Sicegar: R package for sigmoidal and double-sigmoidal curve fitting
Sigmoidal and double-sigmoidal dynamics are commonly observed in many areas of biology. Here we present sicegar, an R package for the automated fitting and classification of sigmoidal and double-sigmoidal data. The package categorizes data into one of three categories, “no signal,” “sigmoidal,” or “...
Ausführliche Beschreibung
Autor*in: |
M. Umut Caglar [verfasserIn] Ashley I. Teufel [verfasserIn] Claus O. Wilke [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: PeerJ - PeerJ Inc., 2013, 6, p e4251(2018) |
---|---|
Übergeordnetes Werk: |
volume:6, p e4251 ; year:2018 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.7717/peerj.4251 |
---|
Katalog-ID: |
DOAJ007174187 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ007174187 | ||
003 | DE-627 | ||
005 | 20240414105117.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.7717/peerj.4251 |2 doi | |
035 | |a (DE-627)DOAJ007174187 | ||
035 | |a (DE-599)DOAJfadbd81c86ab46d291084639138fea33 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH301-705.5 | |
100 | 0 | |a M. Umut Caglar |e verfasserin |4 aut | |
245 | 1 | 0 | |a Sicegar: R package for sigmoidal and double-sigmoidal curve fitting |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Sigmoidal and double-sigmoidal dynamics are commonly observed in many areas of biology. Here we present sicegar, an R package for the automated fitting and classification of sigmoidal and double-sigmoidal data. The package categorizes data into one of three categories, “no signal,” “sigmoidal,” or “double-sigmoidal,” by rigorously fitting a series of mathematical models to the data. The data is labeled as “ambiguous” if neither the sigmoidal nor double-sigmoidal model fit the data well. In addition to performing the classification, the package also reports a wealth of metrics as well as biologically meaningful parameters describing the sigmoidal or double-sigmoidal curves. In extensive simulations, we find that the package performs well, can recover the original dynamics even under fairly high noise levels, and will typically classify curves as “ambiguous” rather than misclassifying them. The package is available on CRAN and comes with extensive documentation and usage examples. | ||
650 | 4 | |a R package | |
650 | 4 | |a Curve fitting | |
650 | 4 | |a Sigmoidal growth | |
650 | 4 | |a Double-sigmoidal growth | |
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
653 | 0 | |a Biology (General) | |
700 | 0 | |a Ashley I. Teufel |e verfasserin |4 aut | |
700 | 0 | |a Claus O. Wilke |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t PeerJ |d PeerJ Inc., 2013 |g 6, p e4251(2018) |w (DE-627)736558624 |w (DE-600)2703241-3 |x 21678359 |7 nnns |
773 | 1 | 8 | |g volume:6, p e4251 |g year:2018 |
856 | 4 | 0 | |u https://doi.org/10.7717/peerj.4251 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/fadbd81c86ab46d291084639138fea33 |z kostenfrei |
856 | 4 | 0 | |u https://peerj.com/articles/4251.pdf |z kostenfrei |
856 | 4 | 0 | |u https://peerj.com/articles/4251/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2167-8359 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6, p e4251 |j 2018 |
author_variant |
m u c muc a i t ait c o w cow |
---|---|
matchkey_str |
article:21678359:2018----::iearakgfrimiaadobeimi |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
QH |
publishDate |
2018 |
allfields |
10.7717/peerj.4251 doi (DE-627)DOAJ007174187 (DE-599)DOAJfadbd81c86ab46d291084639138fea33 DE-627 ger DE-627 rakwb eng QH301-705.5 M. Umut Caglar verfasserin aut Sicegar: R package for sigmoidal and double-sigmoidal curve fitting 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sigmoidal and double-sigmoidal dynamics are commonly observed in many areas of biology. Here we present sicegar, an R package for the automated fitting and classification of sigmoidal and double-sigmoidal data. The package categorizes data into one of three categories, “no signal,” “sigmoidal,” or “double-sigmoidal,” by rigorously fitting a series of mathematical models to the data. The data is labeled as “ambiguous” if neither the sigmoidal nor double-sigmoidal model fit the data well. In addition to performing the classification, the package also reports a wealth of metrics as well as biologically meaningful parameters describing the sigmoidal or double-sigmoidal curves. In extensive simulations, we find that the package performs well, can recover the original dynamics even under fairly high noise levels, and will typically classify curves as “ambiguous” rather than misclassifying them. The package is available on CRAN and comes with extensive documentation and usage examples. R package Curve fitting Sigmoidal growth Double-sigmoidal growth Medicine R Biology (General) Ashley I. Teufel verfasserin aut Claus O. Wilke verfasserin aut In PeerJ PeerJ Inc., 2013 6, p e4251(2018) (DE-627)736558624 (DE-600)2703241-3 21678359 nnns volume:6, p e4251 year:2018 https://doi.org/10.7717/peerj.4251 kostenfrei https://doaj.org/article/fadbd81c86ab46d291084639138fea33 kostenfrei https://peerj.com/articles/4251.pdf kostenfrei https://peerj.com/articles/4251/ kostenfrei https://doaj.org/toc/2167-8359 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6, p e4251 2018 |
spelling |
10.7717/peerj.4251 doi (DE-627)DOAJ007174187 (DE-599)DOAJfadbd81c86ab46d291084639138fea33 DE-627 ger DE-627 rakwb eng QH301-705.5 M. Umut Caglar verfasserin aut Sicegar: R package for sigmoidal and double-sigmoidal curve fitting 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sigmoidal and double-sigmoidal dynamics are commonly observed in many areas of biology. Here we present sicegar, an R package for the automated fitting and classification of sigmoidal and double-sigmoidal data. The package categorizes data into one of three categories, “no signal,” “sigmoidal,” or “double-sigmoidal,” by rigorously fitting a series of mathematical models to the data. The data is labeled as “ambiguous” if neither the sigmoidal nor double-sigmoidal model fit the data well. In addition to performing the classification, the package also reports a wealth of metrics as well as biologically meaningful parameters describing the sigmoidal or double-sigmoidal curves. In extensive simulations, we find that the package performs well, can recover the original dynamics even under fairly high noise levels, and will typically classify curves as “ambiguous” rather than misclassifying them. The package is available on CRAN and comes with extensive documentation and usage examples. R package Curve fitting Sigmoidal growth Double-sigmoidal growth Medicine R Biology (General) Ashley I. Teufel verfasserin aut Claus O. Wilke verfasserin aut In PeerJ PeerJ Inc., 2013 6, p e4251(2018) (DE-627)736558624 (DE-600)2703241-3 21678359 nnns volume:6, p e4251 year:2018 https://doi.org/10.7717/peerj.4251 kostenfrei https://doaj.org/article/fadbd81c86ab46d291084639138fea33 kostenfrei https://peerj.com/articles/4251.pdf kostenfrei https://peerj.com/articles/4251/ kostenfrei https://doaj.org/toc/2167-8359 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6, p e4251 2018 |
allfields_unstemmed |
10.7717/peerj.4251 doi (DE-627)DOAJ007174187 (DE-599)DOAJfadbd81c86ab46d291084639138fea33 DE-627 ger DE-627 rakwb eng QH301-705.5 M. Umut Caglar verfasserin aut Sicegar: R package for sigmoidal and double-sigmoidal curve fitting 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sigmoidal and double-sigmoidal dynamics are commonly observed in many areas of biology. Here we present sicegar, an R package for the automated fitting and classification of sigmoidal and double-sigmoidal data. The package categorizes data into one of three categories, “no signal,” “sigmoidal,” or “double-sigmoidal,” by rigorously fitting a series of mathematical models to the data. The data is labeled as “ambiguous” if neither the sigmoidal nor double-sigmoidal model fit the data well. In addition to performing the classification, the package also reports a wealth of metrics as well as biologically meaningful parameters describing the sigmoidal or double-sigmoidal curves. In extensive simulations, we find that the package performs well, can recover the original dynamics even under fairly high noise levels, and will typically classify curves as “ambiguous” rather than misclassifying them. The package is available on CRAN and comes with extensive documentation and usage examples. R package Curve fitting Sigmoidal growth Double-sigmoidal growth Medicine R Biology (General) Ashley I. Teufel verfasserin aut Claus O. Wilke verfasserin aut In PeerJ PeerJ Inc., 2013 6, p e4251(2018) (DE-627)736558624 (DE-600)2703241-3 21678359 nnns volume:6, p e4251 year:2018 https://doi.org/10.7717/peerj.4251 kostenfrei https://doaj.org/article/fadbd81c86ab46d291084639138fea33 kostenfrei https://peerj.com/articles/4251.pdf kostenfrei https://peerj.com/articles/4251/ kostenfrei https://doaj.org/toc/2167-8359 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6, p e4251 2018 |
allfieldsGer |
10.7717/peerj.4251 doi (DE-627)DOAJ007174187 (DE-599)DOAJfadbd81c86ab46d291084639138fea33 DE-627 ger DE-627 rakwb eng QH301-705.5 M. Umut Caglar verfasserin aut Sicegar: R package for sigmoidal and double-sigmoidal curve fitting 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sigmoidal and double-sigmoidal dynamics are commonly observed in many areas of biology. Here we present sicegar, an R package for the automated fitting and classification of sigmoidal and double-sigmoidal data. The package categorizes data into one of three categories, “no signal,” “sigmoidal,” or “double-sigmoidal,” by rigorously fitting a series of mathematical models to the data. The data is labeled as “ambiguous” if neither the sigmoidal nor double-sigmoidal model fit the data well. In addition to performing the classification, the package also reports a wealth of metrics as well as biologically meaningful parameters describing the sigmoidal or double-sigmoidal curves. In extensive simulations, we find that the package performs well, can recover the original dynamics even under fairly high noise levels, and will typically classify curves as “ambiguous” rather than misclassifying them. The package is available on CRAN and comes with extensive documentation and usage examples. R package Curve fitting Sigmoidal growth Double-sigmoidal growth Medicine R Biology (General) Ashley I. Teufel verfasserin aut Claus O. Wilke verfasserin aut In PeerJ PeerJ Inc., 2013 6, p e4251(2018) (DE-627)736558624 (DE-600)2703241-3 21678359 nnns volume:6, p e4251 year:2018 https://doi.org/10.7717/peerj.4251 kostenfrei https://doaj.org/article/fadbd81c86ab46d291084639138fea33 kostenfrei https://peerj.com/articles/4251.pdf kostenfrei https://peerj.com/articles/4251/ kostenfrei https://doaj.org/toc/2167-8359 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6, p e4251 2018 |
allfieldsSound |
10.7717/peerj.4251 doi (DE-627)DOAJ007174187 (DE-599)DOAJfadbd81c86ab46d291084639138fea33 DE-627 ger DE-627 rakwb eng QH301-705.5 M. Umut Caglar verfasserin aut Sicegar: R package for sigmoidal and double-sigmoidal curve fitting 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sigmoidal and double-sigmoidal dynamics are commonly observed in many areas of biology. Here we present sicegar, an R package for the automated fitting and classification of sigmoidal and double-sigmoidal data. The package categorizes data into one of three categories, “no signal,” “sigmoidal,” or “double-sigmoidal,” by rigorously fitting a series of mathematical models to the data. The data is labeled as “ambiguous” if neither the sigmoidal nor double-sigmoidal model fit the data well. In addition to performing the classification, the package also reports a wealth of metrics as well as biologically meaningful parameters describing the sigmoidal or double-sigmoidal curves. In extensive simulations, we find that the package performs well, can recover the original dynamics even under fairly high noise levels, and will typically classify curves as “ambiguous” rather than misclassifying them. The package is available on CRAN and comes with extensive documentation and usage examples. R package Curve fitting Sigmoidal growth Double-sigmoidal growth Medicine R Biology (General) Ashley I. Teufel verfasserin aut Claus O. Wilke verfasserin aut In PeerJ PeerJ Inc., 2013 6, p e4251(2018) (DE-627)736558624 (DE-600)2703241-3 21678359 nnns volume:6, p e4251 year:2018 https://doi.org/10.7717/peerj.4251 kostenfrei https://doaj.org/article/fadbd81c86ab46d291084639138fea33 kostenfrei https://peerj.com/articles/4251.pdf kostenfrei https://peerj.com/articles/4251/ kostenfrei https://doaj.org/toc/2167-8359 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6, p e4251 2018 |
language |
English |
source |
In PeerJ 6, p e4251(2018) volume:6, p e4251 year:2018 |
sourceStr |
In PeerJ 6, p e4251(2018) volume:6, p e4251 year:2018 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
R package Curve fitting Sigmoidal growth Double-sigmoidal growth Medicine R Biology (General) |
isfreeaccess_bool |
true |
container_title |
PeerJ |
authorswithroles_txt_mv |
M. Umut Caglar @@aut@@ Ashley I. Teufel @@aut@@ Claus O. Wilke @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
736558624 |
id |
DOAJ007174187 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007174187</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414105117.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.7717/peerj.4251</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007174187</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfadbd81c86ab46d291084639138fea33</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">M. Umut Caglar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sicegar: R package for sigmoidal and double-sigmoidal curve fitting</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sigmoidal and double-sigmoidal dynamics are commonly observed in many areas of biology. Here we present sicegar, an R package for the automated fitting and classification of sigmoidal and double-sigmoidal data. The package categorizes data into one of three categories, “no signal,” “sigmoidal,” or “double-sigmoidal,” by rigorously fitting a series of mathematical models to the data. The data is labeled as “ambiguous” if neither the sigmoidal nor double-sigmoidal model fit the data well. In addition to performing the classification, the package also reports a wealth of metrics as well as biologically meaningful parameters describing the sigmoidal or double-sigmoidal curves. In extensive simulations, we find that the package performs well, can recover the original dynamics even under fairly high noise levels, and will typically classify curves as “ambiguous” rather than misclassifying them. The package is available on CRAN and comes with extensive documentation and usage examples.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">R package</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curve fitting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sigmoidal growth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Double-sigmoidal growth</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ashley I. Teufel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claus O. Wilke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PeerJ</subfield><subfield code="d">PeerJ Inc., 2013</subfield><subfield code="g">6, p e4251(2018)</subfield><subfield code="w">(DE-627)736558624</subfield><subfield code="w">(DE-600)2703241-3</subfield><subfield code="x">21678359</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6, p e4251</subfield><subfield code="g">year:2018</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.7717/peerj.4251</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fadbd81c86ab46d291084639138fea33</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://peerj.com/articles/4251.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://peerj.com/articles/4251/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2167-8359</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6, p e4251</subfield><subfield code="j">2018</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
M. Umut Caglar |
spellingShingle |
M. Umut Caglar misc QH301-705.5 misc R package misc Curve fitting misc Sigmoidal growth misc Double-sigmoidal growth misc Medicine misc R misc Biology (General) Sicegar: R package for sigmoidal and double-sigmoidal curve fitting |
authorStr |
M. Umut Caglar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)736558624 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH301-705 |
illustrated |
Not Illustrated |
issn |
21678359 |
topic_title |
QH301-705.5 Sicegar: R package for sigmoidal and double-sigmoidal curve fitting R package Curve fitting Sigmoidal growth Double-sigmoidal growth |
topic |
misc QH301-705.5 misc R package misc Curve fitting misc Sigmoidal growth misc Double-sigmoidal growth misc Medicine misc R misc Biology (General) |
topic_unstemmed |
misc QH301-705.5 misc R package misc Curve fitting misc Sigmoidal growth misc Double-sigmoidal growth misc Medicine misc R misc Biology (General) |
topic_browse |
misc QH301-705.5 misc R package misc Curve fitting misc Sigmoidal growth misc Double-sigmoidal growth misc Medicine misc R misc Biology (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
PeerJ |
hierarchy_parent_id |
736558624 |
hierarchy_top_title |
PeerJ |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)736558624 (DE-600)2703241-3 |
title |
Sicegar: R package for sigmoidal and double-sigmoidal curve fitting |
ctrlnum |
(DE-627)DOAJ007174187 (DE-599)DOAJfadbd81c86ab46d291084639138fea33 |
title_full |
Sicegar: R package for sigmoidal and double-sigmoidal curve fitting |
author_sort |
M. Umut Caglar |
journal |
PeerJ |
journalStr |
PeerJ |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
M. Umut Caglar Ashley I. Teufel Claus O. Wilke |
container_volume |
6, p e4251 |
class |
QH301-705.5 |
format_se |
Elektronische Aufsätze |
author-letter |
M. Umut Caglar |
doi_str_mv |
10.7717/peerj.4251 |
author2-role |
verfasserin |
title_sort |
sicegar: r package for sigmoidal and double-sigmoidal curve fitting |
callnumber |
QH301-705.5 |
title_auth |
Sicegar: R package for sigmoidal and double-sigmoidal curve fitting |
abstract |
Sigmoidal and double-sigmoidal dynamics are commonly observed in many areas of biology. Here we present sicegar, an R package for the automated fitting and classification of sigmoidal and double-sigmoidal data. The package categorizes data into one of three categories, “no signal,” “sigmoidal,” or “double-sigmoidal,” by rigorously fitting a series of mathematical models to the data. The data is labeled as “ambiguous” if neither the sigmoidal nor double-sigmoidal model fit the data well. In addition to performing the classification, the package also reports a wealth of metrics as well as biologically meaningful parameters describing the sigmoidal or double-sigmoidal curves. In extensive simulations, we find that the package performs well, can recover the original dynamics even under fairly high noise levels, and will typically classify curves as “ambiguous” rather than misclassifying them. The package is available on CRAN and comes with extensive documentation and usage examples. |
abstractGer |
Sigmoidal and double-sigmoidal dynamics are commonly observed in many areas of biology. Here we present sicegar, an R package for the automated fitting and classification of sigmoidal and double-sigmoidal data. The package categorizes data into one of three categories, “no signal,” “sigmoidal,” or “double-sigmoidal,” by rigorously fitting a series of mathematical models to the data. The data is labeled as “ambiguous” if neither the sigmoidal nor double-sigmoidal model fit the data well. In addition to performing the classification, the package also reports a wealth of metrics as well as biologically meaningful parameters describing the sigmoidal or double-sigmoidal curves. In extensive simulations, we find that the package performs well, can recover the original dynamics even under fairly high noise levels, and will typically classify curves as “ambiguous” rather than misclassifying them. The package is available on CRAN and comes with extensive documentation and usage examples. |
abstract_unstemmed |
Sigmoidal and double-sigmoidal dynamics are commonly observed in many areas of biology. Here we present sicegar, an R package for the automated fitting and classification of sigmoidal and double-sigmoidal data. The package categorizes data into one of three categories, “no signal,” “sigmoidal,” or “double-sigmoidal,” by rigorously fitting a series of mathematical models to the data. The data is labeled as “ambiguous” if neither the sigmoidal nor double-sigmoidal model fit the data well. In addition to performing the classification, the package also reports a wealth of metrics as well as biologically meaningful parameters describing the sigmoidal or double-sigmoidal curves. In extensive simulations, we find that the package performs well, can recover the original dynamics even under fairly high noise levels, and will typically classify curves as “ambiguous” rather than misclassifying them. The package is available on CRAN and comes with extensive documentation and usage examples. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Sicegar: R package for sigmoidal and double-sigmoidal curve fitting |
url |
https://doi.org/10.7717/peerj.4251 https://doaj.org/article/fadbd81c86ab46d291084639138fea33 https://peerj.com/articles/4251.pdf https://peerj.com/articles/4251/ https://doaj.org/toc/2167-8359 |
remote_bool |
true |
author2 |
Ashley I. Teufel Claus O. Wilke |
author2Str |
Ashley I. Teufel Claus O. Wilke |
ppnlink |
736558624 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.7717/peerj.4251 |
callnumber-a |
QH301-705.5 |
up_date |
2024-07-04T00:34:24.176Z |
_version_ |
1803606571537661952 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007174187</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414105117.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.7717/peerj.4251</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007174187</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfadbd81c86ab46d291084639138fea33</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">M. Umut Caglar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sicegar: R package for sigmoidal and double-sigmoidal curve fitting</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sigmoidal and double-sigmoidal dynamics are commonly observed in many areas of biology. Here we present sicegar, an R package for the automated fitting and classification of sigmoidal and double-sigmoidal data. The package categorizes data into one of three categories, “no signal,” “sigmoidal,” or “double-sigmoidal,” by rigorously fitting a series of mathematical models to the data. The data is labeled as “ambiguous” if neither the sigmoidal nor double-sigmoidal model fit the data well. In addition to performing the classification, the package also reports a wealth of metrics as well as biologically meaningful parameters describing the sigmoidal or double-sigmoidal curves. In extensive simulations, we find that the package performs well, can recover the original dynamics even under fairly high noise levels, and will typically classify curves as “ambiguous” rather than misclassifying them. The package is available on CRAN and comes with extensive documentation and usage examples.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">R package</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curve fitting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sigmoidal growth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Double-sigmoidal growth</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ashley I. Teufel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claus O. Wilke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PeerJ</subfield><subfield code="d">PeerJ Inc., 2013</subfield><subfield code="g">6, p e4251(2018)</subfield><subfield code="w">(DE-627)736558624</subfield><subfield code="w">(DE-600)2703241-3</subfield><subfield code="x">21678359</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6, p e4251</subfield><subfield code="g">year:2018</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.7717/peerj.4251</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fadbd81c86ab46d291084639138fea33</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://peerj.com/articles/4251.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://peerj.com/articles/4251/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2167-8359</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6, p e4251</subfield><subfield code="j">2018</subfield></datafield></record></collection>
|
score |
7.400667 |