogeneous families with their respective appliances. Exploiting a bottom-up approach based on Monte Carlo Non-Homogeneous Semi-Markov, we provide household end-user behaviors and realistic households load profiles on a daily as well as on a weekly basis, for weekdays and weekends. The proposed approach overcomes the limitations of the state-of-the-art solutions that consider neither the time-dependency of the probability of performing specific activities in a house, nor their duration or are limited in the type of probability distributions they can model. On top of that, it provides outcomes that are not limited to a per-day basis. The range of available space and time resolutions span from single household to district and from second to year, respectively, featuring multi-level aggregation of the simulation outcomes. To demonstrate the accuracy of our model, we present experimental results obtained by simulating realistic populations in a period covering a whole calendar year and analyze our model’s outcome at different scales. Then, we compare such results with three different data-sets that provide real load consumption at the household, national, and European levels, respectively. Household load profile Non Homogeneous Semi-Markov Model Monte Carlo time use survey use of energy load modeling Electrical engineering. Electronics. Nuclear engineering Santa Di Cataldo verfasserin aut Andrea Acquaviva verfasserin aut Edoardo Patti verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 2467-2489 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:2467-2489 https://doi.org/10.1109/ACCESS.2018.2886201 kostenfrei https://doaj.org/article/4c360e30262a4dac97b7316929212a7b kostenfrei https://ieeexplore.ieee.org/document/8573766/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 2467-2489 |
allfieldsSound |
10.1109/ACCESS.2018.2886201 doi (DE-627)DOAJ007148623 (DE-599)DOAJ4c360e30262a4dac97b7316929212a7b DE-627 ger DE-627 rakwb eng TK1-9971 Lorenzo Bottaccioli verfasserin aut Realistic Multi-Scale Modeling of Household Electricity Behaviors 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To improve the management and reliability of power distribution networks, there is a strong demand for models simulating energy loads in a realistic way. In this paper, we present a novel multi-scale model to generate realistic residential load profiles at different spatial-temporal resolutions. By taking advantage of the information from census and national surveys, we generate statistically consistent populations of heterogeneous families with their respective appliances. Exploiting a bottom-up approach based on Monte Carlo Non-Homogeneous Semi-Markov, we provide household end-user behaviors and realistic households load profiles on a daily as well as on a weekly basis, for weekdays and weekends. The proposed approach overcomes the limitations of the state-of-the-art solutions that consider neither the time-dependency of the probability of performing specific activities in a house, nor their duration or are limited in the type of probability distributions they can model. On top of that, it provides outcomes that are not limited to a per-day basis. The range of available space and time resolutions span from single household to district and from second to year, respectively, featuring multi-level aggregation of the simulation outcomes. To demonstrate the accuracy of our model, we present experimental results obtained by simulating realistic populations in a period covering a whole calendar year and analyze our model’s outcome at different scales. Then, we compare such results with three different data-sets that provide real load consumption at the household, national, and European levels, respectively. Household load profile Non Homogeneous Semi-Markov Model Monte Carlo time use survey use of energy load modeling Electrical engineering. Electronics. Nuclear engineering Santa Di Cataldo verfasserin aut Andrea Acquaviva verfasserin aut Edoardo Patti verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 2467-2489 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:2467-2489 https://doi.org/10.1109/ACCESS.2018.2886201 kostenfrei https://doaj.org/article/4c360e30262a4dac97b7316929212a7b kostenfrei https://ieeexplore.ieee.org/document/8573766/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 2467-2489 |
language |
English |
source |
In IEEE Access 7(2019), Seite 2467-2489 volume:7 year:2019 pages:2467-2489 |
sourceStr |
In IEEE Access 7(2019), Seite 2467-2489 volume:7 year:2019 pages:2467-2489 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Household load profile Non Homogeneous Semi-Markov Model Monte Carlo time use survey use of energy load modeling Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Lorenzo Bottaccioli @@aut@@ Santa Di Cataldo @@aut@@ Andrea Acquaviva @@aut@@ Edoardo Patti @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ007148623 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007148623</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309213758.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2018.2886201</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007148623</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4c360e30262a4dac97b7316929212a7b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lorenzo Bottaccioli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Realistic Multi-Scale Modeling of Household Electricity Behaviors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To improve the management and reliability of power distribution networks, there is a strong demand for models simulating energy loads in a realistic way. In this paper, we present a novel multi-scale model to generate realistic residential load profiles at different spatial-temporal resolutions. By taking advantage of the information from census and national surveys, we generate statistically consistent populations of heterogeneous families with their respective appliances. Exploiting a bottom-up approach based on Monte Carlo Non-Homogeneous Semi-Markov, we provide household end-user behaviors and realistic households load profiles on a daily as well as on a weekly basis, for weekdays and weekends. The proposed approach overcomes the limitations of the state-of-the-art solutions that consider neither the time-dependency of the probability of performing specific activities in a house, nor their duration or are limited in the type of probability distributions they can model. On top of that, it provides outcomes that are not limited to a per-day basis. The range of available space and time resolutions span from single household to district and from second to year, respectively, featuring multi-level aggregation of the simulation outcomes. To demonstrate the accuracy of our model, we present experimental results obtained by simulating realistic populations in a period covering a whole calendar year and analyze our model’s outcome at different scales. Then, we compare such results with three different data-sets that provide real load consumption at the household, national, and European levels, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Household load profile</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non Homogeneous Semi-Markov Model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time use survey</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">use of energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">load modeling</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Santa Di Cataldo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea Acquaviva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Edoardo Patti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 2467-2489</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:2467-2489</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2018.2886201</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4c360e30262a4dac97b7316929212a7b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8573766/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">2467-2489</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Lorenzo Bottaccioli |
spellingShingle |
Lorenzo Bottaccioli misc TK1-9971 misc Household load profile misc Non Homogeneous Semi-Markov Model misc Monte Carlo misc time use survey misc use of energy misc load modeling misc Electrical engineering. Electronics. Nuclear engineering Realistic Multi-Scale Modeling of Household Electricity Behaviors |
authorStr |
Lorenzo Bottaccioli |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Realistic Multi-Scale Modeling of Household Electricity Behaviors Household load profile Non Homogeneous Semi-Markov Model Monte Carlo time use survey use of energy load modeling |
topic |
misc TK1-9971 misc Household load profile misc Non Homogeneous Semi-Markov Model misc Monte Carlo misc time use survey misc use of energy misc load modeling misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Household load profile misc Non Homogeneous Semi-Markov Model misc Monte Carlo misc time use survey misc use of energy misc load modeling misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Household load profile misc Non Homogeneous Semi-Markov Model misc Monte Carlo misc time use survey misc use of energy misc load modeling misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Realistic Multi-Scale Modeling of Household Electricity Behaviors |
ctrlnum |
(DE-627)DOAJ007148623 (DE-599)DOAJ4c360e30262a4dac97b7316929212a7b |
title_full |
Realistic Multi-Scale Modeling of Household Electricity Behaviors |
author_sort |
Lorenzo Bottaccioli |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
2467 |
author_browse |
Lorenzo Bottaccioli Santa Di Cataldo Andrea Acquaviva Edoardo Patti |
container_volume |
7 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Lorenzo Bottaccioli |
doi_str_mv |
10.1109/ACCESS.2018.2886201 |
author2-role |
verfasserin |
title_sort |
realistic multi-scale modeling of household electricity behaviors |
callnumber |
TK1-9971 |
title_auth |
Realistic Multi-Scale Modeling of Household Electricity Behaviors |
abstract |
To improve the management and reliability of power distribution networks, there is a strong demand for models simulating energy loads in a realistic way. In this paper, we present a novel multi-scale model to generate realistic residential load profiles at different spatial-temporal resolutions. By taking advantage of the information from census and national surveys, we generate statistically consistent populations of heterogeneous families with their respective appliances. Exploiting a bottom-up approach based on Monte Carlo Non-Homogeneous Semi-Markov, we provide household end-user behaviors and realistic households load profiles on a daily as well as on a weekly basis, for weekdays and weekends. The proposed approach overcomes the limitations of the state-of-the-art solutions that consider neither the time-dependency of the probability of performing specific activities in a house, nor their duration or are limited in the type of probability distributions they can model. On top of that, it provides outcomes that are not limited to a per-day basis. The range of available space and time resolutions span from single household to district and from second to year, respectively, featuring multi-level aggregation of the simulation outcomes. To demonstrate the accuracy of our model, we present experimental results obtained by simulating realistic populations in a period covering a whole calendar year and analyze our model’s outcome at different scales. Then, we compare such results with three different data-sets that provide real load consumption at the household, national, and European levels, respectively. |
abstractGer |
To improve the management and reliability of power distribution networks, there is a strong demand for models simulating energy loads in a realistic way. In this paper, we present a novel multi-scale model to generate realistic residential load profiles at different spatial-temporal resolutions. By taking advantage of the information from census and national surveys, we generate statistically consistent populations of heterogeneous families with their respective appliances. Exploiting a bottom-up approach based on Monte Carlo Non-Homogeneous Semi-Markov, we provide household end-user behaviors and realistic households load profiles on a daily as well as on a weekly basis, for weekdays and weekends. The proposed approach overcomes the limitations of the state-of-the-art solutions that consider neither the time-dependency of the probability of performing specific activities in a house, nor their duration or are limited in the type of probability distributions they can model. On top of that, it provides outcomes that are not limited to a per-day basis. The range of available space and time resolutions span from single household to district and from second to year, respectively, featuring multi-level aggregation of the simulation outcomes. To demonstrate the accuracy of our model, we present experimental results obtained by simulating realistic populations in a period covering a whole calendar year and analyze our model’s outcome at different scales. Then, we compare such results with three different data-sets that provide real load consumption at the household, national, and European levels, respectively. |
abstract_unstemmed |
To improve the management and reliability of power distribution networks, there is a strong demand for models simulating energy loads in a realistic way. In this paper, we present a novel multi-scale model to generate realistic residential load profiles at different spatial-temporal resolutions. By taking advantage of the information from census and national surveys, we generate statistically consistent populations of heterogeneous families with their respective appliances. Exploiting a bottom-up approach based on Monte Carlo Non-Homogeneous Semi-Markov, we provide household end-user behaviors and realistic households load profiles on a daily as well as on a weekly basis, for weekdays and weekends. The proposed approach overcomes the limitations of the state-of-the-art solutions that consider neither the time-dependency of the probability of performing specific activities in a house, nor their duration or are limited in the type of probability distributions they can model. On top of that, it provides outcomes that are not limited to a per-day basis. The range of available space and time resolutions span from single household to district and from second to year, respectively, featuring multi-level aggregation of the simulation outcomes. To demonstrate the accuracy of our model, we present experimental results obtained by simulating realistic populations in a period covering a whole calendar year and analyze our model’s outcome at different scales. Then, we compare such results with three different data-sets that provide real load consumption at the household, national, and European levels, respectively. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Realistic Multi-Scale Modeling of Household Electricity Behaviors |
url |
https://doi.org/10.1109/ACCESS.2018.2886201 https://doaj.org/article/4c360e30262a4dac97b7316929212a7b https://ieeexplore.ieee.org/document/8573766/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Santa Di Cataldo Andrea Acquaviva Edoardo Patti |
author2Str |
Santa Di Cataldo Andrea Acquaviva Edoardo Patti |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2018.2886201 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T00:28:20.105Z |
_version_ |
1803606189788889088 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007148623</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309213758.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2018.2886201</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007148623</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4c360e30262a4dac97b7316929212a7b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lorenzo Bottaccioli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Realistic Multi-Scale Modeling of Household Electricity Behaviors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To improve the management and reliability of power distribution networks, there is a strong demand for models simulating energy loads in a realistic way. In this paper, we present a novel multi-scale model to generate realistic residential load profiles at different spatial-temporal resolutions. By taking advantage of the information from census and national surveys, we generate statistically consistent populations of heterogeneous families with their respective appliances. Exploiting a bottom-up approach based on Monte Carlo Non-Homogeneous Semi-Markov, we provide household end-user behaviors and realistic households load profiles on a daily as well as on a weekly basis, for weekdays and weekends. The proposed approach overcomes the limitations of the state-of-the-art solutions that consider neither the time-dependency of the probability of performing specific activities in a house, nor their duration or are limited in the type of probability distributions they can model. On top of that, it provides outcomes that are not limited to a per-day basis. The range of available space and time resolutions span from single household to district and from second to year, respectively, featuring multi-level aggregation of the simulation outcomes. To demonstrate the accuracy of our model, we present experimental results obtained by simulating realistic populations in a period covering a whole calendar year and analyze our model’s outcome at different scales. Then, we compare such results with three different data-sets that provide real load consumption at the household, national, and European levels, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Household load profile</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non Homogeneous Semi-Markov Model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time use survey</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">use of energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">load modeling</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Santa Di Cataldo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea Acquaviva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Edoardo Patti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 2467-2489</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:2467-2489</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2018.2886201</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4c360e30262a4dac97b7316929212a7b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8573766/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">2467-2489</subfield></datafield></record></collection>
|
score |
7.4021244 |