RETRACTED ARTICLE: Velocity and shear stress for an Oldroyd-B fluid within two cylinders
Abstract This paper aims to explore the possible solutions for the movement of an Oldroyd-B fluid placed under certain conditions, i.e. the fluid is present within two cylinders, which are coaxial and oscillating within. Having said that the governing model will be an Oldroyd-B fluid, we wish to ach...
Ausführliche Beschreibung
Autor*in: |
Shin Min Kang [verfasserIn] Waqas Nazeer [verfasserIn] Muhammad Athar [verfasserIn] Muhammad Danial Hisham [verfasserIn] Young Chel Kwun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Boundary Value Problems - SpringerOpen, 2006, (2016), 1, Seite 11 |
---|---|
Übergeordnetes Werk: |
year:2016 ; number:1 ; pages:11 |
Links: |
---|
DOI / URN: |
10.1186/s13661-016-0541-7 |
---|
Katalog-ID: |
DOAJ007410085 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ007410085 | ||
003 | DE-627 | ||
005 | 20230503012155.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13661-016-0541-7 |2 doi | |
035 | |a (DE-627)DOAJ007410085 | ||
035 | |a (DE-599)DOAJca0f6516d19340269f3962976fe6e9d7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA299.6-433 | |
100 | 0 | |a Shin Min Kang |e verfasserin |4 aut | |
245 | 1 | 0 | |a RETRACTED ARTICLE: Velocity and shear stress for an Oldroyd-B fluid within two cylinders |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract This paper aims to explore the possible solutions for the movement of an Oldroyd-B fluid placed under certain conditions, i.e. the fluid is present within two cylinders, which are coaxial and oscillating within. Having said that the governing model will be an Oldroyd-B fluid, we wish to achieve our goal of finding the velocity and shear stress by using some common transformations, namely the Laplace transformation and the Hankel transformation. The final results, for the sake of simplicity, will be expressed in the form of generalized G-function and they satisfy all imposed initial and boundary conditions. | ||
650 | 4 | |a Oldroyd-B fluid | |
650 | 4 | |a velocity field | |
650 | 4 | |a shear stress | |
650 | 4 | |a rotational oscillatory flow | |
650 | 4 | |a Laplace and Hankel transforms | |
653 | 0 | |a Analysis | |
700 | 0 | |a Waqas Nazeer |e verfasserin |4 aut | |
700 | 0 | |a Muhammad Athar |e verfasserin |4 aut | |
700 | 0 | |a Muhammad Danial Hisham |e verfasserin |4 aut | |
700 | 0 | |a Young Chel Kwun |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Boundary Value Problems |d SpringerOpen, 2006 |g (2016), 1, Seite 11 |w (DE-627)48672557X |w (DE-600)2187777-4 |x 16872770 |7 nnns |
773 | 1 | 8 | |g year:2016 |g number:1 |g pages:11 |
856 | 4 | 0 | |u https://doi.org/10.1186/s13661-016-0541-7 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ca0f6516d19340269f3962976fe6e9d7 |z kostenfrei |
856 | 4 | 0 | |u http://link.springer.com/article/10.1186/s13661-016-0541-7 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1687-2770 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2016 |e 1 |h 11 |
author_variant |
s m k smk w n wn m a ma m d h mdh y c k yck |
---|---|
matchkey_str |
article:16872770:2016----::erceatceeoiynsertesoaododfu |
hierarchy_sort_str |
2016 |
callnumber-subject-code |
QA |
publishDate |
2016 |
allfields |
10.1186/s13661-016-0541-7 doi (DE-627)DOAJ007410085 (DE-599)DOAJca0f6516d19340269f3962976fe6e9d7 DE-627 ger DE-627 rakwb eng QA299.6-433 Shin Min Kang verfasserin aut RETRACTED ARTICLE: Velocity and shear stress for an Oldroyd-B fluid within two cylinders 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper aims to explore the possible solutions for the movement of an Oldroyd-B fluid placed under certain conditions, i.e. the fluid is present within two cylinders, which are coaxial and oscillating within. Having said that the governing model will be an Oldroyd-B fluid, we wish to achieve our goal of finding the velocity and shear stress by using some common transformations, namely the Laplace transformation and the Hankel transformation. The final results, for the sake of simplicity, will be expressed in the form of generalized G-function and they satisfy all imposed initial and boundary conditions. Oldroyd-B fluid velocity field shear stress rotational oscillatory flow Laplace and Hankel transforms Analysis Waqas Nazeer verfasserin aut Muhammad Athar verfasserin aut Muhammad Danial Hisham verfasserin aut Young Chel Kwun verfasserin aut In Boundary Value Problems SpringerOpen, 2006 (2016), 1, Seite 11 (DE-627)48672557X (DE-600)2187777-4 16872770 nnns year:2016 number:1 pages:11 https://doi.org/10.1186/s13661-016-0541-7 kostenfrei https://doaj.org/article/ca0f6516d19340269f3962976fe6e9d7 kostenfrei http://link.springer.com/article/10.1186/s13661-016-0541-7 kostenfrei https://doaj.org/toc/1687-2770 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2016 1 11 |
spelling |
10.1186/s13661-016-0541-7 doi (DE-627)DOAJ007410085 (DE-599)DOAJca0f6516d19340269f3962976fe6e9d7 DE-627 ger DE-627 rakwb eng QA299.6-433 Shin Min Kang verfasserin aut RETRACTED ARTICLE: Velocity and shear stress for an Oldroyd-B fluid within two cylinders 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper aims to explore the possible solutions for the movement of an Oldroyd-B fluid placed under certain conditions, i.e. the fluid is present within two cylinders, which are coaxial and oscillating within. Having said that the governing model will be an Oldroyd-B fluid, we wish to achieve our goal of finding the velocity and shear stress by using some common transformations, namely the Laplace transformation and the Hankel transformation. The final results, for the sake of simplicity, will be expressed in the form of generalized G-function and they satisfy all imposed initial and boundary conditions. Oldroyd-B fluid velocity field shear stress rotational oscillatory flow Laplace and Hankel transforms Analysis Waqas Nazeer verfasserin aut Muhammad Athar verfasserin aut Muhammad Danial Hisham verfasserin aut Young Chel Kwun verfasserin aut In Boundary Value Problems SpringerOpen, 2006 (2016), 1, Seite 11 (DE-627)48672557X (DE-600)2187777-4 16872770 nnns year:2016 number:1 pages:11 https://doi.org/10.1186/s13661-016-0541-7 kostenfrei https://doaj.org/article/ca0f6516d19340269f3962976fe6e9d7 kostenfrei http://link.springer.com/article/10.1186/s13661-016-0541-7 kostenfrei https://doaj.org/toc/1687-2770 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2016 1 11 |
allfields_unstemmed |
10.1186/s13661-016-0541-7 doi (DE-627)DOAJ007410085 (DE-599)DOAJca0f6516d19340269f3962976fe6e9d7 DE-627 ger DE-627 rakwb eng QA299.6-433 Shin Min Kang verfasserin aut RETRACTED ARTICLE: Velocity and shear stress for an Oldroyd-B fluid within two cylinders 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper aims to explore the possible solutions for the movement of an Oldroyd-B fluid placed under certain conditions, i.e. the fluid is present within two cylinders, which are coaxial and oscillating within. Having said that the governing model will be an Oldroyd-B fluid, we wish to achieve our goal of finding the velocity and shear stress by using some common transformations, namely the Laplace transformation and the Hankel transformation. The final results, for the sake of simplicity, will be expressed in the form of generalized G-function and they satisfy all imposed initial and boundary conditions. Oldroyd-B fluid velocity field shear stress rotational oscillatory flow Laplace and Hankel transforms Analysis Waqas Nazeer verfasserin aut Muhammad Athar verfasserin aut Muhammad Danial Hisham verfasserin aut Young Chel Kwun verfasserin aut In Boundary Value Problems SpringerOpen, 2006 (2016), 1, Seite 11 (DE-627)48672557X (DE-600)2187777-4 16872770 nnns year:2016 number:1 pages:11 https://doi.org/10.1186/s13661-016-0541-7 kostenfrei https://doaj.org/article/ca0f6516d19340269f3962976fe6e9d7 kostenfrei http://link.springer.com/article/10.1186/s13661-016-0541-7 kostenfrei https://doaj.org/toc/1687-2770 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2016 1 11 |
allfieldsGer |
10.1186/s13661-016-0541-7 doi (DE-627)DOAJ007410085 (DE-599)DOAJca0f6516d19340269f3962976fe6e9d7 DE-627 ger DE-627 rakwb eng QA299.6-433 Shin Min Kang verfasserin aut RETRACTED ARTICLE: Velocity and shear stress for an Oldroyd-B fluid within two cylinders 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper aims to explore the possible solutions for the movement of an Oldroyd-B fluid placed under certain conditions, i.e. the fluid is present within two cylinders, which are coaxial and oscillating within. Having said that the governing model will be an Oldroyd-B fluid, we wish to achieve our goal of finding the velocity and shear stress by using some common transformations, namely the Laplace transformation and the Hankel transformation. The final results, for the sake of simplicity, will be expressed in the form of generalized G-function and they satisfy all imposed initial and boundary conditions. Oldroyd-B fluid velocity field shear stress rotational oscillatory flow Laplace and Hankel transforms Analysis Waqas Nazeer verfasserin aut Muhammad Athar verfasserin aut Muhammad Danial Hisham verfasserin aut Young Chel Kwun verfasserin aut In Boundary Value Problems SpringerOpen, 2006 (2016), 1, Seite 11 (DE-627)48672557X (DE-600)2187777-4 16872770 nnns year:2016 number:1 pages:11 https://doi.org/10.1186/s13661-016-0541-7 kostenfrei https://doaj.org/article/ca0f6516d19340269f3962976fe6e9d7 kostenfrei http://link.springer.com/article/10.1186/s13661-016-0541-7 kostenfrei https://doaj.org/toc/1687-2770 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2016 1 11 |
allfieldsSound |
10.1186/s13661-016-0541-7 doi (DE-627)DOAJ007410085 (DE-599)DOAJca0f6516d19340269f3962976fe6e9d7 DE-627 ger DE-627 rakwb eng QA299.6-433 Shin Min Kang verfasserin aut RETRACTED ARTICLE: Velocity and shear stress for an Oldroyd-B fluid within two cylinders 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper aims to explore the possible solutions for the movement of an Oldroyd-B fluid placed under certain conditions, i.e. the fluid is present within two cylinders, which are coaxial and oscillating within. Having said that the governing model will be an Oldroyd-B fluid, we wish to achieve our goal of finding the velocity and shear stress by using some common transformations, namely the Laplace transformation and the Hankel transformation. The final results, for the sake of simplicity, will be expressed in the form of generalized G-function and they satisfy all imposed initial and boundary conditions. Oldroyd-B fluid velocity field shear stress rotational oscillatory flow Laplace and Hankel transforms Analysis Waqas Nazeer verfasserin aut Muhammad Athar verfasserin aut Muhammad Danial Hisham verfasserin aut Young Chel Kwun verfasserin aut In Boundary Value Problems SpringerOpen, 2006 (2016), 1, Seite 11 (DE-627)48672557X (DE-600)2187777-4 16872770 nnns year:2016 number:1 pages:11 https://doi.org/10.1186/s13661-016-0541-7 kostenfrei https://doaj.org/article/ca0f6516d19340269f3962976fe6e9d7 kostenfrei http://link.springer.com/article/10.1186/s13661-016-0541-7 kostenfrei https://doaj.org/toc/1687-2770 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2016 1 11 |
language |
English |
source |
In Boundary Value Problems (2016), 1, Seite 11 year:2016 number:1 pages:11 |
sourceStr |
In Boundary Value Problems (2016), 1, Seite 11 year:2016 number:1 pages:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Oldroyd-B fluid velocity field shear stress rotational oscillatory flow Laplace and Hankel transforms Analysis |
isfreeaccess_bool |
true |
container_title |
Boundary Value Problems |
authorswithroles_txt_mv |
Shin Min Kang @@aut@@ Waqas Nazeer @@aut@@ Muhammad Athar @@aut@@ Muhammad Danial Hisham @@aut@@ Young Chel Kwun @@aut@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
48672557X |
id |
DOAJ007410085 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007410085</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503012155.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13661-016-0541-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007410085</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJca0f6516d19340269f3962976fe6e9d7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shin Min Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">RETRACTED ARTICLE: Velocity and shear stress for an Oldroyd-B fluid within two cylinders</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper aims to explore the possible solutions for the movement of an Oldroyd-B fluid placed under certain conditions, i.e. the fluid is present within two cylinders, which are coaxial and oscillating within. Having said that the governing model will be an Oldroyd-B fluid, we wish to achieve our goal of finding the velocity and shear stress by using some common transformations, namely the Laplace transformation and the Hankel transformation. The final results, for the sake of simplicity, will be expressed in the form of generalized G-function and they satisfy all imposed initial and boundary conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oldroyd-B fluid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">velocity field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shear stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rotational oscillatory flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laplace and Hankel transforms</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Waqas Nazeer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muhammad Athar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muhammad Danial Hisham</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Young Chel Kwun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Boundary Value Problems</subfield><subfield code="d">SpringerOpen, 2006</subfield><subfield code="g">(2016), 1, Seite 11</subfield><subfield code="w">(DE-627)48672557X</subfield><subfield code="w">(DE-600)2187777-4</subfield><subfield code="x">16872770</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13661-016-0541-7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ca0f6516d19340269f3962976fe6e9d7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s13661-016-0541-7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-2770</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">11</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Shin Min Kang |
spellingShingle |
Shin Min Kang misc QA299.6-433 misc Oldroyd-B fluid misc velocity field misc shear stress misc rotational oscillatory flow misc Laplace and Hankel transforms misc Analysis RETRACTED ARTICLE: Velocity and shear stress for an Oldroyd-B fluid within two cylinders |
authorStr |
Shin Min Kang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)48672557X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA299 |
illustrated |
Not Illustrated |
issn |
16872770 |
topic_title |
QA299.6-433 RETRACTED ARTICLE: Velocity and shear stress for an Oldroyd-B fluid within two cylinders Oldroyd-B fluid velocity field shear stress rotational oscillatory flow Laplace and Hankel transforms |
topic |
misc QA299.6-433 misc Oldroyd-B fluid misc velocity field misc shear stress misc rotational oscillatory flow misc Laplace and Hankel transforms misc Analysis |
topic_unstemmed |
misc QA299.6-433 misc Oldroyd-B fluid misc velocity field misc shear stress misc rotational oscillatory flow misc Laplace and Hankel transforms misc Analysis |
topic_browse |
misc QA299.6-433 misc Oldroyd-B fluid misc velocity field misc shear stress misc rotational oscillatory flow misc Laplace and Hankel transforms misc Analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Boundary Value Problems |
hierarchy_parent_id |
48672557X |
hierarchy_top_title |
Boundary Value Problems |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)48672557X (DE-600)2187777-4 |
title |
RETRACTED ARTICLE: Velocity and shear stress for an Oldroyd-B fluid within two cylinders |
ctrlnum |
(DE-627)DOAJ007410085 (DE-599)DOAJca0f6516d19340269f3962976fe6e9d7 |
title_full |
RETRACTED ARTICLE: Velocity and shear stress for an Oldroyd-B fluid within two cylinders |
author_sort |
Shin Min Kang |
journal |
Boundary Value Problems |
journalStr |
Boundary Value Problems |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
11 |
author_browse |
Shin Min Kang Waqas Nazeer Muhammad Athar Muhammad Danial Hisham Young Chel Kwun |
class |
QA299.6-433 |
format_se |
Elektronische Aufsätze |
author-letter |
Shin Min Kang |
doi_str_mv |
10.1186/s13661-016-0541-7 |
author2-role |
verfasserin |
title_sort |
retracted article: velocity and shear stress for an oldroyd-b fluid within two cylinders |
callnumber |
QA299.6-433 |
title_auth |
RETRACTED ARTICLE: Velocity and shear stress for an Oldroyd-B fluid within two cylinders |
abstract |
Abstract This paper aims to explore the possible solutions for the movement of an Oldroyd-B fluid placed under certain conditions, i.e. the fluid is present within two cylinders, which are coaxial and oscillating within. Having said that the governing model will be an Oldroyd-B fluid, we wish to achieve our goal of finding the velocity and shear stress by using some common transformations, namely the Laplace transformation and the Hankel transformation. The final results, for the sake of simplicity, will be expressed in the form of generalized G-function and they satisfy all imposed initial and boundary conditions. |
abstractGer |
Abstract This paper aims to explore the possible solutions for the movement of an Oldroyd-B fluid placed under certain conditions, i.e. the fluid is present within two cylinders, which are coaxial and oscillating within. Having said that the governing model will be an Oldroyd-B fluid, we wish to achieve our goal of finding the velocity and shear stress by using some common transformations, namely the Laplace transformation and the Hankel transformation. The final results, for the sake of simplicity, will be expressed in the form of generalized G-function and they satisfy all imposed initial and boundary conditions. |
abstract_unstemmed |
Abstract This paper aims to explore the possible solutions for the movement of an Oldroyd-B fluid placed under certain conditions, i.e. the fluid is present within two cylinders, which are coaxial and oscillating within. Having said that the governing model will be an Oldroyd-B fluid, we wish to achieve our goal of finding the velocity and shear stress by using some common transformations, namely the Laplace transformation and the Hankel transformation. The final results, for the sake of simplicity, will be expressed in the form of generalized G-function and they satisfy all imposed initial and boundary conditions. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
RETRACTED ARTICLE: Velocity and shear stress for an Oldroyd-B fluid within two cylinders |
url |
https://doi.org/10.1186/s13661-016-0541-7 https://doaj.org/article/ca0f6516d19340269f3962976fe6e9d7 http://link.springer.com/article/10.1186/s13661-016-0541-7 https://doaj.org/toc/1687-2770 |
remote_bool |
true |
author2 |
Waqas Nazeer Muhammad Athar Muhammad Danial Hisham Young Chel Kwun |
author2Str |
Waqas Nazeer Muhammad Athar Muhammad Danial Hisham Young Chel Kwun |
ppnlink |
48672557X |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13661-016-0541-7 |
callnumber-a |
QA299.6-433 |
up_date |
2024-07-04T01:28:09.349Z |
_version_ |
1803609953378762752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007410085</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503012155.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13661-016-0541-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007410085</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJca0f6516d19340269f3962976fe6e9d7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shin Min Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">RETRACTED ARTICLE: Velocity and shear stress for an Oldroyd-B fluid within two cylinders</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper aims to explore the possible solutions for the movement of an Oldroyd-B fluid placed under certain conditions, i.e. the fluid is present within two cylinders, which are coaxial and oscillating within. Having said that the governing model will be an Oldroyd-B fluid, we wish to achieve our goal of finding the velocity and shear stress by using some common transformations, namely the Laplace transformation and the Hankel transformation. The final results, for the sake of simplicity, will be expressed in the form of generalized G-function and they satisfy all imposed initial and boundary conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oldroyd-B fluid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">velocity field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shear stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rotational oscillatory flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laplace and Hankel transforms</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Waqas Nazeer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muhammad Athar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muhammad Danial Hisham</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Young Chel Kwun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Boundary Value Problems</subfield><subfield code="d">SpringerOpen, 2006</subfield><subfield code="g">(2016), 1, Seite 11</subfield><subfield code="w">(DE-627)48672557X</subfield><subfield code="w">(DE-600)2187777-4</subfield><subfield code="x">16872770</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13661-016-0541-7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ca0f6516d19340269f3962976fe6e9d7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s13661-016-0541-7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-2770</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">11</subfield></datafield></record></collection>
|
score |
7.3993244 |