Analysis of Deformation and Prediction of Cracks in the Cogging Process for Die Steel at Elevated Temperatures
In this paper, an analysis of a three-dimensional state of strain and stress in the case of the hot cogging process of X32CrMoV12-28 die steel with the application of the finite element method is presented. The results of the investigations connected with the simulation of the kinematics of metal fl...
Ausführliche Beschreibung
Autor*in: |
Marcin Kukuryk [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Materials - MDPI AG, 2009, 13(2020), 24, p 5589 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2020 ; number:24, p 5589 |
Links: |
---|
DOI / URN: |
10.3390/ma13245589 |
---|
Katalog-ID: |
DOAJ007169345 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ007169345 | ||
003 | DE-627 | ||
005 | 20240412210055.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/ma13245589 |2 doi | |
035 | |a (DE-627)DOAJ007169345 | ||
035 | |a (DE-599)DOAJf3cbead6f1a74c0586ef2355ab631e0c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH201-278.5 | |
050 | 0 | |a QC120-168.85 | |
100 | 0 | |a Marcin Kukuryk |e verfasserin |4 aut | |
245 | 1 | 0 | |a Analysis of Deformation and Prediction of Cracks in the Cogging Process for Die Steel at Elevated Temperatures |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, an analysis of a three-dimensional state of strain and stress in the case of the hot cogging process of X32CrMoV12-28 die steel with the application of the finite element method is presented. The results of the investigations connected with the simulation of the kinematics of metal flow and thermal phenomena are presented, accompanied by prognosing the formation of ductile fractures in the course of the hot cogging process conducted with the application of three different shape tools and of a proposed deformation criterion of the loss of cohesion. The applied anvils were found to be highly effective in the aspects of distribution of effective strains and stresses, absence of tensile stresses in the axial zones of a forging, and also of a significant thermal stability in the internal layers of a deformed material. The developed course of changes in the deformation of the damage factor in the case of forging in the investigated anvils renders it possible to predict the situation and the phase of deformation in which the loss of cohesion by a deformed material will occur. The comparison between the predicted and the experimental results showed a good agreement. | ||
650 | 4 | |a cogging process | |
650 | 4 | |a FEM | |
650 | 4 | |a strain | |
650 | 4 | |a stress | |
650 | 4 | |a damage | |
650 | 4 | |a shaped anvils | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Microscopy | |
653 | 0 | |a Descriptive and experimental mechanics | |
773 | 0 | 8 | |i In |t Materials |d MDPI AG, 2009 |g 13(2020), 24, p 5589 |w (DE-627)595712649 |w (DE-600)2487261-1 |x 19961944 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2020 |g number:24, p 5589 |
856 | 4 | 0 | |u https://doi.org/10.3390/ma13245589 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f3cbead6f1a74c0586ef2355ab631e0c |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1996-1944/13/24/5589 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1944 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2020 |e 24, p 5589 |
author_variant |
m k mk |
---|---|
matchkey_str |
article:19961944:2020----::nlssfeomtoadrdcinfrcsnhcgigrcsfris |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TK |
publishDate |
2020 |
allfields |
10.3390/ma13245589 doi (DE-627)DOAJ007169345 (DE-599)DOAJf3cbead6f1a74c0586ef2355ab631e0c DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Marcin Kukuryk verfasserin aut Analysis of Deformation and Prediction of Cracks in the Cogging Process for Die Steel at Elevated Temperatures 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, an analysis of a three-dimensional state of strain and stress in the case of the hot cogging process of X32CrMoV12-28 die steel with the application of the finite element method is presented. The results of the investigations connected with the simulation of the kinematics of metal flow and thermal phenomena are presented, accompanied by prognosing the formation of ductile fractures in the course of the hot cogging process conducted with the application of three different shape tools and of a proposed deformation criterion of the loss of cohesion. The applied anvils were found to be highly effective in the aspects of distribution of effective strains and stresses, absence of tensile stresses in the axial zones of a forging, and also of a significant thermal stability in the internal layers of a deformed material. The developed course of changes in the deformation of the damage factor in the case of forging in the investigated anvils renders it possible to predict the situation and the phase of deformation in which the loss of cohesion by a deformed material will occur. The comparison between the predicted and the experimental results showed a good agreement. cogging process FEM strain stress damage shaped anvils Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics In Materials MDPI AG, 2009 13(2020), 24, p 5589 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:13 year:2020 number:24, p 5589 https://doi.org/10.3390/ma13245589 kostenfrei https://doaj.org/article/f3cbead6f1a74c0586ef2355ab631e0c kostenfrei https://www.mdpi.com/1996-1944/13/24/5589 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 24, p 5589 |
spelling |
10.3390/ma13245589 doi (DE-627)DOAJ007169345 (DE-599)DOAJf3cbead6f1a74c0586ef2355ab631e0c DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Marcin Kukuryk verfasserin aut Analysis of Deformation and Prediction of Cracks in the Cogging Process for Die Steel at Elevated Temperatures 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, an analysis of a three-dimensional state of strain and stress in the case of the hot cogging process of X32CrMoV12-28 die steel with the application of the finite element method is presented. The results of the investigations connected with the simulation of the kinematics of metal flow and thermal phenomena are presented, accompanied by prognosing the formation of ductile fractures in the course of the hot cogging process conducted with the application of three different shape tools and of a proposed deformation criterion of the loss of cohesion. The applied anvils were found to be highly effective in the aspects of distribution of effective strains and stresses, absence of tensile stresses in the axial zones of a forging, and also of a significant thermal stability in the internal layers of a deformed material. The developed course of changes in the deformation of the damage factor in the case of forging in the investigated anvils renders it possible to predict the situation and the phase of deformation in which the loss of cohesion by a deformed material will occur. The comparison between the predicted and the experimental results showed a good agreement. cogging process FEM strain stress damage shaped anvils Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics In Materials MDPI AG, 2009 13(2020), 24, p 5589 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:13 year:2020 number:24, p 5589 https://doi.org/10.3390/ma13245589 kostenfrei https://doaj.org/article/f3cbead6f1a74c0586ef2355ab631e0c kostenfrei https://www.mdpi.com/1996-1944/13/24/5589 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 24, p 5589 |
allfields_unstemmed |
10.3390/ma13245589 doi (DE-627)DOAJ007169345 (DE-599)DOAJf3cbead6f1a74c0586ef2355ab631e0c DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Marcin Kukuryk verfasserin aut Analysis of Deformation and Prediction of Cracks in the Cogging Process for Die Steel at Elevated Temperatures 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, an analysis of a three-dimensional state of strain and stress in the case of the hot cogging process of X32CrMoV12-28 die steel with the application of the finite element method is presented. The results of the investigations connected with the simulation of the kinematics of metal flow and thermal phenomena are presented, accompanied by prognosing the formation of ductile fractures in the course of the hot cogging process conducted with the application of three different shape tools and of a proposed deformation criterion of the loss of cohesion. The applied anvils were found to be highly effective in the aspects of distribution of effective strains and stresses, absence of tensile stresses in the axial zones of a forging, and also of a significant thermal stability in the internal layers of a deformed material. The developed course of changes in the deformation of the damage factor in the case of forging in the investigated anvils renders it possible to predict the situation and the phase of deformation in which the loss of cohesion by a deformed material will occur. The comparison between the predicted and the experimental results showed a good agreement. cogging process FEM strain stress damage shaped anvils Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics In Materials MDPI AG, 2009 13(2020), 24, p 5589 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:13 year:2020 number:24, p 5589 https://doi.org/10.3390/ma13245589 kostenfrei https://doaj.org/article/f3cbead6f1a74c0586ef2355ab631e0c kostenfrei https://www.mdpi.com/1996-1944/13/24/5589 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 24, p 5589 |
allfieldsGer |
10.3390/ma13245589 doi (DE-627)DOAJ007169345 (DE-599)DOAJf3cbead6f1a74c0586ef2355ab631e0c DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Marcin Kukuryk verfasserin aut Analysis of Deformation and Prediction of Cracks in the Cogging Process for Die Steel at Elevated Temperatures 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, an analysis of a three-dimensional state of strain and stress in the case of the hot cogging process of X32CrMoV12-28 die steel with the application of the finite element method is presented. The results of the investigations connected with the simulation of the kinematics of metal flow and thermal phenomena are presented, accompanied by prognosing the formation of ductile fractures in the course of the hot cogging process conducted with the application of three different shape tools and of a proposed deformation criterion of the loss of cohesion. The applied anvils were found to be highly effective in the aspects of distribution of effective strains and stresses, absence of tensile stresses in the axial zones of a forging, and also of a significant thermal stability in the internal layers of a deformed material. The developed course of changes in the deformation of the damage factor in the case of forging in the investigated anvils renders it possible to predict the situation and the phase of deformation in which the loss of cohesion by a deformed material will occur. The comparison between the predicted and the experimental results showed a good agreement. cogging process FEM strain stress damage shaped anvils Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics In Materials MDPI AG, 2009 13(2020), 24, p 5589 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:13 year:2020 number:24, p 5589 https://doi.org/10.3390/ma13245589 kostenfrei https://doaj.org/article/f3cbead6f1a74c0586ef2355ab631e0c kostenfrei https://www.mdpi.com/1996-1944/13/24/5589 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 24, p 5589 |
allfieldsSound |
10.3390/ma13245589 doi (DE-627)DOAJ007169345 (DE-599)DOAJf3cbead6f1a74c0586ef2355ab631e0c DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Marcin Kukuryk verfasserin aut Analysis of Deformation and Prediction of Cracks in the Cogging Process for Die Steel at Elevated Temperatures 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, an analysis of a three-dimensional state of strain and stress in the case of the hot cogging process of X32CrMoV12-28 die steel with the application of the finite element method is presented. The results of the investigations connected with the simulation of the kinematics of metal flow and thermal phenomena are presented, accompanied by prognosing the formation of ductile fractures in the course of the hot cogging process conducted with the application of three different shape tools and of a proposed deformation criterion of the loss of cohesion. The applied anvils were found to be highly effective in the aspects of distribution of effective strains and stresses, absence of tensile stresses in the axial zones of a forging, and also of a significant thermal stability in the internal layers of a deformed material. The developed course of changes in the deformation of the damage factor in the case of forging in the investigated anvils renders it possible to predict the situation and the phase of deformation in which the loss of cohesion by a deformed material will occur. The comparison between the predicted and the experimental results showed a good agreement. cogging process FEM strain stress damage shaped anvils Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics In Materials MDPI AG, 2009 13(2020), 24, p 5589 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:13 year:2020 number:24, p 5589 https://doi.org/10.3390/ma13245589 kostenfrei https://doaj.org/article/f3cbead6f1a74c0586ef2355ab631e0c kostenfrei https://www.mdpi.com/1996-1944/13/24/5589 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 24, p 5589 |
language |
English |
source |
In Materials 13(2020), 24, p 5589 volume:13 year:2020 number:24, p 5589 |
sourceStr |
In Materials 13(2020), 24, p 5589 volume:13 year:2020 number:24, p 5589 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
cogging process FEM strain stress damage shaped anvils Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics |
isfreeaccess_bool |
true |
container_title |
Materials |
authorswithroles_txt_mv |
Marcin Kukuryk @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
595712649 |
id |
DOAJ007169345 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007169345</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412210055.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ma13245589</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007169345</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf3cbead6f1a74c0586ef2355ab631e0c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH201-278.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC120-168.85</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Marcin Kukuryk</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of Deformation and Prediction of Cracks in the Cogging Process for Die Steel at Elevated Temperatures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, an analysis of a three-dimensional state of strain and stress in the case of the hot cogging process of X32CrMoV12-28 die steel with the application of the finite element method is presented. The results of the investigations connected with the simulation of the kinematics of metal flow and thermal phenomena are presented, accompanied by prognosing the formation of ductile fractures in the course of the hot cogging process conducted with the application of three different shape tools and of a proposed deformation criterion of the loss of cohesion. The applied anvils were found to be highly effective in the aspects of distribution of effective strains and stresses, absence of tensile stresses in the axial zones of a forging, and also of a significant thermal stability in the internal layers of a deformed material. The developed course of changes in the deformation of the damage factor in the case of forging in the investigated anvils renders it possible to predict the situation and the phase of deformation in which the loss of cohesion by a deformed material will occur. The comparison between the predicted and the experimental results showed a good agreement.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cogging process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FEM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">strain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">damage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shaped anvils</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microscopy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Descriptive and experimental mechanics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Materials</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">13(2020), 24, p 5589</subfield><subfield code="w">(DE-627)595712649</subfield><subfield code="w">(DE-600)2487261-1</subfield><subfield code="x">19961944</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:24, p 5589</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ma13245589</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f3cbead6f1a74c0586ef2355ab631e0c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1944/13/24/5589</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1944</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2020</subfield><subfield code="e">24, p 5589</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Marcin Kukuryk |
spellingShingle |
Marcin Kukuryk misc TK1-9971 misc TA1-2040 misc QH201-278.5 misc QC120-168.85 misc cogging process misc FEM misc strain misc stress misc damage misc shaped anvils misc Technology misc T misc Electrical engineering. Electronics. Nuclear engineering misc Engineering (General). Civil engineering (General) misc Microscopy misc Descriptive and experimental mechanics Analysis of Deformation and Prediction of Cracks in the Cogging Process for Die Steel at Elevated Temperatures |
authorStr |
Marcin Kukuryk |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)595712649 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
19961944 |
topic_title |
TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Analysis of Deformation and Prediction of Cracks in the Cogging Process for Die Steel at Elevated Temperatures cogging process FEM strain stress damage shaped anvils |
topic |
misc TK1-9971 misc TA1-2040 misc QH201-278.5 misc QC120-168.85 misc cogging process misc FEM misc strain misc stress misc damage misc shaped anvils misc Technology misc T misc Electrical engineering. Electronics. Nuclear engineering misc Engineering (General). Civil engineering (General) misc Microscopy misc Descriptive and experimental mechanics |
topic_unstemmed |
misc TK1-9971 misc TA1-2040 misc QH201-278.5 misc QC120-168.85 misc cogging process misc FEM misc strain misc stress misc damage misc shaped anvils misc Technology misc T misc Electrical engineering. Electronics. Nuclear engineering misc Engineering (General). Civil engineering (General) misc Microscopy misc Descriptive and experimental mechanics |
topic_browse |
misc TK1-9971 misc TA1-2040 misc QH201-278.5 misc QC120-168.85 misc cogging process misc FEM misc strain misc stress misc damage misc shaped anvils misc Technology misc T misc Electrical engineering. Electronics. Nuclear engineering misc Engineering (General). Civil engineering (General) misc Microscopy misc Descriptive and experimental mechanics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Materials |
hierarchy_parent_id |
595712649 |
hierarchy_top_title |
Materials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)595712649 (DE-600)2487261-1 |
title |
Analysis of Deformation and Prediction of Cracks in the Cogging Process for Die Steel at Elevated Temperatures |
ctrlnum |
(DE-627)DOAJ007169345 (DE-599)DOAJf3cbead6f1a74c0586ef2355ab631e0c |
title_full |
Analysis of Deformation and Prediction of Cracks in the Cogging Process for Die Steel at Elevated Temperatures |
author_sort |
Marcin Kukuryk |
journal |
Materials |
journalStr |
Materials |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Marcin Kukuryk |
container_volume |
13 |
class |
TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 |
format_se |
Elektronische Aufsätze |
author-letter |
Marcin Kukuryk |
doi_str_mv |
10.3390/ma13245589 |
title_sort |
analysis of deformation and prediction of cracks in the cogging process for die steel at elevated temperatures |
callnumber |
TK1-9971 |
title_auth |
Analysis of Deformation and Prediction of Cracks in the Cogging Process for Die Steel at Elevated Temperatures |
abstract |
In this paper, an analysis of a three-dimensional state of strain and stress in the case of the hot cogging process of X32CrMoV12-28 die steel with the application of the finite element method is presented. The results of the investigations connected with the simulation of the kinematics of metal flow and thermal phenomena are presented, accompanied by prognosing the formation of ductile fractures in the course of the hot cogging process conducted with the application of three different shape tools and of a proposed deformation criterion of the loss of cohesion. The applied anvils were found to be highly effective in the aspects of distribution of effective strains and stresses, absence of tensile stresses in the axial zones of a forging, and also of a significant thermal stability in the internal layers of a deformed material. The developed course of changes in the deformation of the damage factor in the case of forging in the investigated anvils renders it possible to predict the situation and the phase of deformation in which the loss of cohesion by a deformed material will occur. The comparison between the predicted and the experimental results showed a good agreement. |
abstractGer |
In this paper, an analysis of a three-dimensional state of strain and stress in the case of the hot cogging process of X32CrMoV12-28 die steel with the application of the finite element method is presented. The results of the investigations connected with the simulation of the kinematics of metal flow and thermal phenomena are presented, accompanied by prognosing the formation of ductile fractures in the course of the hot cogging process conducted with the application of three different shape tools and of a proposed deformation criterion of the loss of cohesion. The applied anvils were found to be highly effective in the aspects of distribution of effective strains and stresses, absence of tensile stresses in the axial zones of a forging, and also of a significant thermal stability in the internal layers of a deformed material. The developed course of changes in the deformation of the damage factor in the case of forging in the investigated anvils renders it possible to predict the situation and the phase of deformation in which the loss of cohesion by a deformed material will occur. The comparison between the predicted and the experimental results showed a good agreement. |
abstract_unstemmed |
In this paper, an analysis of a three-dimensional state of strain and stress in the case of the hot cogging process of X32CrMoV12-28 die steel with the application of the finite element method is presented. The results of the investigations connected with the simulation of the kinematics of metal flow and thermal phenomena are presented, accompanied by prognosing the formation of ductile fractures in the course of the hot cogging process conducted with the application of three different shape tools and of a proposed deformation criterion of the loss of cohesion. The applied anvils were found to be highly effective in the aspects of distribution of effective strains and stresses, absence of tensile stresses in the axial zones of a forging, and also of a significant thermal stability in the internal layers of a deformed material. The developed course of changes in the deformation of the damage factor in the case of forging in the investigated anvils renders it possible to predict the situation and the phase of deformation in which the loss of cohesion by a deformed material will occur. The comparison between the predicted and the experimental results showed a good agreement. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
24, p 5589 |
title_short |
Analysis of Deformation and Prediction of Cracks in the Cogging Process for Die Steel at Elevated Temperatures |
url |
https://doi.org/10.3390/ma13245589 https://doaj.org/article/f3cbead6f1a74c0586ef2355ab631e0c https://www.mdpi.com/1996-1944/13/24/5589 https://doaj.org/toc/1996-1944 |
remote_bool |
true |
ppnlink |
595712649 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/ma13245589 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T00:33:15.729Z |
_version_ |
1803606499771023360 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007169345</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412210055.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ma13245589</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007169345</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf3cbead6f1a74c0586ef2355ab631e0c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH201-278.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC120-168.85</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Marcin Kukuryk</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of Deformation and Prediction of Cracks in the Cogging Process for Die Steel at Elevated Temperatures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, an analysis of a three-dimensional state of strain and stress in the case of the hot cogging process of X32CrMoV12-28 die steel with the application of the finite element method is presented. The results of the investigations connected with the simulation of the kinematics of metal flow and thermal phenomena are presented, accompanied by prognosing the formation of ductile fractures in the course of the hot cogging process conducted with the application of three different shape tools and of a proposed deformation criterion of the loss of cohesion. The applied anvils were found to be highly effective in the aspects of distribution of effective strains and stresses, absence of tensile stresses in the axial zones of a forging, and also of a significant thermal stability in the internal layers of a deformed material. The developed course of changes in the deformation of the damage factor in the case of forging in the investigated anvils renders it possible to predict the situation and the phase of deformation in which the loss of cohesion by a deformed material will occur. The comparison between the predicted and the experimental results showed a good agreement.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cogging process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FEM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">strain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">damage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shaped anvils</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microscopy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Descriptive and experimental mechanics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Materials</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">13(2020), 24, p 5589</subfield><subfield code="w">(DE-627)595712649</subfield><subfield code="w">(DE-600)2487261-1</subfield><subfield code="x">19961944</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:24, p 5589</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ma13245589</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f3cbead6f1a74c0586ef2355ab631e0c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1944/13/24/5589</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1944</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2020</subfield><subfield code="e">24, p 5589</subfield></datafield></record></collection>
|
score |
7.402439 |