Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down
We show that products of snowflaked Euclidean lines are not minimal for looking down. This question was raised in Fractured fractals and broken dreams, Problem 11.17, by David and Semmes. The proof uses arguments developed by Le Donne, Li and Rajala to prove that the Heisenberg group is not minimal...
Ausführliche Beschreibung
Autor*in: |
Joseph Matthieu [verfasserIn] Rajala Tapio [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Analysis and Geometry in Metric Spaces - De Gruyter, 2015, 5(2017), 1, Seite 78-97 |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2017 ; number:1 ; pages:78-97 |
Links: |
---|
DOI / URN: |
10.1515/agms-2017-0005 |
---|
Katalog-ID: |
DOAJ007525362 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ007525362 | ||
003 | DE-627 | ||
005 | 20230502222436.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1515/agms-2017-0005 |2 doi | |
035 | |a (DE-627)DOAJ007525362 | ||
035 | |a (DE-599)DOAJ25a5edb1ec40474599c23795bb8db472 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA299.6-433 | |
100 | 0 | |a Joseph Matthieu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We show that products of snowflaked Euclidean lines are not minimal for looking down. This question was raised in Fractured fractals and broken dreams, Problem 11.17, by David and Semmes. The proof uses arguments developed by Le Donne, Li and Rajala to prove that the Heisenberg group is not minimal for looking down. By a method of shortcuts, we define a new distance d such that the product of snowflaked Euclidean lines looks down on (RN , d), but not vice versa. | ||
650 | 4 | |a ahlfors-regularity | |
650 | 4 | |a bilipschitz pieces | |
650 | 4 | |a bpi-spaces | |
650 | 4 | |a primary 26b05 | |
650 | 4 | |a secondary 28a80 | |
653 | 0 | |a Analysis | |
700 | 0 | |a Rajala Tapio |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Analysis and Geometry in Metric Spaces |d De Gruyter, 2015 |g 5(2017), 1, Seite 78-97 |w (DE-627)777285061 |w (DE-600)2753702-X |x 22993274 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2017 |g number:1 |g pages:78-97 |
856 | 4 | 0 | |u https://doi.org/10.1515/agms-2017-0005 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/25a5edb1ec40474599c23795bb8db472 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1515/agms-2017-0005 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2299-3274 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 2017 |e 1 |h 78-97 |
author_variant |
j m jm r t rt |
---|---|
matchkey_str |
article:22993274:2017----::rdcsfnwlkduldalnsrntii |
hierarchy_sort_str |
2017 |
callnumber-subject-code |
QA |
publishDate |
2017 |
allfields |
10.1515/agms-2017-0005 doi (DE-627)DOAJ007525362 (DE-599)DOAJ25a5edb1ec40474599c23795bb8db472 DE-627 ger DE-627 rakwb eng QA299.6-433 Joseph Matthieu verfasserin aut Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We show that products of snowflaked Euclidean lines are not minimal for looking down. This question was raised in Fractured fractals and broken dreams, Problem 11.17, by David and Semmes. The proof uses arguments developed by Le Donne, Li and Rajala to prove that the Heisenberg group is not minimal for looking down. By a method of shortcuts, we define a new distance d such that the product of snowflaked Euclidean lines looks down on (RN , d), but not vice versa. ahlfors-regularity bilipschitz pieces bpi-spaces primary 26b05 secondary 28a80 Analysis Rajala Tapio verfasserin aut In Analysis and Geometry in Metric Spaces De Gruyter, 2015 5(2017), 1, Seite 78-97 (DE-627)777285061 (DE-600)2753702-X 22993274 nnns volume:5 year:2017 number:1 pages:78-97 https://doi.org/10.1515/agms-2017-0005 kostenfrei https://doaj.org/article/25a5edb1ec40474599c23795bb8db472 kostenfrei https://doi.org/10.1515/agms-2017-0005 kostenfrei https://doaj.org/toc/2299-3274 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2017 1 78-97 |
spelling |
10.1515/agms-2017-0005 doi (DE-627)DOAJ007525362 (DE-599)DOAJ25a5edb1ec40474599c23795bb8db472 DE-627 ger DE-627 rakwb eng QA299.6-433 Joseph Matthieu verfasserin aut Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We show that products of snowflaked Euclidean lines are not minimal for looking down. This question was raised in Fractured fractals and broken dreams, Problem 11.17, by David and Semmes. The proof uses arguments developed by Le Donne, Li and Rajala to prove that the Heisenberg group is not minimal for looking down. By a method of shortcuts, we define a new distance d such that the product of snowflaked Euclidean lines looks down on (RN , d), but not vice versa. ahlfors-regularity bilipschitz pieces bpi-spaces primary 26b05 secondary 28a80 Analysis Rajala Tapio verfasserin aut In Analysis and Geometry in Metric Spaces De Gruyter, 2015 5(2017), 1, Seite 78-97 (DE-627)777285061 (DE-600)2753702-X 22993274 nnns volume:5 year:2017 number:1 pages:78-97 https://doi.org/10.1515/agms-2017-0005 kostenfrei https://doaj.org/article/25a5edb1ec40474599c23795bb8db472 kostenfrei https://doi.org/10.1515/agms-2017-0005 kostenfrei https://doaj.org/toc/2299-3274 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2017 1 78-97 |
allfields_unstemmed |
10.1515/agms-2017-0005 doi (DE-627)DOAJ007525362 (DE-599)DOAJ25a5edb1ec40474599c23795bb8db472 DE-627 ger DE-627 rakwb eng QA299.6-433 Joseph Matthieu verfasserin aut Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We show that products of snowflaked Euclidean lines are not minimal for looking down. This question was raised in Fractured fractals and broken dreams, Problem 11.17, by David and Semmes. The proof uses arguments developed by Le Donne, Li and Rajala to prove that the Heisenberg group is not minimal for looking down. By a method of shortcuts, we define a new distance d such that the product of snowflaked Euclidean lines looks down on (RN , d), but not vice versa. ahlfors-regularity bilipschitz pieces bpi-spaces primary 26b05 secondary 28a80 Analysis Rajala Tapio verfasserin aut In Analysis and Geometry in Metric Spaces De Gruyter, 2015 5(2017), 1, Seite 78-97 (DE-627)777285061 (DE-600)2753702-X 22993274 nnns volume:5 year:2017 number:1 pages:78-97 https://doi.org/10.1515/agms-2017-0005 kostenfrei https://doaj.org/article/25a5edb1ec40474599c23795bb8db472 kostenfrei https://doi.org/10.1515/agms-2017-0005 kostenfrei https://doaj.org/toc/2299-3274 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2017 1 78-97 |
allfieldsGer |
10.1515/agms-2017-0005 doi (DE-627)DOAJ007525362 (DE-599)DOAJ25a5edb1ec40474599c23795bb8db472 DE-627 ger DE-627 rakwb eng QA299.6-433 Joseph Matthieu verfasserin aut Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We show that products of snowflaked Euclidean lines are not minimal for looking down. This question was raised in Fractured fractals and broken dreams, Problem 11.17, by David and Semmes. The proof uses arguments developed by Le Donne, Li and Rajala to prove that the Heisenberg group is not minimal for looking down. By a method of shortcuts, we define a new distance d such that the product of snowflaked Euclidean lines looks down on (RN , d), but not vice versa. ahlfors-regularity bilipschitz pieces bpi-spaces primary 26b05 secondary 28a80 Analysis Rajala Tapio verfasserin aut In Analysis and Geometry in Metric Spaces De Gruyter, 2015 5(2017), 1, Seite 78-97 (DE-627)777285061 (DE-600)2753702-X 22993274 nnns volume:5 year:2017 number:1 pages:78-97 https://doi.org/10.1515/agms-2017-0005 kostenfrei https://doaj.org/article/25a5edb1ec40474599c23795bb8db472 kostenfrei https://doi.org/10.1515/agms-2017-0005 kostenfrei https://doaj.org/toc/2299-3274 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2017 1 78-97 |
allfieldsSound |
10.1515/agms-2017-0005 doi (DE-627)DOAJ007525362 (DE-599)DOAJ25a5edb1ec40474599c23795bb8db472 DE-627 ger DE-627 rakwb eng QA299.6-433 Joseph Matthieu verfasserin aut Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We show that products of snowflaked Euclidean lines are not minimal for looking down. This question was raised in Fractured fractals and broken dreams, Problem 11.17, by David and Semmes. The proof uses arguments developed by Le Donne, Li and Rajala to prove that the Heisenberg group is not minimal for looking down. By a method of shortcuts, we define a new distance d such that the product of snowflaked Euclidean lines looks down on (RN , d), but not vice versa. ahlfors-regularity bilipschitz pieces bpi-spaces primary 26b05 secondary 28a80 Analysis Rajala Tapio verfasserin aut In Analysis and Geometry in Metric Spaces De Gruyter, 2015 5(2017), 1, Seite 78-97 (DE-627)777285061 (DE-600)2753702-X 22993274 nnns volume:5 year:2017 number:1 pages:78-97 https://doi.org/10.1515/agms-2017-0005 kostenfrei https://doaj.org/article/25a5edb1ec40474599c23795bb8db472 kostenfrei https://doi.org/10.1515/agms-2017-0005 kostenfrei https://doaj.org/toc/2299-3274 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2017 1 78-97 |
language |
English |
source |
In Analysis and Geometry in Metric Spaces 5(2017), 1, Seite 78-97 volume:5 year:2017 number:1 pages:78-97 |
sourceStr |
In Analysis and Geometry in Metric Spaces 5(2017), 1, Seite 78-97 volume:5 year:2017 number:1 pages:78-97 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
ahlfors-regularity bilipschitz pieces bpi-spaces primary 26b05 secondary 28a80 Analysis |
isfreeaccess_bool |
true |
container_title |
Analysis and Geometry in Metric Spaces |
authorswithroles_txt_mv |
Joseph Matthieu @@aut@@ Rajala Tapio @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
777285061 |
id |
DOAJ007525362 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007525362</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502222436.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/agms-2017-0005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007525362</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ25a5edb1ec40474599c23795bb8db472</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Joseph Matthieu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We show that products of snowflaked Euclidean lines are not minimal for looking down. This question was raised in Fractured fractals and broken dreams, Problem 11.17, by David and Semmes. The proof uses arguments developed by Le Donne, Li and Rajala to prove that the Heisenberg group is not minimal for looking down. By a method of shortcuts, we define a new distance d such that the product of snowflaked Euclidean lines looks down on (RN , d), but not vice versa.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ahlfors-regularity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bilipschitz pieces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bpi-spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">primary 26b05</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">secondary 28a80</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rajala Tapio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Analysis and Geometry in Metric Spaces</subfield><subfield code="d">De Gruyter, 2015</subfield><subfield code="g">5(2017), 1, Seite 78-97</subfield><subfield code="w">(DE-627)777285061</subfield><subfield code="w">(DE-600)2753702-X</subfield><subfield code="x">22993274</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:78-97</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/agms-2017-0005</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/25a5edb1ec40474599c23795bb8db472</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/agms-2017-0005</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2299-3274</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">78-97</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Joseph Matthieu |
spellingShingle |
Joseph Matthieu misc QA299.6-433 misc ahlfors-regularity misc bilipschitz pieces misc bpi-spaces misc primary 26b05 misc secondary 28a80 misc Analysis Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down |
authorStr |
Joseph Matthieu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)777285061 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA299 |
illustrated |
Not Illustrated |
issn |
22993274 |
topic_title |
QA299.6-433 Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down ahlfors-regularity bilipschitz pieces bpi-spaces primary 26b05 secondary 28a80 |
topic |
misc QA299.6-433 misc ahlfors-regularity misc bilipschitz pieces misc bpi-spaces misc primary 26b05 misc secondary 28a80 misc Analysis |
topic_unstemmed |
misc QA299.6-433 misc ahlfors-regularity misc bilipschitz pieces misc bpi-spaces misc primary 26b05 misc secondary 28a80 misc Analysis |
topic_browse |
misc QA299.6-433 misc ahlfors-regularity misc bilipschitz pieces misc bpi-spaces misc primary 26b05 misc secondary 28a80 misc Analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Analysis and Geometry in Metric Spaces |
hierarchy_parent_id |
777285061 |
hierarchy_top_title |
Analysis and Geometry in Metric Spaces |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)777285061 (DE-600)2753702-X |
title |
Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down |
ctrlnum |
(DE-627)DOAJ007525362 (DE-599)DOAJ25a5edb1ec40474599c23795bb8db472 |
title_full |
Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down |
author_sort |
Joseph Matthieu |
journal |
Analysis and Geometry in Metric Spaces |
journalStr |
Analysis and Geometry in Metric Spaces |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
78 |
author_browse |
Joseph Matthieu Rajala Tapio |
container_volume |
5 |
class |
QA299.6-433 |
format_se |
Elektronische Aufsätze |
author-letter |
Joseph Matthieu |
doi_str_mv |
10.1515/agms-2017-0005 |
author2-role |
verfasserin |
title_sort |
products of snowflaked euclidean lines are not minimal for looking down |
callnumber |
QA299.6-433 |
title_auth |
Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down |
abstract |
We show that products of snowflaked Euclidean lines are not minimal for looking down. This question was raised in Fractured fractals and broken dreams, Problem 11.17, by David and Semmes. The proof uses arguments developed by Le Donne, Li and Rajala to prove that the Heisenberg group is not minimal for looking down. By a method of shortcuts, we define a new distance d such that the product of snowflaked Euclidean lines looks down on (RN , d), but not vice versa. |
abstractGer |
We show that products of snowflaked Euclidean lines are not minimal for looking down. This question was raised in Fractured fractals and broken dreams, Problem 11.17, by David and Semmes. The proof uses arguments developed by Le Donne, Li and Rajala to prove that the Heisenberg group is not minimal for looking down. By a method of shortcuts, we define a new distance d such that the product of snowflaked Euclidean lines looks down on (RN , d), but not vice versa. |
abstract_unstemmed |
We show that products of snowflaked Euclidean lines are not minimal for looking down. This question was raised in Fractured fractals and broken dreams, Problem 11.17, by David and Semmes. The proof uses arguments developed by Le Donne, Li and Rajala to prove that the Heisenberg group is not minimal for looking down. By a method of shortcuts, we define a new distance d such that the product of snowflaked Euclidean lines looks down on (RN , d), but not vice versa. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down |
url |
https://doi.org/10.1515/agms-2017-0005 https://doaj.org/article/25a5edb1ec40474599c23795bb8db472 https://doaj.org/toc/2299-3274 |
remote_bool |
true |
author2 |
Rajala Tapio |
author2Str |
Rajala Tapio |
ppnlink |
777285061 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1515/agms-2017-0005 |
callnumber-a |
QA299.6-433 |
up_date |
2024-07-04T01:54:08.544Z |
_version_ |
1803611588313219072 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007525362</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502222436.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/agms-2017-0005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007525362</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ25a5edb1ec40474599c23795bb8db472</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Joseph Matthieu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We show that products of snowflaked Euclidean lines are not minimal for looking down. This question was raised in Fractured fractals and broken dreams, Problem 11.17, by David and Semmes. The proof uses arguments developed by Le Donne, Li and Rajala to prove that the Heisenberg group is not minimal for looking down. By a method of shortcuts, we define a new distance d such that the product of snowflaked Euclidean lines looks down on (RN , d), but not vice versa.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ahlfors-regularity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bilipschitz pieces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bpi-spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">primary 26b05</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">secondary 28a80</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rajala Tapio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Analysis and Geometry in Metric Spaces</subfield><subfield code="d">De Gruyter, 2015</subfield><subfield code="g">5(2017), 1, Seite 78-97</subfield><subfield code="w">(DE-627)777285061</subfield><subfield code="w">(DE-600)2753702-X</subfield><subfield code="x">22993274</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:78-97</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/agms-2017-0005</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/25a5edb1ec40474599c23795bb8db472</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/agms-2017-0005</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2299-3274</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">78-97</subfield></datafield></record></collection>
|
score |
7.4019136 |