Structure Extraction With Total Variation for Hyperspectral Image Classification
This paper proposes a novel structure extraction approach that is able to achieve high classification accuracy and low computing burden to hyperspectral image (HSI) classification based on total variation (SETV). Specifically, a two-scale decomposition-based relative total variation (TSD-RTV) method...
Ausführliche Beschreibung
Autor*in: |
Qiaoqiao Li [verfasserIn] Haibo Wang [verfasserIn] Guoyue Chen [verfasserIn] Kazuki Saruta [verfasserIn] Yuki Terata [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 7(2019), Seite 91019-91033 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2019 ; pages:91019-91033 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2019.2922675 |
---|
Katalog-ID: |
DOAJ007349645 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ007349645 | ||
003 | DE-627 | ||
005 | 20230309222132.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2019.2922675 |2 doi | |
035 | |a (DE-627)DOAJ007349645 | ||
035 | |a (DE-599)DOAJe790303579c642ddaf6f2d4cec862424 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Qiaoqiao Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a Structure Extraction With Total Variation for Hyperspectral Image Classification |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper proposes a novel structure extraction approach that is able to achieve high classification accuracy and low computing burden to hyperspectral image (HSI) classification based on total variation (SETV). Specifically, a two-scale decomposition-based relative total variation (TSD-RTV) method is presented for the first time to process the information of different scales, such that the structure can be well extracted. Moreover, a new weighted-average fusion method is introduced, which can reduce the dimensionality and also remove the noise due to hyperspectral sensors. The support vector machine (SVM) is applied to HSI classification as a classifier. The experiments are conducted on three real hyperspectral datasets: Indian Pines, Salinas, and Kennedy Space Center. The experimental results show the outstanding performance of the proposed SETV model in terms of classification accuracy and computational efficiency. | ||
650 | 4 | |a Structure extraction | |
650 | 4 | |a hyperspectral image classification | |
650 | 4 | |a total variation | |
650 | 4 | |a fusion | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Haibo Wang |e verfasserin |4 aut | |
700 | 0 | |a Guoyue Chen |e verfasserin |4 aut | |
700 | 0 | |a Kazuki Saruta |e verfasserin |4 aut | |
700 | 0 | |a Yuki Terata |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 7(2019), Seite 91019-91033 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2019 |g pages:91019-91033 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2019.2922675 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e790303579c642ddaf6f2d4cec862424 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8736233/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2019 |h 91019-91033 |
author_variant |
q l ql h w hw g c gc k s ks y t yt |
---|---|
matchkey_str |
article:21693536:2019----::tutretatowtttlaitofryesetai |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TK |
publishDate |
2019 |
allfields |
10.1109/ACCESS.2019.2922675 doi (DE-627)DOAJ007349645 (DE-599)DOAJe790303579c642ddaf6f2d4cec862424 DE-627 ger DE-627 rakwb eng TK1-9971 Qiaoqiao Li verfasserin aut Structure Extraction With Total Variation for Hyperspectral Image Classification 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposes a novel structure extraction approach that is able to achieve high classification accuracy and low computing burden to hyperspectral image (HSI) classification based on total variation (SETV). Specifically, a two-scale decomposition-based relative total variation (TSD-RTV) method is presented for the first time to process the information of different scales, such that the structure can be well extracted. Moreover, a new weighted-average fusion method is introduced, which can reduce the dimensionality and also remove the noise due to hyperspectral sensors. The support vector machine (SVM) is applied to HSI classification as a classifier. The experiments are conducted on three real hyperspectral datasets: Indian Pines, Salinas, and Kennedy Space Center. The experimental results show the outstanding performance of the proposed SETV model in terms of classification accuracy and computational efficiency. Structure extraction hyperspectral image classification total variation fusion Electrical engineering. Electronics. Nuclear engineering Haibo Wang verfasserin aut Guoyue Chen verfasserin aut Kazuki Saruta verfasserin aut Yuki Terata verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 91019-91033 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:91019-91033 https://doi.org/10.1109/ACCESS.2019.2922675 kostenfrei https://doaj.org/article/e790303579c642ddaf6f2d4cec862424 kostenfrei https://ieeexplore.ieee.org/document/8736233/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 91019-91033 |
spelling |
10.1109/ACCESS.2019.2922675 doi (DE-627)DOAJ007349645 (DE-599)DOAJe790303579c642ddaf6f2d4cec862424 DE-627 ger DE-627 rakwb eng TK1-9971 Qiaoqiao Li verfasserin aut Structure Extraction With Total Variation for Hyperspectral Image Classification 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposes a novel structure extraction approach that is able to achieve high classification accuracy and low computing burden to hyperspectral image (HSI) classification based on total variation (SETV). Specifically, a two-scale decomposition-based relative total variation (TSD-RTV) method is presented for the first time to process the information of different scales, such that the structure can be well extracted. Moreover, a new weighted-average fusion method is introduced, which can reduce the dimensionality and also remove the noise due to hyperspectral sensors. The support vector machine (SVM) is applied to HSI classification as a classifier. The experiments are conducted on three real hyperspectral datasets: Indian Pines, Salinas, and Kennedy Space Center. The experimental results show the outstanding performance of the proposed SETV model in terms of classification accuracy and computational efficiency. Structure extraction hyperspectral image classification total variation fusion Electrical engineering. Electronics. Nuclear engineering Haibo Wang verfasserin aut Guoyue Chen verfasserin aut Kazuki Saruta verfasserin aut Yuki Terata verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 91019-91033 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:91019-91033 https://doi.org/10.1109/ACCESS.2019.2922675 kostenfrei https://doaj.org/article/e790303579c642ddaf6f2d4cec862424 kostenfrei https://ieeexplore.ieee.org/document/8736233/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 91019-91033 |
allfields_unstemmed |
10.1109/ACCESS.2019.2922675 doi (DE-627)DOAJ007349645 (DE-599)DOAJe790303579c642ddaf6f2d4cec862424 DE-627 ger DE-627 rakwb eng TK1-9971 Qiaoqiao Li verfasserin aut Structure Extraction With Total Variation for Hyperspectral Image Classification 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposes a novel structure extraction approach that is able to achieve high classification accuracy and low computing burden to hyperspectral image (HSI) classification based on total variation (SETV). Specifically, a two-scale decomposition-based relative total variation (TSD-RTV) method is presented for the first time to process the information of different scales, such that the structure can be well extracted. Moreover, a new weighted-average fusion method is introduced, which can reduce the dimensionality and also remove the noise due to hyperspectral sensors. The support vector machine (SVM) is applied to HSI classification as a classifier. The experiments are conducted on three real hyperspectral datasets: Indian Pines, Salinas, and Kennedy Space Center. The experimental results show the outstanding performance of the proposed SETV model in terms of classification accuracy and computational efficiency. Structure extraction hyperspectral image classification total variation fusion Electrical engineering. Electronics. Nuclear engineering Haibo Wang verfasserin aut Guoyue Chen verfasserin aut Kazuki Saruta verfasserin aut Yuki Terata verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 91019-91033 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:91019-91033 https://doi.org/10.1109/ACCESS.2019.2922675 kostenfrei https://doaj.org/article/e790303579c642ddaf6f2d4cec862424 kostenfrei https://ieeexplore.ieee.org/document/8736233/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 91019-91033 |
allfieldsGer |
10.1109/ACCESS.2019.2922675 doi (DE-627)DOAJ007349645 (DE-599)DOAJe790303579c642ddaf6f2d4cec862424 DE-627 ger DE-627 rakwb eng TK1-9971 Qiaoqiao Li verfasserin aut Structure Extraction With Total Variation for Hyperspectral Image Classification 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposes a novel structure extraction approach that is able to achieve high classification accuracy and low computing burden to hyperspectral image (HSI) classification based on total variation (SETV). Specifically, a two-scale decomposition-based relative total variation (TSD-RTV) method is presented for the first time to process the information of different scales, such that the structure can be well extracted. Moreover, a new weighted-average fusion method is introduced, which can reduce the dimensionality and also remove the noise due to hyperspectral sensors. The support vector machine (SVM) is applied to HSI classification as a classifier. The experiments are conducted on three real hyperspectral datasets: Indian Pines, Salinas, and Kennedy Space Center. The experimental results show the outstanding performance of the proposed SETV model in terms of classification accuracy and computational efficiency. Structure extraction hyperspectral image classification total variation fusion Electrical engineering. Electronics. Nuclear engineering Haibo Wang verfasserin aut Guoyue Chen verfasserin aut Kazuki Saruta verfasserin aut Yuki Terata verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 91019-91033 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:91019-91033 https://doi.org/10.1109/ACCESS.2019.2922675 kostenfrei https://doaj.org/article/e790303579c642ddaf6f2d4cec862424 kostenfrei https://ieeexplore.ieee.org/document/8736233/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 91019-91033 |
allfieldsSound |
10.1109/ACCESS.2019.2922675 doi (DE-627)DOAJ007349645 (DE-599)DOAJe790303579c642ddaf6f2d4cec862424 DE-627 ger DE-627 rakwb eng TK1-9971 Qiaoqiao Li verfasserin aut Structure Extraction With Total Variation for Hyperspectral Image Classification 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposes a novel structure extraction approach that is able to achieve high classification accuracy and low computing burden to hyperspectral image (HSI) classification based on total variation (SETV). Specifically, a two-scale decomposition-based relative total variation (TSD-RTV) method is presented for the first time to process the information of different scales, such that the structure can be well extracted. Moreover, a new weighted-average fusion method is introduced, which can reduce the dimensionality and also remove the noise due to hyperspectral sensors. The support vector machine (SVM) is applied to HSI classification as a classifier. The experiments are conducted on three real hyperspectral datasets: Indian Pines, Salinas, and Kennedy Space Center. The experimental results show the outstanding performance of the proposed SETV model in terms of classification accuracy and computational efficiency. Structure extraction hyperspectral image classification total variation fusion Electrical engineering. Electronics. Nuclear engineering Haibo Wang verfasserin aut Guoyue Chen verfasserin aut Kazuki Saruta verfasserin aut Yuki Terata verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 91019-91033 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:91019-91033 https://doi.org/10.1109/ACCESS.2019.2922675 kostenfrei https://doaj.org/article/e790303579c642ddaf6f2d4cec862424 kostenfrei https://ieeexplore.ieee.org/document/8736233/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 91019-91033 |
language |
English |
source |
In IEEE Access 7(2019), Seite 91019-91033 volume:7 year:2019 pages:91019-91033 |
sourceStr |
In IEEE Access 7(2019), Seite 91019-91033 volume:7 year:2019 pages:91019-91033 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Structure extraction hyperspectral image classification total variation fusion Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Qiaoqiao Li @@aut@@ Haibo Wang @@aut@@ Guoyue Chen @@aut@@ Kazuki Saruta @@aut@@ Yuki Terata @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ007349645 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007349645</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309222132.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2922675</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007349645</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe790303579c642ddaf6f2d4cec862424</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qiaoqiao Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structure Extraction With Total Variation for Hyperspectral Image Classification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper proposes a novel structure extraction approach that is able to achieve high classification accuracy and low computing burden to hyperspectral image (HSI) classification based on total variation (SETV). Specifically, a two-scale decomposition-based relative total variation (TSD-RTV) method is presented for the first time to process the information of different scales, such that the structure can be well extracted. Moreover, a new weighted-average fusion method is introduced, which can reduce the dimensionality and also remove the noise due to hyperspectral sensors. The support vector machine (SVM) is applied to HSI classification as a classifier. The experiments are conducted on three real hyperspectral datasets: Indian Pines, Salinas, and Kennedy Space Center. The experimental results show the outstanding performance of the proposed SETV model in terms of classification accuracy and computational efficiency.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structure extraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperspectral image classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">total variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fusion</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haibo Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guoyue Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kazuki Saruta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuki Terata</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 91019-91033</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:91019-91033</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2922675</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e790303579c642ddaf6f2d4cec862424</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8736233/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">91019-91033</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Qiaoqiao Li |
spellingShingle |
Qiaoqiao Li misc TK1-9971 misc Structure extraction misc hyperspectral image classification misc total variation misc fusion misc Electrical engineering. Electronics. Nuclear engineering Structure Extraction With Total Variation for Hyperspectral Image Classification |
authorStr |
Qiaoqiao Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Structure Extraction With Total Variation for Hyperspectral Image Classification Structure extraction hyperspectral image classification total variation fusion |
topic |
misc TK1-9971 misc Structure extraction misc hyperspectral image classification misc total variation misc fusion misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Structure extraction misc hyperspectral image classification misc total variation misc fusion misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Structure extraction misc hyperspectral image classification misc total variation misc fusion misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Structure Extraction With Total Variation for Hyperspectral Image Classification |
ctrlnum |
(DE-627)DOAJ007349645 (DE-599)DOAJe790303579c642ddaf6f2d4cec862424 |
title_full |
Structure Extraction With Total Variation for Hyperspectral Image Classification |
author_sort |
Qiaoqiao Li |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
91019 |
author_browse |
Qiaoqiao Li Haibo Wang Guoyue Chen Kazuki Saruta Yuki Terata |
container_volume |
7 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Qiaoqiao Li |
doi_str_mv |
10.1109/ACCESS.2019.2922675 |
author2-role |
verfasserin |
title_sort |
structure extraction with total variation for hyperspectral image classification |
callnumber |
TK1-9971 |
title_auth |
Structure Extraction With Total Variation for Hyperspectral Image Classification |
abstract |
This paper proposes a novel structure extraction approach that is able to achieve high classification accuracy and low computing burden to hyperspectral image (HSI) classification based on total variation (SETV). Specifically, a two-scale decomposition-based relative total variation (TSD-RTV) method is presented for the first time to process the information of different scales, such that the structure can be well extracted. Moreover, a new weighted-average fusion method is introduced, which can reduce the dimensionality and also remove the noise due to hyperspectral sensors. The support vector machine (SVM) is applied to HSI classification as a classifier. The experiments are conducted on three real hyperspectral datasets: Indian Pines, Salinas, and Kennedy Space Center. The experimental results show the outstanding performance of the proposed SETV model in terms of classification accuracy and computational efficiency. |
abstractGer |
This paper proposes a novel structure extraction approach that is able to achieve high classification accuracy and low computing burden to hyperspectral image (HSI) classification based on total variation (SETV). Specifically, a two-scale decomposition-based relative total variation (TSD-RTV) method is presented for the first time to process the information of different scales, such that the structure can be well extracted. Moreover, a new weighted-average fusion method is introduced, which can reduce the dimensionality and also remove the noise due to hyperspectral sensors. The support vector machine (SVM) is applied to HSI classification as a classifier. The experiments are conducted on three real hyperspectral datasets: Indian Pines, Salinas, and Kennedy Space Center. The experimental results show the outstanding performance of the proposed SETV model in terms of classification accuracy and computational efficiency. |
abstract_unstemmed |
This paper proposes a novel structure extraction approach that is able to achieve high classification accuracy and low computing burden to hyperspectral image (HSI) classification based on total variation (SETV). Specifically, a two-scale decomposition-based relative total variation (TSD-RTV) method is presented for the first time to process the information of different scales, such that the structure can be well extracted. Moreover, a new weighted-average fusion method is introduced, which can reduce the dimensionality and also remove the noise due to hyperspectral sensors. The support vector machine (SVM) is applied to HSI classification as a classifier. The experiments are conducted on three real hyperspectral datasets: Indian Pines, Salinas, and Kennedy Space Center. The experimental results show the outstanding performance of the proposed SETV model in terms of classification accuracy and computational efficiency. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Structure Extraction With Total Variation for Hyperspectral Image Classification |
url |
https://doi.org/10.1109/ACCESS.2019.2922675 https://doaj.org/article/e790303579c642ddaf6f2d4cec862424 https://ieeexplore.ieee.org/document/8736233/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Haibo Wang Guoyue Chen Kazuki Saruta Yuki Terata |
author2Str |
Haibo Wang Guoyue Chen Kazuki Saruta Yuki Terata |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2019.2922675 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T01:14:15.309Z |
_version_ |
1803609078824435712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007349645</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309222132.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2922675</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007349645</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe790303579c642ddaf6f2d4cec862424</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qiaoqiao Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structure Extraction With Total Variation for Hyperspectral Image Classification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper proposes a novel structure extraction approach that is able to achieve high classification accuracy and low computing burden to hyperspectral image (HSI) classification based on total variation (SETV). Specifically, a two-scale decomposition-based relative total variation (TSD-RTV) method is presented for the first time to process the information of different scales, such that the structure can be well extracted. Moreover, a new weighted-average fusion method is introduced, which can reduce the dimensionality and also remove the noise due to hyperspectral sensors. The support vector machine (SVM) is applied to HSI classification as a classifier. The experiments are conducted on three real hyperspectral datasets: Indian Pines, Salinas, and Kennedy Space Center. The experimental results show the outstanding performance of the proposed SETV model in terms of classification accuracy and computational efficiency.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structure extraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperspectral image classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">total variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fusion</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haibo Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guoyue Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kazuki Saruta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuki Terata</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 91019-91033</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:91019-91033</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2922675</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e790303579c642ddaf6f2d4cec862424</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8736233/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">91019-91033</subfield></datafield></record></collection>
|
score |
7.401121 |