Ameliorative effects of potassium nutrition on yield and fiber quality characteristics of cotton (Gossypium hirsutum L.) under NaCl stress
Cotton (Gossypium hirsutum L.) being moderately tolerant to salinity has been extensively grown in arid and semiarid regions where soil salinization is a major threat to plant growth and soil productivity. Excess salts in the growth medium may interfere with growth processes of cotton, leading to a...
Ausführliche Beschreibung
Autor*in: |
Muhammad Ashraf [verfasserIn] Sher Muhammad Shahzad [verfasserIn] Muhammad Imtiaz [verfasserIn] Muhammad Shahid Rizwan [verfasserIn] Muhammad Mahzar Iqbal [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Soil & Environment - Soil Science Society of Pakistan (SSSP), 2011, 36(2017), 1, Seite 51-58 |
---|---|
Übergeordnetes Werk: |
volume:36 ; year:2017 ; number:1 ; pages:51-58 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.25252/SE/17/31054 |
---|
Katalog-ID: |
DOAJ007326955 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ007326955 | ||
003 | DE-627 | ||
005 | 20230503143719.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.25252/SE/17/31054 |2 doi | |
035 | |a (DE-627)DOAJ007326955 | ||
035 | |a (DE-599)DOAJa71a546a69524ba6bd00e783262d9d16 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a S1-972 | |
050 | 0 | |a GE1-350 | |
100 | 0 | |a Muhammad Ashraf |e verfasserin |4 aut | |
245 | 1 | 0 | |a Ameliorative effects of potassium nutrition on yield and fiber quality characteristics of cotton (Gossypium hirsutum L.) under NaCl stress |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Cotton (Gossypium hirsutum L.) being moderately tolerant to salinity has been extensively grown in arid and semiarid regions where soil salinization is a major threat to plant growth and soil productivity. Excess salts in the growth medium may interfere with growth processes of cotton, leading to a severe decline in yield and fiber quality characteristics. Adequate mineral nutrient status of plants can provide an important strategy to improve plant tolerance to salinity. A pot experiment was planned to evaluate the ameliorative effects of additional potassium (K) applied at 50 and 100 mg K2O kg-1 soil as potassium sulfate against NaCl stress of 100 and 180 mM in cotton. The experiment was conducted according to completely randomized design with five replications. NaCl caused a significant (P ≤ 0.05) increase in shoot sodium (Na+) and chloride (Cl-) with a corresponding decrease in shoot K+, K+: Na+ ratio, calcium (Ca2+) and magnesium (Mg2+). Plant growth, yield and fiber quality characteristics were also declined significantly by increasing external NaCl concentration. Additional K reduced shoot Na + while increased K+, K+: Na+ ratio, Ca2+ and Mg2+ with the consequent improvement in plant growth, lint yield and yield attributes as well as fiber quality characteristics at both levels of NaCl. Results revealed that K nutrition improved shoot K+: Na+ ratio by 116 and 246% at NaCl100 while 188 and 294% at NaCl180 with K50 and K100, respectively as compared to NaCl treated plants without additional K. Likewise, lint yield was improved by 38.27 and 60.49% at NaCl100 while 75.12 and 136% at NaCl180 with K50 and K100, respectively compared to NaCl stressed plants without additional K. Ameliorative effects of K against NaCl stress were relatively more prominent at higher K application at both NaCl levels. In conclusion, K-induced decrease in Na+, increase in Ca2+, K+, K+: Na+ ratio, relative water content and membrane stability index provide protective mechanisms against NaCl stress. However, the results need to be confirmed under field conditions and the economic feasibility should be worked out. | ||
650 | 4 | |a MSI | |
650 | 4 | |a Plant growth | |
650 | 4 | |a Plant tolerance | |
650 | 4 | |a Potassium | |
650 | 4 | |a RWC | |
650 | 4 | |a Salinity | |
650 | 4 | |a Sodium | |
653 | 0 | |a Agriculture (General) | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Sher Muhammad Shahzad |e verfasserin |4 aut | |
700 | 0 | |a Muhammad Imtiaz |e verfasserin |4 aut | |
700 | 0 | |a Muhammad Shahid Rizwan |e verfasserin |4 aut | |
700 | 0 | |a Muhammad Mahzar Iqbal |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Soil & Environment |d Soil Science Society of Pakistan (SSSP), 2011 |g 36(2017), 1, Seite 51-58 |w (DE-627)657584320 |w (DE-600)2605962-9 |x 20751141 |7 nnns |
773 | 1 | 8 | |g volume:36 |g year:2017 |g number:1 |g pages:51-58 |
856 | 4 | 0 | |u https://doi.org/10.25252/SE/17/31054 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a71a546a69524ba6bd00e783262d9d16 |z kostenfrei |
856 | 4 | 0 | |u http://se.org.pk/File-Download.aspx?archivedpaperid=797 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2074-9546 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-1141 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 36 |j 2017 |e 1 |h 51-58 |
author_variant |
m a ma s m s sms m i mi m s r msr m m i mmi |
---|---|
matchkey_str |
article:20751141:2017----::mloaiefetoptsimurtooyednfbrultcaatrsisfotno |
hierarchy_sort_str |
2017 |
callnumber-subject-code |
S |
publishDate |
2017 |
allfields |
10.25252/SE/17/31054 doi (DE-627)DOAJ007326955 (DE-599)DOAJa71a546a69524ba6bd00e783262d9d16 DE-627 ger DE-627 rakwb eng S1-972 GE1-350 Muhammad Ashraf verfasserin aut Ameliorative effects of potassium nutrition on yield and fiber quality characteristics of cotton (Gossypium hirsutum L.) under NaCl stress 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cotton (Gossypium hirsutum L.) being moderately tolerant to salinity has been extensively grown in arid and semiarid regions where soil salinization is a major threat to plant growth and soil productivity. Excess salts in the growth medium may interfere with growth processes of cotton, leading to a severe decline in yield and fiber quality characteristics. Adequate mineral nutrient status of plants can provide an important strategy to improve plant tolerance to salinity. A pot experiment was planned to evaluate the ameliorative effects of additional potassium (K) applied at 50 and 100 mg K2O kg-1 soil as potassium sulfate against NaCl stress of 100 and 180 mM in cotton. The experiment was conducted according to completely randomized design with five replications. NaCl caused a significant (P ≤ 0.05) increase in shoot sodium (Na+) and chloride (Cl-) with a corresponding decrease in shoot K+, K+: Na+ ratio, calcium (Ca2+) and magnesium (Mg2+). Plant growth, yield and fiber quality characteristics were also declined significantly by increasing external NaCl concentration. Additional K reduced shoot Na + while increased K+, K+: Na+ ratio, Ca2+ and Mg2+ with the consequent improvement in plant growth, lint yield and yield attributes as well as fiber quality characteristics at both levels of NaCl. Results revealed that K nutrition improved shoot K+: Na+ ratio by 116 and 246% at NaCl100 while 188 and 294% at NaCl180 with K50 and K100, respectively as compared to NaCl treated plants without additional K. Likewise, lint yield was improved by 38.27 and 60.49% at NaCl100 while 75.12 and 136% at NaCl180 with K50 and K100, respectively compared to NaCl stressed plants without additional K. Ameliorative effects of K against NaCl stress were relatively more prominent at higher K application at both NaCl levels. In conclusion, K-induced decrease in Na+, increase in Ca2+, K+, K+: Na+ ratio, relative water content and membrane stability index provide protective mechanisms against NaCl stress. However, the results need to be confirmed under field conditions and the economic feasibility should be worked out. MSI Plant growth Plant tolerance Potassium RWC Salinity Sodium Agriculture (General) Environmental sciences Sher Muhammad Shahzad verfasserin aut Muhammad Imtiaz verfasserin aut Muhammad Shahid Rizwan verfasserin aut Muhammad Mahzar Iqbal verfasserin aut In Soil & Environment Soil Science Society of Pakistan (SSSP), 2011 36(2017), 1, Seite 51-58 (DE-627)657584320 (DE-600)2605962-9 20751141 nnns volume:36 year:2017 number:1 pages:51-58 https://doi.org/10.25252/SE/17/31054 kostenfrei https://doaj.org/article/a71a546a69524ba6bd00e783262d9d16 kostenfrei http://se.org.pk/File-Download.aspx?archivedpaperid=797 kostenfrei https://doaj.org/toc/2074-9546 Journal toc kostenfrei https://doaj.org/toc/2075-1141 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 36 2017 1 51-58 |
spelling |
10.25252/SE/17/31054 doi (DE-627)DOAJ007326955 (DE-599)DOAJa71a546a69524ba6bd00e783262d9d16 DE-627 ger DE-627 rakwb eng S1-972 GE1-350 Muhammad Ashraf verfasserin aut Ameliorative effects of potassium nutrition on yield and fiber quality characteristics of cotton (Gossypium hirsutum L.) under NaCl stress 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cotton (Gossypium hirsutum L.) being moderately tolerant to salinity has been extensively grown in arid and semiarid regions where soil salinization is a major threat to plant growth and soil productivity. Excess salts in the growth medium may interfere with growth processes of cotton, leading to a severe decline in yield and fiber quality characteristics. Adequate mineral nutrient status of plants can provide an important strategy to improve plant tolerance to salinity. A pot experiment was planned to evaluate the ameliorative effects of additional potassium (K) applied at 50 and 100 mg K2O kg-1 soil as potassium sulfate against NaCl stress of 100 and 180 mM in cotton. The experiment was conducted according to completely randomized design with five replications. NaCl caused a significant (P ≤ 0.05) increase in shoot sodium (Na+) and chloride (Cl-) with a corresponding decrease in shoot K+, K+: Na+ ratio, calcium (Ca2+) and magnesium (Mg2+). Plant growth, yield and fiber quality characteristics were also declined significantly by increasing external NaCl concentration. Additional K reduced shoot Na + while increased K+, K+: Na+ ratio, Ca2+ and Mg2+ with the consequent improvement in plant growth, lint yield and yield attributes as well as fiber quality characteristics at both levels of NaCl. Results revealed that K nutrition improved shoot K+: Na+ ratio by 116 and 246% at NaCl100 while 188 and 294% at NaCl180 with K50 and K100, respectively as compared to NaCl treated plants without additional K. Likewise, lint yield was improved by 38.27 and 60.49% at NaCl100 while 75.12 and 136% at NaCl180 with K50 and K100, respectively compared to NaCl stressed plants without additional K. Ameliorative effects of K against NaCl stress were relatively more prominent at higher K application at both NaCl levels. In conclusion, K-induced decrease in Na+, increase in Ca2+, K+, K+: Na+ ratio, relative water content and membrane stability index provide protective mechanisms against NaCl stress. However, the results need to be confirmed under field conditions and the economic feasibility should be worked out. MSI Plant growth Plant tolerance Potassium RWC Salinity Sodium Agriculture (General) Environmental sciences Sher Muhammad Shahzad verfasserin aut Muhammad Imtiaz verfasserin aut Muhammad Shahid Rizwan verfasserin aut Muhammad Mahzar Iqbal verfasserin aut In Soil & Environment Soil Science Society of Pakistan (SSSP), 2011 36(2017), 1, Seite 51-58 (DE-627)657584320 (DE-600)2605962-9 20751141 nnns volume:36 year:2017 number:1 pages:51-58 https://doi.org/10.25252/SE/17/31054 kostenfrei https://doaj.org/article/a71a546a69524ba6bd00e783262d9d16 kostenfrei http://se.org.pk/File-Download.aspx?archivedpaperid=797 kostenfrei https://doaj.org/toc/2074-9546 Journal toc kostenfrei https://doaj.org/toc/2075-1141 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 36 2017 1 51-58 |
allfields_unstemmed |
10.25252/SE/17/31054 doi (DE-627)DOAJ007326955 (DE-599)DOAJa71a546a69524ba6bd00e783262d9d16 DE-627 ger DE-627 rakwb eng S1-972 GE1-350 Muhammad Ashraf verfasserin aut Ameliorative effects of potassium nutrition on yield and fiber quality characteristics of cotton (Gossypium hirsutum L.) under NaCl stress 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cotton (Gossypium hirsutum L.) being moderately tolerant to salinity has been extensively grown in arid and semiarid regions where soil salinization is a major threat to plant growth and soil productivity. Excess salts in the growth medium may interfere with growth processes of cotton, leading to a severe decline in yield and fiber quality characteristics. Adequate mineral nutrient status of plants can provide an important strategy to improve plant tolerance to salinity. A pot experiment was planned to evaluate the ameliorative effects of additional potassium (K) applied at 50 and 100 mg K2O kg-1 soil as potassium sulfate against NaCl stress of 100 and 180 mM in cotton. The experiment was conducted according to completely randomized design with five replications. NaCl caused a significant (P ≤ 0.05) increase in shoot sodium (Na+) and chloride (Cl-) with a corresponding decrease in shoot K+, K+: Na+ ratio, calcium (Ca2+) and magnesium (Mg2+). Plant growth, yield and fiber quality characteristics were also declined significantly by increasing external NaCl concentration. Additional K reduced shoot Na + while increased K+, K+: Na+ ratio, Ca2+ and Mg2+ with the consequent improvement in plant growth, lint yield and yield attributes as well as fiber quality characteristics at both levels of NaCl. Results revealed that K nutrition improved shoot K+: Na+ ratio by 116 and 246% at NaCl100 while 188 and 294% at NaCl180 with K50 and K100, respectively as compared to NaCl treated plants without additional K. Likewise, lint yield was improved by 38.27 and 60.49% at NaCl100 while 75.12 and 136% at NaCl180 with K50 and K100, respectively compared to NaCl stressed plants without additional K. Ameliorative effects of K against NaCl stress were relatively more prominent at higher K application at both NaCl levels. In conclusion, K-induced decrease in Na+, increase in Ca2+, K+, K+: Na+ ratio, relative water content and membrane stability index provide protective mechanisms against NaCl stress. However, the results need to be confirmed under field conditions and the economic feasibility should be worked out. MSI Plant growth Plant tolerance Potassium RWC Salinity Sodium Agriculture (General) Environmental sciences Sher Muhammad Shahzad verfasserin aut Muhammad Imtiaz verfasserin aut Muhammad Shahid Rizwan verfasserin aut Muhammad Mahzar Iqbal verfasserin aut In Soil & Environment Soil Science Society of Pakistan (SSSP), 2011 36(2017), 1, Seite 51-58 (DE-627)657584320 (DE-600)2605962-9 20751141 nnns volume:36 year:2017 number:1 pages:51-58 https://doi.org/10.25252/SE/17/31054 kostenfrei https://doaj.org/article/a71a546a69524ba6bd00e783262d9d16 kostenfrei http://se.org.pk/File-Download.aspx?archivedpaperid=797 kostenfrei https://doaj.org/toc/2074-9546 Journal toc kostenfrei https://doaj.org/toc/2075-1141 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 36 2017 1 51-58 |
allfieldsGer |
10.25252/SE/17/31054 doi (DE-627)DOAJ007326955 (DE-599)DOAJa71a546a69524ba6bd00e783262d9d16 DE-627 ger DE-627 rakwb eng S1-972 GE1-350 Muhammad Ashraf verfasserin aut Ameliorative effects of potassium nutrition on yield and fiber quality characteristics of cotton (Gossypium hirsutum L.) under NaCl stress 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cotton (Gossypium hirsutum L.) being moderately tolerant to salinity has been extensively grown in arid and semiarid regions where soil salinization is a major threat to plant growth and soil productivity. Excess salts in the growth medium may interfere with growth processes of cotton, leading to a severe decline in yield and fiber quality characteristics. Adequate mineral nutrient status of plants can provide an important strategy to improve plant tolerance to salinity. A pot experiment was planned to evaluate the ameliorative effects of additional potassium (K) applied at 50 and 100 mg K2O kg-1 soil as potassium sulfate against NaCl stress of 100 and 180 mM in cotton. The experiment was conducted according to completely randomized design with five replications. NaCl caused a significant (P ≤ 0.05) increase in shoot sodium (Na+) and chloride (Cl-) with a corresponding decrease in shoot K+, K+: Na+ ratio, calcium (Ca2+) and magnesium (Mg2+). Plant growth, yield and fiber quality characteristics were also declined significantly by increasing external NaCl concentration. Additional K reduced shoot Na + while increased K+, K+: Na+ ratio, Ca2+ and Mg2+ with the consequent improvement in plant growth, lint yield and yield attributes as well as fiber quality characteristics at both levels of NaCl. Results revealed that K nutrition improved shoot K+: Na+ ratio by 116 and 246% at NaCl100 while 188 and 294% at NaCl180 with K50 and K100, respectively as compared to NaCl treated plants without additional K. Likewise, lint yield was improved by 38.27 and 60.49% at NaCl100 while 75.12 and 136% at NaCl180 with K50 and K100, respectively compared to NaCl stressed plants without additional K. Ameliorative effects of K against NaCl stress were relatively more prominent at higher K application at both NaCl levels. In conclusion, K-induced decrease in Na+, increase in Ca2+, K+, K+: Na+ ratio, relative water content and membrane stability index provide protective mechanisms against NaCl stress. However, the results need to be confirmed under field conditions and the economic feasibility should be worked out. MSI Plant growth Plant tolerance Potassium RWC Salinity Sodium Agriculture (General) Environmental sciences Sher Muhammad Shahzad verfasserin aut Muhammad Imtiaz verfasserin aut Muhammad Shahid Rizwan verfasserin aut Muhammad Mahzar Iqbal verfasserin aut In Soil & Environment Soil Science Society of Pakistan (SSSP), 2011 36(2017), 1, Seite 51-58 (DE-627)657584320 (DE-600)2605962-9 20751141 nnns volume:36 year:2017 number:1 pages:51-58 https://doi.org/10.25252/SE/17/31054 kostenfrei https://doaj.org/article/a71a546a69524ba6bd00e783262d9d16 kostenfrei http://se.org.pk/File-Download.aspx?archivedpaperid=797 kostenfrei https://doaj.org/toc/2074-9546 Journal toc kostenfrei https://doaj.org/toc/2075-1141 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 36 2017 1 51-58 |
allfieldsSound |
10.25252/SE/17/31054 doi (DE-627)DOAJ007326955 (DE-599)DOAJa71a546a69524ba6bd00e783262d9d16 DE-627 ger DE-627 rakwb eng S1-972 GE1-350 Muhammad Ashraf verfasserin aut Ameliorative effects of potassium nutrition on yield and fiber quality characteristics of cotton (Gossypium hirsutum L.) under NaCl stress 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cotton (Gossypium hirsutum L.) being moderately tolerant to salinity has been extensively grown in arid and semiarid regions where soil salinization is a major threat to plant growth and soil productivity. Excess salts in the growth medium may interfere with growth processes of cotton, leading to a severe decline in yield and fiber quality characteristics. Adequate mineral nutrient status of plants can provide an important strategy to improve plant tolerance to salinity. A pot experiment was planned to evaluate the ameliorative effects of additional potassium (K) applied at 50 and 100 mg K2O kg-1 soil as potassium sulfate against NaCl stress of 100 and 180 mM in cotton. The experiment was conducted according to completely randomized design with five replications. NaCl caused a significant (P ≤ 0.05) increase in shoot sodium (Na+) and chloride (Cl-) with a corresponding decrease in shoot K+, K+: Na+ ratio, calcium (Ca2+) and magnesium (Mg2+). Plant growth, yield and fiber quality characteristics were also declined significantly by increasing external NaCl concentration. Additional K reduced shoot Na + while increased K+, K+: Na+ ratio, Ca2+ and Mg2+ with the consequent improvement in plant growth, lint yield and yield attributes as well as fiber quality characteristics at both levels of NaCl. Results revealed that K nutrition improved shoot K+: Na+ ratio by 116 and 246% at NaCl100 while 188 and 294% at NaCl180 with K50 and K100, respectively as compared to NaCl treated plants without additional K. Likewise, lint yield was improved by 38.27 and 60.49% at NaCl100 while 75.12 and 136% at NaCl180 with K50 and K100, respectively compared to NaCl stressed plants without additional K. Ameliorative effects of K against NaCl stress were relatively more prominent at higher K application at both NaCl levels. In conclusion, K-induced decrease in Na+, increase in Ca2+, K+, K+: Na+ ratio, relative water content and membrane stability index provide protective mechanisms against NaCl stress. However, the results need to be confirmed under field conditions and the economic feasibility should be worked out. MSI Plant growth Plant tolerance Potassium RWC Salinity Sodium Agriculture (General) Environmental sciences Sher Muhammad Shahzad verfasserin aut Muhammad Imtiaz verfasserin aut Muhammad Shahid Rizwan verfasserin aut Muhammad Mahzar Iqbal verfasserin aut In Soil & Environment Soil Science Society of Pakistan (SSSP), 2011 36(2017), 1, Seite 51-58 (DE-627)657584320 (DE-600)2605962-9 20751141 nnns volume:36 year:2017 number:1 pages:51-58 https://doi.org/10.25252/SE/17/31054 kostenfrei https://doaj.org/article/a71a546a69524ba6bd00e783262d9d16 kostenfrei http://se.org.pk/File-Download.aspx?archivedpaperid=797 kostenfrei https://doaj.org/toc/2074-9546 Journal toc kostenfrei https://doaj.org/toc/2075-1141 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 36 2017 1 51-58 |
language |
English |
source |
In Soil & Environment 36(2017), 1, Seite 51-58 volume:36 year:2017 number:1 pages:51-58 |
sourceStr |
In Soil & Environment 36(2017), 1, Seite 51-58 volume:36 year:2017 number:1 pages:51-58 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
MSI Plant growth Plant tolerance Potassium RWC Salinity Sodium Agriculture (General) Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Soil & Environment |
authorswithroles_txt_mv |
Muhammad Ashraf @@aut@@ Sher Muhammad Shahzad @@aut@@ Muhammad Imtiaz @@aut@@ Muhammad Shahid Rizwan @@aut@@ Muhammad Mahzar Iqbal @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
657584320 |
id |
DOAJ007326955 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007326955</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503143719.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.25252/SE/17/31054</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007326955</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa71a546a69524ba6bd00e783262d9d16</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">S1-972</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Muhammad Ashraf</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ameliorative effects of potassium nutrition on yield and fiber quality characteristics of cotton (Gossypium hirsutum L.) under NaCl stress</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cotton (Gossypium hirsutum L.) being moderately tolerant to salinity has been extensively grown in arid and semiarid regions where soil salinization is a major threat to plant growth and soil productivity. Excess salts in the growth medium may interfere with growth processes of cotton, leading to a severe decline in yield and fiber quality characteristics. Adequate mineral nutrient status of plants can provide an important strategy to improve plant tolerance to salinity. A pot experiment was planned to evaluate the ameliorative effects of additional potassium (K) applied at 50 and 100 mg K2O kg-1 soil as potassium sulfate against NaCl stress of 100 and 180 mM in cotton. The experiment was conducted according to completely randomized design with five replications. NaCl caused a significant (P ≤ 0.05) increase in shoot sodium (Na+) and chloride (Cl-) with a corresponding decrease in shoot K+, K+: Na+ ratio, calcium (Ca2+) and magnesium (Mg2+). Plant growth, yield and fiber quality characteristics were also declined significantly by increasing external NaCl concentration. Additional K reduced shoot Na + while increased K+, K+: Na+ ratio, Ca2+ and Mg2+ with the consequent improvement in plant growth, lint yield and yield attributes as well as fiber quality characteristics at both levels of NaCl. Results revealed that K nutrition improved shoot K+: Na+ ratio by 116 and 246% at NaCl100 while 188 and 294% at NaCl180 with K50 and K100, respectively as compared to NaCl treated plants without additional K. Likewise, lint yield was improved by 38.27 and 60.49% at NaCl100 while 75.12 and 136% at NaCl180 with K50 and K100, respectively compared to NaCl stressed plants without additional K. Ameliorative effects of K against NaCl stress were relatively more prominent at higher K application at both NaCl levels. In conclusion, K-induced decrease in Na+, increase in Ca2+, K+, K+: Na+ ratio, relative water content and membrane stability index provide protective mechanisms against NaCl stress. However, the results need to be confirmed under field conditions and the economic feasibility should be worked out.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MSI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plant growth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plant tolerance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potassium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RWC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Salinity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sodium</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sher Muhammad Shahzad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muhammad Imtiaz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muhammad Shahid Rizwan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muhammad Mahzar Iqbal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Soil & Environment</subfield><subfield code="d">Soil Science Society of Pakistan (SSSP), 2011</subfield><subfield code="g">36(2017), 1, Seite 51-58</subfield><subfield code="w">(DE-627)657584320</subfield><subfield code="w">(DE-600)2605962-9</subfield><subfield code="x">20751141</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:51-58</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.25252/SE/17/31054</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a71a546a69524ba6bd00e783262d9d16</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://se.org.pk/File-Download.aspx?archivedpaperid=797</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2074-9546</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-1141</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">51-58</subfield></datafield></record></collection>
|
callnumber-first |
S - Agriculture |
author |
Muhammad Ashraf |
spellingShingle |
Muhammad Ashraf misc S1-972 misc GE1-350 misc MSI misc Plant growth misc Plant tolerance misc Potassium misc RWC misc Salinity misc Sodium misc Agriculture (General) misc Environmental sciences Ameliorative effects of potassium nutrition on yield and fiber quality characteristics of cotton (Gossypium hirsutum L.) under NaCl stress |
authorStr |
Muhammad Ashraf |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)657584320 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
S1-972 |
illustrated |
Not Illustrated |
issn |
20751141 |
topic_title |
S1-972 GE1-350 Ameliorative effects of potassium nutrition on yield and fiber quality characteristics of cotton (Gossypium hirsutum L.) under NaCl stress MSI Plant growth Plant tolerance Potassium RWC Salinity Sodium |
topic |
misc S1-972 misc GE1-350 misc MSI misc Plant growth misc Plant tolerance misc Potassium misc RWC misc Salinity misc Sodium misc Agriculture (General) misc Environmental sciences |
topic_unstemmed |
misc S1-972 misc GE1-350 misc MSI misc Plant growth misc Plant tolerance misc Potassium misc RWC misc Salinity misc Sodium misc Agriculture (General) misc Environmental sciences |
topic_browse |
misc S1-972 misc GE1-350 misc MSI misc Plant growth misc Plant tolerance misc Potassium misc RWC misc Salinity misc Sodium misc Agriculture (General) misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Soil & Environment |
hierarchy_parent_id |
657584320 |
hierarchy_top_title |
Soil & Environment |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)657584320 (DE-600)2605962-9 |
title |
Ameliorative effects of potassium nutrition on yield and fiber quality characteristics of cotton (Gossypium hirsutum L.) under NaCl stress |
ctrlnum |
(DE-627)DOAJ007326955 (DE-599)DOAJa71a546a69524ba6bd00e783262d9d16 |
title_full |
Ameliorative effects of potassium nutrition on yield and fiber quality characteristics of cotton (Gossypium hirsutum L.) under NaCl stress |
author_sort |
Muhammad Ashraf |
journal |
Soil & Environment |
journalStr |
Soil & Environment |
callnumber-first-code |
S |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
51 |
author_browse |
Muhammad Ashraf Sher Muhammad Shahzad Muhammad Imtiaz Muhammad Shahid Rizwan Muhammad Mahzar Iqbal |
container_volume |
36 |
class |
S1-972 GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Muhammad Ashraf |
doi_str_mv |
10.25252/SE/17/31054 |
author2-role |
verfasserin |
title_sort |
ameliorative effects of potassium nutrition on yield and fiber quality characteristics of cotton (gossypium hirsutum l.) under nacl stress |
callnumber |
S1-972 |
title_auth |
Ameliorative effects of potassium nutrition on yield and fiber quality characteristics of cotton (Gossypium hirsutum L.) under NaCl stress |
abstract |
Cotton (Gossypium hirsutum L.) being moderately tolerant to salinity has been extensively grown in arid and semiarid regions where soil salinization is a major threat to plant growth and soil productivity. Excess salts in the growth medium may interfere with growth processes of cotton, leading to a severe decline in yield and fiber quality characteristics. Adequate mineral nutrient status of plants can provide an important strategy to improve plant tolerance to salinity. A pot experiment was planned to evaluate the ameliorative effects of additional potassium (K) applied at 50 and 100 mg K2O kg-1 soil as potassium sulfate against NaCl stress of 100 and 180 mM in cotton. The experiment was conducted according to completely randomized design with five replications. NaCl caused a significant (P ≤ 0.05) increase in shoot sodium (Na+) and chloride (Cl-) with a corresponding decrease in shoot K+, K+: Na+ ratio, calcium (Ca2+) and magnesium (Mg2+). Plant growth, yield and fiber quality characteristics were also declined significantly by increasing external NaCl concentration. Additional K reduced shoot Na + while increased K+, K+: Na+ ratio, Ca2+ and Mg2+ with the consequent improvement in plant growth, lint yield and yield attributes as well as fiber quality characteristics at both levels of NaCl. Results revealed that K nutrition improved shoot K+: Na+ ratio by 116 and 246% at NaCl100 while 188 and 294% at NaCl180 with K50 and K100, respectively as compared to NaCl treated plants without additional K. Likewise, lint yield was improved by 38.27 and 60.49% at NaCl100 while 75.12 and 136% at NaCl180 with K50 and K100, respectively compared to NaCl stressed plants without additional K. Ameliorative effects of K against NaCl stress were relatively more prominent at higher K application at both NaCl levels. In conclusion, K-induced decrease in Na+, increase in Ca2+, K+, K+: Na+ ratio, relative water content and membrane stability index provide protective mechanisms against NaCl stress. However, the results need to be confirmed under field conditions and the economic feasibility should be worked out. |
abstractGer |
Cotton (Gossypium hirsutum L.) being moderately tolerant to salinity has been extensively grown in arid and semiarid regions where soil salinization is a major threat to plant growth and soil productivity. Excess salts in the growth medium may interfere with growth processes of cotton, leading to a severe decline in yield and fiber quality characteristics. Adequate mineral nutrient status of plants can provide an important strategy to improve plant tolerance to salinity. A pot experiment was planned to evaluate the ameliorative effects of additional potassium (K) applied at 50 and 100 mg K2O kg-1 soil as potassium sulfate against NaCl stress of 100 and 180 mM in cotton. The experiment was conducted according to completely randomized design with five replications. NaCl caused a significant (P ≤ 0.05) increase in shoot sodium (Na+) and chloride (Cl-) with a corresponding decrease in shoot K+, K+: Na+ ratio, calcium (Ca2+) and magnesium (Mg2+). Plant growth, yield and fiber quality characteristics were also declined significantly by increasing external NaCl concentration. Additional K reduced shoot Na + while increased K+, K+: Na+ ratio, Ca2+ and Mg2+ with the consequent improvement in plant growth, lint yield and yield attributes as well as fiber quality characteristics at both levels of NaCl. Results revealed that K nutrition improved shoot K+: Na+ ratio by 116 and 246% at NaCl100 while 188 and 294% at NaCl180 with K50 and K100, respectively as compared to NaCl treated plants without additional K. Likewise, lint yield was improved by 38.27 and 60.49% at NaCl100 while 75.12 and 136% at NaCl180 with K50 and K100, respectively compared to NaCl stressed plants without additional K. Ameliorative effects of K against NaCl stress were relatively more prominent at higher K application at both NaCl levels. In conclusion, K-induced decrease in Na+, increase in Ca2+, K+, K+: Na+ ratio, relative water content and membrane stability index provide protective mechanisms against NaCl stress. However, the results need to be confirmed under field conditions and the economic feasibility should be worked out. |
abstract_unstemmed |
Cotton (Gossypium hirsutum L.) being moderately tolerant to salinity has been extensively grown in arid and semiarid regions where soil salinization is a major threat to plant growth and soil productivity. Excess salts in the growth medium may interfere with growth processes of cotton, leading to a severe decline in yield and fiber quality characteristics. Adequate mineral nutrient status of plants can provide an important strategy to improve plant tolerance to salinity. A pot experiment was planned to evaluate the ameliorative effects of additional potassium (K) applied at 50 and 100 mg K2O kg-1 soil as potassium sulfate against NaCl stress of 100 and 180 mM in cotton. The experiment was conducted according to completely randomized design with five replications. NaCl caused a significant (P ≤ 0.05) increase in shoot sodium (Na+) and chloride (Cl-) with a corresponding decrease in shoot K+, K+: Na+ ratio, calcium (Ca2+) and magnesium (Mg2+). Plant growth, yield and fiber quality characteristics were also declined significantly by increasing external NaCl concentration. Additional K reduced shoot Na + while increased K+, K+: Na+ ratio, Ca2+ and Mg2+ with the consequent improvement in plant growth, lint yield and yield attributes as well as fiber quality characteristics at both levels of NaCl. Results revealed that K nutrition improved shoot K+: Na+ ratio by 116 and 246% at NaCl100 while 188 and 294% at NaCl180 with K50 and K100, respectively as compared to NaCl treated plants without additional K. Likewise, lint yield was improved by 38.27 and 60.49% at NaCl100 while 75.12 and 136% at NaCl180 with K50 and K100, respectively compared to NaCl stressed plants without additional K. Ameliorative effects of K against NaCl stress were relatively more prominent at higher K application at both NaCl levels. In conclusion, K-induced decrease in Na+, increase in Ca2+, K+, K+: Na+ ratio, relative water content and membrane stability index provide protective mechanisms against NaCl stress. However, the results need to be confirmed under field conditions and the economic feasibility should be worked out. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Ameliorative effects of potassium nutrition on yield and fiber quality characteristics of cotton (Gossypium hirsutum L.) under NaCl stress |
url |
https://doi.org/10.25252/SE/17/31054 https://doaj.org/article/a71a546a69524ba6bd00e783262d9d16 http://se.org.pk/File-Download.aspx?archivedpaperid=797 https://doaj.org/toc/2074-9546 https://doaj.org/toc/2075-1141 |
remote_bool |
true |
author2 |
Sher Muhammad Shahzad Muhammad Imtiaz Muhammad Shahid Rizwan Muhammad Mahzar Iqbal |
author2Str |
Sher Muhammad Shahzad Muhammad Imtiaz Muhammad Shahid Rizwan Muhammad Mahzar Iqbal |
ppnlink |
657584320 |
callnumber-subject |
S - General Agriculture |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.25252/SE/17/31054 |
callnumber-a |
S1-972 |
up_date |
2024-07-04T01:08:58.167Z |
_version_ |
1803608746276945920 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007326955</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503143719.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.25252/SE/17/31054</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007326955</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa71a546a69524ba6bd00e783262d9d16</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">S1-972</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Muhammad Ashraf</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ameliorative effects of potassium nutrition on yield and fiber quality characteristics of cotton (Gossypium hirsutum L.) under NaCl stress</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cotton (Gossypium hirsutum L.) being moderately tolerant to salinity has been extensively grown in arid and semiarid regions where soil salinization is a major threat to plant growth and soil productivity. Excess salts in the growth medium may interfere with growth processes of cotton, leading to a severe decline in yield and fiber quality characteristics. Adequate mineral nutrient status of plants can provide an important strategy to improve plant tolerance to salinity. A pot experiment was planned to evaluate the ameliorative effects of additional potassium (K) applied at 50 and 100 mg K2O kg-1 soil as potassium sulfate against NaCl stress of 100 and 180 mM in cotton. The experiment was conducted according to completely randomized design with five replications. NaCl caused a significant (P ≤ 0.05) increase in shoot sodium (Na+) and chloride (Cl-) with a corresponding decrease in shoot K+, K+: Na+ ratio, calcium (Ca2+) and magnesium (Mg2+). Plant growth, yield and fiber quality characteristics were also declined significantly by increasing external NaCl concentration. Additional K reduced shoot Na + while increased K+, K+: Na+ ratio, Ca2+ and Mg2+ with the consequent improvement in plant growth, lint yield and yield attributes as well as fiber quality characteristics at both levels of NaCl. Results revealed that K nutrition improved shoot K+: Na+ ratio by 116 and 246% at NaCl100 while 188 and 294% at NaCl180 with K50 and K100, respectively as compared to NaCl treated plants without additional K. Likewise, lint yield was improved by 38.27 and 60.49% at NaCl100 while 75.12 and 136% at NaCl180 with K50 and K100, respectively compared to NaCl stressed plants without additional K. Ameliorative effects of K against NaCl stress were relatively more prominent at higher K application at both NaCl levels. In conclusion, K-induced decrease in Na+, increase in Ca2+, K+, K+: Na+ ratio, relative water content and membrane stability index provide protective mechanisms against NaCl stress. However, the results need to be confirmed under field conditions and the economic feasibility should be worked out.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MSI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plant growth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plant tolerance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potassium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RWC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Salinity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sodium</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sher Muhammad Shahzad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muhammad Imtiaz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muhammad Shahid Rizwan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muhammad Mahzar Iqbal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Soil & Environment</subfield><subfield code="d">Soil Science Society of Pakistan (SSSP), 2011</subfield><subfield code="g">36(2017), 1, Seite 51-58</subfield><subfield code="w">(DE-627)657584320</subfield><subfield code="w">(DE-600)2605962-9</subfield><subfield code="x">20751141</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:51-58</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.25252/SE/17/31054</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a71a546a69524ba6bd00e783262d9d16</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://se.org.pk/File-Download.aspx?archivedpaperid=797</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2074-9546</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-1141</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">51-58</subfield></datafield></record></collection>
|
score |
7.4009247 |