High-Precision Coordinated Position Control of Integrated Permanent Magnet Synchronous Linear Motor Stations
In multi-station linear reciprocating processing systems, the positioning accuracy and the cooperative precision of the motion stations directly affect the production quality of products. This paper aims to enhance both the positioning and the coordination accuracy of the motion stations from the in...
Ausführliche Beschreibung
Autor*in: |
Jianfei Pan [verfasserIn] Pengfei Fu [verfasserIn] Shuangxia Niu [verfasserIn] Can Wang [verfasserIn] Xiaodong Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 8(2020), Seite 126253-126265 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; pages:126253-126265 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2020.3007730 |
---|
Katalog-ID: |
DOAJ007200846 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ007200846 | ||
003 | DE-627 | ||
005 | 20230309214625.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2020.3007730 |2 doi | |
035 | |a (DE-627)DOAJ007200846 | ||
035 | |a (DE-599)DOAJ213847ff1bfe4871a682a34be0d3c408 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Jianfei Pan |e verfasserin |4 aut | |
245 | 1 | 0 | |a High-Precision Coordinated Position Control of Integrated Permanent Magnet Synchronous Linear Motor Stations |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In multi-station linear reciprocating processing systems, the positioning accuracy and the cooperative precision of the motion stations directly affect the production quality of products. This paper aims to enhance both the positioning and the coordination accuracy of the motion stations from the integrated permanent magnet synchronous linear motor (IPMSLM) stations during the reciprocating motions, especially in the presence of load disturbance. Firstly, the adaptive control strategy based on pole placement principle with online parameter identification is proposed for single IPMSLM station. The least squares identification algorithm with forgetting factor is employed to calculate the mathematic model online, so as to solve the problem that the IPMSLM stations cannot be accurately modeled with the existence of parameter perturbation and load disturbance. Secondly, in order to improve the coordination performance of the IPMSLM stations, the cooperative error equation is proposed, and a ring coupling cooperative (RCC) control strategy based on Lyapunov stability theorem is designed. The accuracy and effectiveness of this proposed collaborative control strategy is verified by experiments under no-load and spring-load conditions. Experimental results show that for the proposed adaptive and coordinate control strategy, the positioning error and the coordination error during the reciprocating motion can be guaranteed uniformly within $\pm 8~\mu \text{m}$ and $\pm 10~\mu \text{m}$ , respectively. | ||
650 | 4 | |a Adaptive position control | |
650 | 4 | |a coordination accuracy | |
650 | 4 | |a IPMSLM | |
650 | 4 | |a position tracking accuracy | |
650 | 4 | |a ring coupling control | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Pengfei Fu |e verfasserin |4 aut | |
700 | 0 | |a Shuangxia Niu |e verfasserin |4 aut | |
700 | 0 | |a Can Wang |e verfasserin |4 aut | |
700 | 0 | |a Xiaodong Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 8(2020), Seite 126253-126265 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g pages:126253-126265 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2020.3007730 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/213847ff1bfe4871a682a34be0d3c408 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9134759/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |h 126253-126265 |
author_variant |
j p jp p f pf s n sn c w cw x z xz |
---|---|
matchkey_str |
article:21693536:2020----::ihrcsocodntdoiinotooitgaepraetantycr |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TK |
publishDate |
2020 |
allfields |
10.1109/ACCESS.2020.3007730 doi (DE-627)DOAJ007200846 (DE-599)DOAJ213847ff1bfe4871a682a34be0d3c408 DE-627 ger DE-627 rakwb eng TK1-9971 Jianfei Pan verfasserin aut High-Precision Coordinated Position Control of Integrated Permanent Magnet Synchronous Linear Motor Stations 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In multi-station linear reciprocating processing systems, the positioning accuracy and the cooperative precision of the motion stations directly affect the production quality of products. This paper aims to enhance both the positioning and the coordination accuracy of the motion stations from the integrated permanent magnet synchronous linear motor (IPMSLM) stations during the reciprocating motions, especially in the presence of load disturbance. Firstly, the adaptive control strategy based on pole placement principle with online parameter identification is proposed for single IPMSLM station. The least squares identification algorithm with forgetting factor is employed to calculate the mathematic model online, so as to solve the problem that the IPMSLM stations cannot be accurately modeled with the existence of parameter perturbation and load disturbance. Secondly, in order to improve the coordination performance of the IPMSLM stations, the cooperative error equation is proposed, and a ring coupling cooperative (RCC) control strategy based on Lyapunov stability theorem is designed. The accuracy and effectiveness of this proposed collaborative control strategy is verified by experiments under no-load and spring-load conditions. Experimental results show that for the proposed adaptive and coordinate control strategy, the positioning error and the coordination error during the reciprocating motion can be guaranteed uniformly within $\pm 8~\mu \text{m}$ and $\pm 10~\mu \text{m}$ , respectively. Adaptive position control coordination accuracy IPMSLM position tracking accuracy ring coupling control Electrical engineering. Electronics. Nuclear engineering Pengfei Fu verfasserin aut Shuangxia Niu verfasserin aut Can Wang verfasserin aut Xiaodong Zhang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 126253-126265 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:126253-126265 https://doi.org/10.1109/ACCESS.2020.3007730 kostenfrei https://doaj.org/article/213847ff1bfe4871a682a34be0d3c408 kostenfrei https://ieeexplore.ieee.org/document/9134759/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 126253-126265 |
spelling |
10.1109/ACCESS.2020.3007730 doi (DE-627)DOAJ007200846 (DE-599)DOAJ213847ff1bfe4871a682a34be0d3c408 DE-627 ger DE-627 rakwb eng TK1-9971 Jianfei Pan verfasserin aut High-Precision Coordinated Position Control of Integrated Permanent Magnet Synchronous Linear Motor Stations 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In multi-station linear reciprocating processing systems, the positioning accuracy and the cooperative precision of the motion stations directly affect the production quality of products. This paper aims to enhance both the positioning and the coordination accuracy of the motion stations from the integrated permanent magnet synchronous linear motor (IPMSLM) stations during the reciprocating motions, especially in the presence of load disturbance. Firstly, the adaptive control strategy based on pole placement principle with online parameter identification is proposed for single IPMSLM station. The least squares identification algorithm with forgetting factor is employed to calculate the mathematic model online, so as to solve the problem that the IPMSLM stations cannot be accurately modeled with the existence of parameter perturbation and load disturbance. Secondly, in order to improve the coordination performance of the IPMSLM stations, the cooperative error equation is proposed, and a ring coupling cooperative (RCC) control strategy based on Lyapunov stability theorem is designed. The accuracy and effectiveness of this proposed collaborative control strategy is verified by experiments under no-load and spring-load conditions. Experimental results show that for the proposed adaptive and coordinate control strategy, the positioning error and the coordination error during the reciprocating motion can be guaranteed uniformly within $\pm 8~\mu \text{m}$ and $\pm 10~\mu \text{m}$ , respectively. Adaptive position control coordination accuracy IPMSLM position tracking accuracy ring coupling control Electrical engineering. Electronics. Nuclear engineering Pengfei Fu verfasserin aut Shuangxia Niu verfasserin aut Can Wang verfasserin aut Xiaodong Zhang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 126253-126265 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:126253-126265 https://doi.org/10.1109/ACCESS.2020.3007730 kostenfrei https://doaj.org/article/213847ff1bfe4871a682a34be0d3c408 kostenfrei https://ieeexplore.ieee.org/document/9134759/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 126253-126265 |
allfields_unstemmed |
10.1109/ACCESS.2020.3007730 doi (DE-627)DOAJ007200846 (DE-599)DOAJ213847ff1bfe4871a682a34be0d3c408 DE-627 ger DE-627 rakwb eng TK1-9971 Jianfei Pan verfasserin aut High-Precision Coordinated Position Control of Integrated Permanent Magnet Synchronous Linear Motor Stations 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In multi-station linear reciprocating processing systems, the positioning accuracy and the cooperative precision of the motion stations directly affect the production quality of products. This paper aims to enhance both the positioning and the coordination accuracy of the motion stations from the integrated permanent magnet synchronous linear motor (IPMSLM) stations during the reciprocating motions, especially in the presence of load disturbance. Firstly, the adaptive control strategy based on pole placement principle with online parameter identification is proposed for single IPMSLM station. The least squares identification algorithm with forgetting factor is employed to calculate the mathematic model online, so as to solve the problem that the IPMSLM stations cannot be accurately modeled with the existence of parameter perturbation and load disturbance. Secondly, in order to improve the coordination performance of the IPMSLM stations, the cooperative error equation is proposed, and a ring coupling cooperative (RCC) control strategy based on Lyapunov stability theorem is designed. The accuracy and effectiveness of this proposed collaborative control strategy is verified by experiments under no-load and spring-load conditions. Experimental results show that for the proposed adaptive and coordinate control strategy, the positioning error and the coordination error during the reciprocating motion can be guaranteed uniformly within $\pm 8~\mu \text{m}$ and $\pm 10~\mu \text{m}$ , respectively. Adaptive position control coordination accuracy IPMSLM position tracking accuracy ring coupling control Electrical engineering. Electronics. Nuclear engineering Pengfei Fu verfasserin aut Shuangxia Niu verfasserin aut Can Wang verfasserin aut Xiaodong Zhang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 126253-126265 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:126253-126265 https://doi.org/10.1109/ACCESS.2020.3007730 kostenfrei https://doaj.org/article/213847ff1bfe4871a682a34be0d3c408 kostenfrei https://ieeexplore.ieee.org/document/9134759/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 126253-126265 |
allfieldsGer |
10.1109/ACCESS.2020.3007730 doi (DE-627)DOAJ007200846 (DE-599)DOAJ213847ff1bfe4871a682a34be0d3c408 DE-627 ger DE-627 rakwb eng TK1-9971 Jianfei Pan verfasserin aut High-Precision Coordinated Position Control of Integrated Permanent Magnet Synchronous Linear Motor Stations 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In multi-station linear reciprocating processing systems, the positioning accuracy and the cooperative precision of the motion stations directly affect the production quality of products. This paper aims to enhance both the positioning and the coordination accuracy of the motion stations from the integrated permanent magnet synchronous linear motor (IPMSLM) stations during the reciprocating motions, especially in the presence of load disturbance. Firstly, the adaptive control strategy based on pole placement principle with online parameter identification is proposed for single IPMSLM station. The least squares identification algorithm with forgetting factor is employed to calculate the mathematic model online, so as to solve the problem that the IPMSLM stations cannot be accurately modeled with the existence of parameter perturbation and load disturbance. Secondly, in order to improve the coordination performance of the IPMSLM stations, the cooperative error equation is proposed, and a ring coupling cooperative (RCC) control strategy based on Lyapunov stability theorem is designed. The accuracy and effectiveness of this proposed collaborative control strategy is verified by experiments under no-load and spring-load conditions. Experimental results show that for the proposed adaptive and coordinate control strategy, the positioning error and the coordination error during the reciprocating motion can be guaranteed uniformly within $\pm 8~\mu \text{m}$ and $\pm 10~\mu \text{m}$ , respectively. Adaptive position control coordination accuracy IPMSLM position tracking accuracy ring coupling control Electrical engineering. Electronics. Nuclear engineering Pengfei Fu verfasserin aut Shuangxia Niu verfasserin aut Can Wang verfasserin aut Xiaodong Zhang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 126253-126265 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:126253-126265 https://doi.org/10.1109/ACCESS.2020.3007730 kostenfrei https://doaj.org/article/213847ff1bfe4871a682a34be0d3c408 kostenfrei https://ieeexplore.ieee.org/document/9134759/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 126253-126265 |
allfieldsSound |
10.1109/ACCESS.2020.3007730 doi (DE-627)DOAJ007200846 (DE-599)DOAJ213847ff1bfe4871a682a34be0d3c408 DE-627 ger DE-627 rakwb eng TK1-9971 Jianfei Pan verfasserin aut High-Precision Coordinated Position Control of Integrated Permanent Magnet Synchronous Linear Motor Stations 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In multi-station linear reciprocating processing systems, the positioning accuracy and the cooperative precision of the motion stations directly affect the production quality of products. This paper aims to enhance both the positioning and the coordination accuracy of the motion stations from the integrated permanent magnet synchronous linear motor (IPMSLM) stations during the reciprocating motions, especially in the presence of load disturbance. Firstly, the adaptive control strategy based on pole placement principle with online parameter identification is proposed for single IPMSLM station. The least squares identification algorithm with forgetting factor is employed to calculate the mathematic model online, so as to solve the problem that the IPMSLM stations cannot be accurately modeled with the existence of parameter perturbation and load disturbance. Secondly, in order to improve the coordination performance of the IPMSLM stations, the cooperative error equation is proposed, and a ring coupling cooperative (RCC) control strategy based on Lyapunov stability theorem is designed. The accuracy and effectiveness of this proposed collaborative control strategy is verified by experiments under no-load and spring-load conditions. Experimental results show that for the proposed adaptive and coordinate control strategy, the positioning error and the coordination error during the reciprocating motion can be guaranteed uniformly within $\pm 8~\mu \text{m}$ and $\pm 10~\mu \text{m}$ , respectively. Adaptive position control coordination accuracy IPMSLM position tracking accuracy ring coupling control Electrical engineering. Electronics. Nuclear engineering Pengfei Fu verfasserin aut Shuangxia Niu verfasserin aut Can Wang verfasserin aut Xiaodong Zhang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 126253-126265 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:126253-126265 https://doi.org/10.1109/ACCESS.2020.3007730 kostenfrei https://doaj.org/article/213847ff1bfe4871a682a34be0d3c408 kostenfrei https://ieeexplore.ieee.org/document/9134759/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 126253-126265 |
language |
English |
source |
In IEEE Access 8(2020), Seite 126253-126265 volume:8 year:2020 pages:126253-126265 |
sourceStr |
In IEEE Access 8(2020), Seite 126253-126265 volume:8 year:2020 pages:126253-126265 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Adaptive position control coordination accuracy IPMSLM position tracking accuracy ring coupling control Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Jianfei Pan @@aut@@ Pengfei Fu @@aut@@ Shuangxia Niu @@aut@@ Can Wang @@aut@@ Xiaodong Zhang @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ007200846 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007200846</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309214625.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.3007730</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007200846</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ213847ff1bfe4871a682a34be0d3c408</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianfei Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-Precision Coordinated Position Control of Integrated Permanent Magnet Synchronous Linear Motor Stations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In multi-station linear reciprocating processing systems, the positioning accuracy and the cooperative precision of the motion stations directly affect the production quality of products. This paper aims to enhance both the positioning and the coordination accuracy of the motion stations from the integrated permanent magnet synchronous linear motor (IPMSLM) stations during the reciprocating motions, especially in the presence of load disturbance. Firstly, the adaptive control strategy based on pole placement principle with online parameter identification is proposed for single IPMSLM station. The least squares identification algorithm with forgetting factor is employed to calculate the mathematic model online, so as to solve the problem that the IPMSLM stations cannot be accurately modeled with the existence of parameter perturbation and load disturbance. Secondly, in order to improve the coordination performance of the IPMSLM stations, the cooperative error equation is proposed, and a ring coupling cooperative (RCC) control strategy based on Lyapunov stability theorem is designed. The accuracy and effectiveness of this proposed collaborative control strategy is verified by experiments under no-load and spring-load conditions. Experimental results show that for the proposed adaptive and coordinate control strategy, the positioning error and the coordination error during the reciprocating motion can be guaranteed uniformly within $\pm 8~\mu \text{m}$ and $\pm 10~\mu \text{m}$ , respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive position control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coordination accuracy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IPMSLM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">position tracking accuracy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ring coupling control</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pengfei Fu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuangxia Niu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Can Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaodong Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 126253-126265</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:126253-126265</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.3007730</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/213847ff1bfe4871a682a34be0d3c408</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9134759/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">126253-126265</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jianfei Pan |
spellingShingle |
Jianfei Pan misc TK1-9971 misc Adaptive position control misc coordination accuracy misc IPMSLM misc position tracking accuracy misc ring coupling control misc Electrical engineering. Electronics. Nuclear engineering High-Precision Coordinated Position Control of Integrated Permanent Magnet Synchronous Linear Motor Stations |
authorStr |
Jianfei Pan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 High-Precision Coordinated Position Control of Integrated Permanent Magnet Synchronous Linear Motor Stations Adaptive position control coordination accuracy IPMSLM position tracking accuracy ring coupling control |
topic |
misc TK1-9971 misc Adaptive position control misc coordination accuracy misc IPMSLM misc position tracking accuracy misc ring coupling control misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Adaptive position control misc coordination accuracy misc IPMSLM misc position tracking accuracy misc ring coupling control misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Adaptive position control misc coordination accuracy misc IPMSLM misc position tracking accuracy misc ring coupling control misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
High-Precision Coordinated Position Control of Integrated Permanent Magnet Synchronous Linear Motor Stations |
ctrlnum |
(DE-627)DOAJ007200846 (DE-599)DOAJ213847ff1bfe4871a682a34be0d3c408 |
title_full |
High-Precision Coordinated Position Control of Integrated Permanent Magnet Synchronous Linear Motor Stations |
author_sort |
Jianfei Pan |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
126253 |
author_browse |
Jianfei Pan Pengfei Fu Shuangxia Niu Can Wang Xiaodong Zhang |
container_volume |
8 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Jianfei Pan |
doi_str_mv |
10.1109/ACCESS.2020.3007730 |
author2-role |
verfasserin |
title_sort |
high-precision coordinated position control of integrated permanent magnet synchronous linear motor stations |
callnumber |
TK1-9971 |
title_auth |
High-Precision Coordinated Position Control of Integrated Permanent Magnet Synchronous Linear Motor Stations |
abstract |
In multi-station linear reciprocating processing systems, the positioning accuracy and the cooperative precision of the motion stations directly affect the production quality of products. This paper aims to enhance both the positioning and the coordination accuracy of the motion stations from the integrated permanent magnet synchronous linear motor (IPMSLM) stations during the reciprocating motions, especially in the presence of load disturbance. Firstly, the adaptive control strategy based on pole placement principle with online parameter identification is proposed for single IPMSLM station. The least squares identification algorithm with forgetting factor is employed to calculate the mathematic model online, so as to solve the problem that the IPMSLM stations cannot be accurately modeled with the existence of parameter perturbation and load disturbance. Secondly, in order to improve the coordination performance of the IPMSLM stations, the cooperative error equation is proposed, and a ring coupling cooperative (RCC) control strategy based on Lyapunov stability theorem is designed. The accuracy and effectiveness of this proposed collaborative control strategy is verified by experiments under no-load and spring-load conditions. Experimental results show that for the proposed adaptive and coordinate control strategy, the positioning error and the coordination error during the reciprocating motion can be guaranteed uniformly within $\pm 8~\mu \text{m}$ and $\pm 10~\mu \text{m}$ , respectively. |
abstractGer |
In multi-station linear reciprocating processing systems, the positioning accuracy and the cooperative precision of the motion stations directly affect the production quality of products. This paper aims to enhance both the positioning and the coordination accuracy of the motion stations from the integrated permanent magnet synchronous linear motor (IPMSLM) stations during the reciprocating motions, especially in the presence of load disturbance. Firstly, the adaptive control strategy based on pole placement principle with online parameter identification is proposed for single IPMSLM station. The least squares identification algorithm with forgetting factor is employed to calculate the mathematic model online, so as to solve the problem that the IPMSLM stations cannot be accurately modeled with the existence of parameter perturbation and load disturbance. Secondly, in order to improve the coordination performance of the IPMSLM stations, the cooperative error equation is proposed, and a ring coupling cooperative (RCC) control strategy based on Lyapunov stability theorem is designed. The accuracy and effectiveness of this proposed collaborative control strategy is verified by experiments under no-load and spring-load conditions. Experimental results show that for the proposed adaptive and coordinate control strategy, the positioning error and the coordination error during the reciprocating motion can be guaranteed uniformly within $\pm 8~\mu \text{m}$ and $\pm 10~\mu \text{m}$ , respectively. |
abstract_unstemmed |
In multi-station linear reciprocating processing systems, the positioning accuracy and the cooperative precision of the motion stations directly affect the production quality of products. This paper aims to enhance both the positioning and the coordination accuracy of the motion stations from the integrated permanent magnet synchronous linear motor (IPMSLM) stations during the reciprocating motions, especially in the presence of load disturbance. Firstly, the adaptive control strategy based on pole placement principle with online parameter identification is proposed for single IPMSLM station. The least squares identification algorithm with forgetting factor is employed to calculate the mathematic model online, so as to solve the problem that the IPMSLM stations cannot be accurately modeled with the existence of parameter perturbation and load disturbance. Secondly, in order to improve the coordination performance of the IPMSLM stations, the cooperative error equation is proposed, and a ring coupling cooperative (RCC) control strategy based on Lyapunov stability theorem is designed. The accuracy and effectiveness of this proposed collaborative control strategy is verified by experiments under no-load and spring-load conditions. Experimental results show that for the proposed adaptive and coordinate control strategy, the positioning error and the coordination error during the reciprocating motion can be guaranteed uniformly within $\pm 8~\mu \text{m}$ and $\pm 10~\mu \text{m}$ , respectively. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
High-Precision Coordinated Position Control of Integrated Permanent Magnet Synchronous Linear Motor Stations |
url |
https://doi.org/10.1109/ACCESS.2020.3007730 https://doaj.org/article/213847ff1bfe4871a682a34be0d3c408 https://ieeexplore.ieee.org/document/9134759/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Pengfei Fu Shuangxia Niu Can Wang Xiaodong Zhang |
author2Str |
Pengfei Fu Shuangxia Niu Can Wang Xiaodong Zhang |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2020.3007730 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T00:40:39.059Z |
_version_ |
1803606964632027136 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007200846</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309214625.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.3007730</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007200846</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ213847ff1bfe4871a682a34be0d3c408</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianfei Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-Precision Coordinated Position Control of Integrated Permanent Magnet Synchronous Linear Motor Stations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In multi-station linear reciprocating processing systems, the positioning accuracy and the cooperative precision of the motion stations directly affect the production quality of products. This paper aims to enhance both the positioning and the coordination accuracy of the motion stations from the integrated permanent magnet synchronous linear motor (IPMSLM) stations during the reciprocating motions, especially in the presence of load disturbance. Firstly, the adaptive control strategy based on pole placement principle with online parameter identification is proposed for single IPMSLM station. The least squares identification algorithm with forgetting factor is employed to calculate the mathematic model online, so as to solve the problem that the IPMSLM stations cannot be accurately modeled with the existence of parameter perturbation and load disturbance. Secondly, in order to improve the coordination performance of the IPMSLM stations, the cooperative error equation is proposed, and a ring coupling cooperative (RCC) control strategy based on Lyapunov stability theorem is designed. The accuracy and effectiveness of this proposed collaborative control strategy is verified by experiments under no-load and spring-load conditions. Experimental results show that for the proposed adaptive and coordinate control strategy, the positioning error and the coordination error during the reciprocating motion can be guaranteed uniformly within $\pm 8~\mu \text{m}$ and $\pm 10~\mu \text{m}$ , respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive position control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coordination accuracy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IPMSLM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">position tracking accuracy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ring coupling control</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pengfei Fu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuangxia Niu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Can Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaodong Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 126253-126265</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:126253-126265</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.3007730</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/213847ff1bfe4871a682a34be0d3c408</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9134759/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">126253-126265</subfield></datafield></record></collection>
|
score |
7.401121 |