The CSES global geomagnetic field model (CGGM): an IGRF-type global geomagnetic field model based on data from the China Seismo-Electromagnetic Satellite
Abstract Using magnetic field data from the China Seismo-Electromagnetic Satellite (CSES) mission, we derive a global geomagnetic field model, which we call the CSES Global Geomagnetic Field Model (CGGM). This model describes the Earth’s magnetic main field and its linear temporal evolution over the...
Ausführliche Beschreibung
Autor*in: |
Yanyan Yang [verfasserIn] Gauthier Hulot [verfasserIn] Pierre Vigneron [verfasserIn] Xuhui Shen [verfasserIn] Zeren Zhima [verfasserIn] Bin Zhou [verfasserIn] Werner Magnes [verfasserIn] Nils Olsen [verfasserIn] Lars Tøffner-Clausen [verfasserIn] Jianpin Huang [verfasserIn] Xuemin Zhang [verfasserIn] Shigeng Yuan [verfasserIn] Lanwei Wang [verfasserIn] Bingjun Cheng [verfasserIn] Andreas Pollinger [verfasserIn] Roland Lammegger [verfasserIn] Jianpin Dai [verfasserIn] Jun Lin [verfasserIn] Feng Guo [verfasserIn] Jingbo Yu [verfasserIn] Jie Wang [verfasserIn] Yingyan Wu [verfasserIn] Xudong Zhao [verfasserIn] Xinghong Zhu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Earth, Planets and Space - SpringerOpen, 2015, 73(2021), 1, Seite 21 |
---|---|
Übergeordnetes Werk: |
volume:73 ; year:2021 ; number:1 ; pages:21 |
Links: |
---|
DOI / URN: |
10.1186/s40623-020-01316-w |
---|
Katalog-ID: |
DOAJ007526539 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ007526539 | ||
003 | DE-627 | ||
005 | 20230502222441.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40623-020-01316-w |2 doi | |
035 | |a (DE-627)DOAJ007526539 | ||
035 | |a (DE-599)DOAJa54aa68da3364d58ab59bedf385b65a3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB275-343 | |
050 | 0 | |a QE1-996.5 | |
100 | 0 | |a Yanyan Yang |e verfasserin |4 aut | |
245 | 1 | 4 | |a The CSES global geomagnetic field model (CGGM): an IGRF-type global geomagnetic field model based on data from the China Seismo-Electromagnetic Satellite |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Using magnetic field data from the China Seismo-Electromagnetic Satellite (CSES) mission, we derive a global geomagnetic field model, which we call the CSES Global Geomagnetic Field Model (CGGM). This model describes the Earth’s magnetic main field and its linear temporal evolution over the time period between March 2018 and September 2019. As the CSES mission was not originally designed for main field modelling, we carefully assess the ability of the CSES orbits and data to provide relevant data for such a purpose. A number of issues are identified, and an appropriate modelling approach is found to mitigate these. The resulting CGGM model appears to be of high enough quality, and it is next used as a parent model to produce a main field model extrapolated to epoch 2020.0, which was eventually submitted on October 1, 2019 as one of the IGRF-13 2020 candidate models. This CGGM candidate model, the first ever produced by a Chinese-led team, is also the only one relying on a data set completely independent from that used by all other candidate models. A successful validation of this candidate model is performed by comparison with the final (now published) IGRF-13 2020 model and all other candidate models. Comparisons of the secular variation predicted by the CGGM parent model with the final IGRF-13 2020–2025 predictive secular variation also reveal a remarkable agreement. This shows that, despite their current limitations, CSES magnetic data can already be used to produce useful IGRF 2020 and 2020–2025 secular variation candidate models to contribute to the official IGRF-13 2020 and predictive secular variation models for the coming 2020–2025 time period. These very encouraging results show that additional efforts to improve the CSES magnetic data quality could make these data very useful for long-term monitoring of the main field and possibly other magnetic field sources, in complement to the data provided by missions such as the ESA Swarm mission. | ||
650 | 4 | |a CSES | |
650 | 4 | |a CGGM | |
650 | 4 | |a IGRF | |
650 | 4 | |a Geomagnetism | |
650 | 4 | |a Space magnetometry | |
653 | 0 | |a Geography. Anthropology. Recreation | |
653 | 0 | |a G | |
653 | 0 | |a Geodesy | |
653 | 0 | |a Geology | |
700 | 0 | |a Gauthier Hulot |e verfasserin |4 aut | |
700 | 0 | |a Pierre Vigneron |e verfasserin |4 aut | |
700 | 0 | |a Xuhui Shen |e verfasserin |4 aut | |
700 | 0 | |a Zeren Zhima |e verfasserin |4 aut | |
700 | 0 | |a Bin Zhou |e verfasserin |4 aut | |
700 | 0 | |a Werner Magnes |e verfasserin |4 aut | |
700 | 0 | |a Nils Olsen |e verfasserin |4 aut | |
700 | 0 | |a Lars Tøffner-Clausen |e verfasserin |4 aut | |
700 | 0 | |a Jianpin Huang |e verfasserin |4 aut | |
700 | 0 | |a Xuemin Zhang |e verfasserin |4 aut | |
700 | 0 | |a Shigeng Yuan |e verfasserin |4 aut | |
700 | 0 | |a Lanwei Wang |e verfasserin |4 aut | |
700 | 0 | |a Bingjun Cheng |e verfasserin |4 aut | |
700 | 0 | |a Andreas Pollinger |e verfasserin |4 aut | |
700 | 0 | |a Roland Lammegger |e verfasserin |4 aut | |
700 | 0 | |a Jianpin Dai |e verfasserin |4 aut | |
700 | 0 | |a Jun Lin |e verfasserin |4 aut | |
700 | 0 | |a Feng Guo |e verfasserin |4 aut | |
700 | 0 | |a Jingbo Yu |e verfasserin |4 aut | |
700 | 0 | |a Jie Wang |e verfasserin |4 aut | |
700 | 0 | |a Yingyan Wu |e verfasserin |4 aut | |
700 | 0 | |a Xudong Zhao |e verfasserin |4 aut | |
700 | 0 | |a Xinghong Zhu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Earth, Planets and Space |d SpringerOpen, 2015 |g 73(2021), 1, Seite 21 |w (DE-627)353898597 |w (DE-600)2087663-4 |x 18805981 |7 nnns |
773 | 1 | 8 | |g volume:73 |g year:2021 |g number:1 |g pages:21 |
856 | 4 | 0 | |u https://doi.org/10.1186/s40623-020-01316-w |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a54aa68da3364d58ab59bedf385b65a3 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1186/s40623-020-01316-w |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1880-5981 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 73 |j 2021 |e 1 |h 21 |
author_variant |
y y yy g h gh p v pv x s xs z z zz b z bz w m wm n o no l t c ltc j h jh x z xz s y sy l w lw b c bc a p ap r l rl j d jd j l jl f g fg j y jy j w jw y w yw x z xz x z xz |
---|---|
matchkey_str |
article:18805981:2021----::hcegoagoantcilmdlgmngfyelblemgeifedoebsdnaarmhci |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QB |
publishDate |
2021 |
allfields |
10.1186/s40623-020-01316-w doi (DE-627)DOAJ007526539 (DE-599)DOAJa54aa68da3364d58ab59bedf385b65a3 DE-627 ger DE-627 rakwb eng QB275-343 QE1-996.5 Yanyan Yang verfasserin aut The CSES global geomagnetic field model (CGGM): an IGRF-type global geomagnetic field model based on data from the China Seismo-Electromagnetic Satellite 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Using magnetic field data from the China Seismo-Electromagnetic Satellite (CSES) mission, we derive a global geomagnetic field model, which we call the CSES Global Geomagnetic Field Model (CGGM). This model describes the Earth’s magnetic main field and its linear temporal evolution over the time period between March 2018 and September 2019. As the CSES mission was not originally designed for main field modelling, we carefully assess the ability of the CSES orbits and data to provide relevant data for such a purpose. A number of issues are identified, and an appropriate modelling approach is found to mitigate these. The resulting CGGM model appears to be of high enough quality, and it is next used as a parent model to produce a main field model extrapolated to epoch 2020.0, which was eventually submitted on October 1, 2019 as one of the IGRF-13 2020 candidate models. This CGGM candidate model, the first ever produced by a Chinese-led team, is also the only one relying on a data set completely independent from that used by all other candidate models. A successful validation of this candidate model is performed by comparison with the final (now published) IGRF-13 2020 model and all other candidate models. Comparisons of the secular variation predicted by the CGGM parent model with the final IGRF-13 2020–2025 predictive secular variation also reveal a remarkable agreement. This shows that, despite their current limitations, CSES magnetic data can already be used to produce useful IGRF 2020 and 2020–2025 secular variation candidate models to contribute to the official IGRF-13 2020 and predictive secular variation models for the coming 2020–2025 time period. These very encouraging results show that additional efforts to improve the CSES magnetic data quality could make these data very useful for long-term monitoring of the main field and possibly other magnetic field sources, in complement to the data provided by missions such as the ESA Swarm mission. CSES CGGM IGRF Geomagnetism Space magnetometry Geography. Anthropology. Recreation G Geodesy Geology Gauthier Hulot verfasserin aut Pierre Vigneron verfasserin aut Xuhui Shen verfasserin aut Zeren Zhima verfasserin aut Bin Zhou verfasserin aut Werner Magnes verfasserin aut Nils Olsen verfasserin aut Lars Tøffner-Clausen verfasserin aut Jianpin Huang verfasserin aut Xuemin Zhang verfasserin aut Shigeng Yuan verfasserin aut Lanwei Wang verfasserin aut Bingjun Cheng verfasserin aut Andreas Pollinger verfasserin aut Roland Lammegger verfasserin aut Jianpin Dai verfasserin aut Jun Lin verfasserin aut Feng Guo verfasserin aut Jingbo Yu verfasserin aut Jie Wang verfasserin aut Yingyan Wu verfasserin aut Xudong Zhao verfasserin aut Xinghong Zhu verfasserin aut In Earth, Planets and Space SpringerOpen, 2015 73(2021), 1, Seite 21 (DE-627)353898597 (DE-600)2087663-4 18805981 nnns volume:73 year:2021 number:1 pages:21 https://doi.org/10.1186/s40623-020-01316-w kostenfrei https://doaj.org/article/a54aa68da3364d58ab59bedf385b65a3 kostenfrei https://doi.org/10.1186/s40623-020-01316-w kostenfrei https://doaj.org/toc/1880-5981 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 73 2021 1 21 |
spelling |
10.1186/s40623-020-01316-w doi (DE-627)DOAJ007526539 (DE-599)DOAJa54aa68da3364d58ab59bedf385b65a3 DE-627 ger DE-627 rakwb eng QB275-343 QE1-996.5 Yanyan Yang verfasserin aut The CSES global geomagnetic field model (CGGM): an IGRF-type global geomagnetic field model based on data from the China Seismo-Electromagnetic Satellite 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Using magnetic field data from the China Seismo-Electromagnetic Satellite (CSES) mission, we derive a global geomagnetic field model, which we call the CSES Global Geomagnetic Field Model (CGGM). This model describes the Earth’s magnetic main field and its linear temporal evolution over the time period between March 2018 and September 2019. As the CSES mission was not originally designed for main field modelling, we carefully assess the ability of the CSES orbits and data to provide relevant data for such a purpose. A number of issues are identified, and an appropriate modelling approach is found to mitigate these. The resulting CGGM model appears to be of high enough quality, and it is next used as a parent model to produce a main field model extrapolated to epoch 2020.0, which was eventually submitted on October 1, 2019 as one of the IGRF-13 2020 candidate models. This CGGM candidate model, the first ever produced by a Chinese-led team, is also the only one relying on a data set completely independent from that used by all other candidate models. A successful validation of this candidate model is performed by comparison with the final (now published) IGRF-13 2020 model and all other candidate models. Comparisons of the secular variation predicted by the CGGM parent model with the final IGRF-13 2020–2025 predictive secular variation also reveal a remarkable agreement. This shows that, despite their current limitations, CSES magnetic data can already be used to produce useful IGRF 2020 and 2020–2025 secular variation candidate models to contribute to the official IGRF-13 2020 and predictive secular variation models for the coming 2020–2025 time period. These very encouraging results show that additional efforts to improve the CSES magnetic data quality could make these data very useful for long-term monitoring of the main field and possibly other magnetic field sources, in complement to the data provided by missions such as the ESA Swarm mission. CSES CGGM IGRF Geomagnetism Space magnetometry Geography. Anthropology. Recreation G Geodesy Geology Gauthier Hulot verfasserin aut Pierre Vigneron verfasserin aut Xuhui Shen verfasserin aut Zeren Zhima verfasserin aut Bin Zhou verfasserin aut Werner Magnes verfasserin aut Nils Olsen verfasserin aut Lars Tøffner-Clausen verfasserin aut Jianpin Huang verfasserin aut Xuemin Zhang verfasserin aut Shigeng Yuan verfasserin aut Lanwei Wang verfasserin aut Bingjun Cheng verfasserin aut Andreas Pollinger verfasserin aut Roland Lammegger verfasserin aut Jianpin Dai verfasserin aut Jun Lin verfasserin aut Feng Guo verfasserin aut Jingbo Yu verfasserin aut Jie Wang verfasserin aut Yingyan Wu verfasserin aut Xudong Zhao verfasserin aut Xinghong Zhu verfasserin aut In Earth, Planets and Space SpringerOpen, 2015 73(2021), 1, Seite 21 (DE-627)353898597 (DE-600)2087663-4 18805981 nnns volume:73 year:2021 number:1 pages:21 https://doi.org/10.1186/s40623-020-01316-w kostenfrei https://doaj.org/article/a54aa68da3364d58ab59bedf385b65a3 kostenfrei https://doi.org/10.1186/s40623-020-01316-w kostenfrei https://doaj.org/toc/1880-5981 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 73 2021 1 21 |
allfields_unstemmed |
10.1186/s40623-020-01316-w doi (DE-627)DOAJ007526539 (DE-599)DOAJa54aa68da3364d58ab59bedf385b65a3 DE-627 ger DE-627 rakwb eng QB275-343 QE1-996.5 Yanyan Yang verfasserin aut The CSES global geomagnetic field model (CGGM): an IGRF-type global geomagnetic field model based on data from the China Seismo-Electromagnetic Satellite 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Using magnetic field data from the China Seismo-Electromagnetic Satellite (CSES) mission, we derive a global geomagnetic field model, which we call the CSES Global Geomagnetic Field Model (CGGM). This model describes the Earth’s magnetic main field and its linear temporal evolution over the time period between March 2018 and September 2019. As the CSES mission was not originally designed for main field modelling, we carefully assess the ability of the CSES orbits and data to provide relevant data for such a purpose. A number of issues are identified, and an appropriate modelling approach is found to mitigate these. The resulting CGGM model appears to be of high enough quality, and it is next used as a parent model to produce a main field model extrapolated to epoch 2020.0, which was eventually submitted on October 1, 2019 as one of the IGRF-13 2020 candidate models. This CGGM candidate model, the first ever produced by a Chinese-led team, is also the only one relying on a data set completely independent from that used by all other candidate models. A successful validation of this candidate model is performed by comparison with the final (now published) IGRF-13 2020 model and all other candidate models. Comparisons of the secular variation predicted by the CGGM parent model with the final IGRF-13 2020–2025 predictive secular variation also reveal a remarkable agreement. This shows that, despite their current limitations, CSES magnetic data can already be used to produce useful IGRF 2020 and 2020–2025 secular variation candidate models to contribute to the official IGRF-13 2020 and predictive secular variation models for the coming 2020–2025 time period. These very encouraging results show that additional efforts to improve the CSES magnetic data quality could make these data very useful for long-term monitoring of the main field and possibly other magnetic field sources, in complement to the data provided by missions such as the ESA Swarm mission. CSES CGGM IGRF Geomagnetism Space magnetometry Geography. Anthropology. Recreation G Geodesy Geology Gauthier Hulot verfasserin aut Pierre Vigneron verfasserin aut Xuhui Shen verfasserin aut Zeren Zhima verfasserin aut Bin Zhou verfasserin aut Werner Magnes verfasserin aut Nils Olsen verfasserin aut Lars Tøffner-Clausen verfasserin aut Jianpin Huang verfasserin aut Xuemin Zhang verfasserin aut Shigeng Yuan verfasserin aut Lanwei Wang verfasserin aut Bingjun Cheng verfasserin aut Andreas Pollinger verfasserin aut Roland Lammegger verfasserin aut Jianpin Dai verfasserin aut Jun Lin verfasserin aut Feng Guo verfasserin aut Jingbo Yu verfasserin aut Jie Wang verfasserin aut Yingyan Wu verfasserin aut Xudong Zhao verfasserin aut Xinghong Zhu verfasserin aut In Earth, Planets and Space SpringerOpen, 2015 73(2021), 1, Seite 21 (DE-627)353898597 (DE-600)2087663-4 18805981 nnns volume:73 year:2021 number:1 pages:21 https://doi.org/10.1186/s40623-020-01316-w kostenfrei https://doaj.org/article/a54aa68da3364d58ab59bedf385b65a3 kostenfrei https://doi.org/10.1186/s40623-020-01316-w kostenfrei https://doaj.org/toc/1880-5981 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 73 2021 1 21 |
allfieldsGer |
10.1186/s40623-020-01316-w doi (DE-627)DOAJ007526539 (DE-599)DOAJa54aa68da3364d58ab59bedf385b65a3 DE-627 ger DE-627 rakwb eng QB275-343 QE1-996.5 Yanyan Yang verfasserin aut The CSES global geomagnetic field model (CGGM): an IGRF-type global geomagnetic field model based on data from the China Seismo-Electromagnetic Satellite 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Using magnetic field data from the China Seismo-Electromagnetic Satellite (CSES) mission, we derive a global geomagnetic field model, which we call the CSES Global Geomagnetic Field Model (CGGM). This model describes the Earth’s magnetic main field and its linear temporal evolution over the time period between March 2018 and September 2019. As the CSES mission was not originally designed for main field modelling, we carefully assess the ability of the CSES orbits and data to provide relevant data for such a purpose. A number of issues are identified, and an appropriate modelling approach is found to mitigate these. The resulting CGGM model appears to be of high enough quality, and it is next used as a parent model to produce a main field model extrapolated to epoch 2020.0, which was eventually submitted on October 1, 2019 as one of the IGRF-13 2020 candidate models. This CGGM candidate model, the first ever produced by a Chinese-led team, is also the only one relying on a data set completely independent from that used by all other candidate models. A successful validation of this candidate model is performed by comparison with the final (now published) IGRF-13 2020 model and all other candidate models. Comparisons of the secular variation predicted by the CGGM parent model with the final IGRF-13 2020–2025 predictive secular variation also reveal a remarkable agreement. This shows that, despite their current limitations, CSES magnetic data can already be used to produce useful IGRF 2020 and 2020–2025 secular variation candidate models to contribute to the official IGRF-13 2020 and predictive secular variation models for the coming 2020–2025 time period. These very encouraging results show that additional efforts to improve the CSES magnetic data quality could make these data very useful for long-term monitoring of the main field and possibly other magnetic field sources, in complement to the data provided by missions such as the ESA Swarm mission. CSES CGGM IGRF Geomagnetism Space magnetometry Geography. Anthropology. Recreation G Geodesy Geology Gauthier Hulot verfasserin aut Pierre Vigneron verfasserin aut Xuhui Shen verfasserin aut Zeren Zhima verfasserin aut Bin Zhou verfasserin aut Werner Magnes verfasserin aut Nils Olsen verfasserin aut Lars Tøffner-Clausen verfasserin aut Jianpin Huang verfasserin aut Xuemin Zhang verfasserin aut Shigeng Yuan verfasserin aut Lanwei Wang verfasserin aut Bingjun Cheng verfasserin aut Andreas Pollinger verfasserin aut Roland Lammegger verfasserin aut Jianpin Dai verfasserin aut Jun Lin verfasserin aut Feng Guo verfasserin aut Jingbo Yu verfasserin aut Jie Wang verfasserin aut Yingyan Wu verfasserin aut Xudong Zhao verfasserin aut Xinghong Zhu verfasserin aut In Earth, Planets and Space SpringerOpen, 2015 73(2021), 1, Seite 21 (DE-627)353898597 (DE-600)2087663-4 18805981 nnns volume:73 year:2021 number:1 pages:21 https://doi.org/10.1186/s40623-020-01316-w kostenfrei https://doaj.org/article/a54aa68da3364d58ab59bedf385b65a3 kostenfrei https://doi.org/10.1186/s40623-020-01316-w kostenfrei https://doaj.org/toc/1880-5981 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 73 2021 1 21 |
allfieldsSound |
10.1186/s40623-020-01316-w doi (DE-627)DOAJ007526539 (DE-599)DOAJa54aa68da3364d58ab59bedf385b65a3 DE-627 ger DE-627 rakwb eng QB275-343 QE1-996.5 Yanyan Yang verfasserin aut The CSES global geomagnetic field model (CGGM): an IGRF-type global geomagnetic field model based on data from the China Seismo-Electromagnetic Satellite 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Using magnetic field data from the China Seismo-Electromagnetic Satellite (CSES) mission, we derive a global geomagnetic field model, which we call the CSES Global Geomagnetic Field Model (CGGM). This model describes the Earth’s magnetic main field and its linear temporal evolution over the time period between March 2018 and September 2019. As the CSES mission was not originally designed for main field modelling, we carefully assess the ability of the CSES orbits and data to provide relevant data for such a purpose. A number of issues are identified, and an appropriate modelling approach is found to mitigate these. The resulting CGGM model appears to be of high enough quality, and it is next used as a parent model to produce a main field model extrapolated to epoch 2020.0, which was eventually submitted on October 1, 2019 as one of the IGRF-13 2020 candidate models. This CGGM candidate model, the first ever produced by a Chinese-led team, is also the only one relying on a data set completely independent from that used by all other candidate models. A successful validation of this candidate model is performed by comparison with the final (now published) IGRF-13 2020 model and all other candidate models. Comparisons of the secular variation predicted by the CGGM parent model with the final IGRF-13 2020–2025 predictive secular variation also reveal a remarkable agreement. This shows that, despite their current limitations, CSES magnetic data can already be used to produce useful IGRF 2020 and 2020–2025 secular variation candidate models to contribute to the official IGRF-13 2020 and predictive secular variation models for the coming 2020–2025 time period. These very encouraging results show that additional efforts to improve the CSES magnetic data quality could make these data very useful for long-term monitoring of the main field and possibly other magnetic field sources, in complement to the data provided by missions such as the ESA Swarm mission. CSES CGGM IGRF Geomagnetism Space magnetometry Geography. Anthropology. Recreation G Geodesy Geology Gauthier Hulot verfasserin aut Pierre Vigneron verfasserin aut Xuhui Shen verfasserin aut Zeren Zhima verfasserin aut Bin Zhou verfasserin aut Werner Magnes verfasserin aut Nils Olsen verfasserin aut Lars Tøffner-Clausen verfasserin aut Jianpin Huang verfasserin aut Xuemin Zhang verfasserin aut Shigeng Yuan verfasserin aut Lanwei Wang verfasserin aut Bingjun Cheng verfasserin aut Andreas Pollinger verfasserin aut Roland Lammegger verfasserin aut Jianpin Dai verfasserin aut Jun Lin verfasserin aut Feng Guo verfasserin aut Jingbo Yu verfasserin aut Jie Wang verfasserin aut Yingyan Wu verfasserin aut Xudong Zhao verfasserin aut Xinghong Zhu verfasserin aut In Earth, Planets and Space SpringerOpen, 2015 73(2021), 1, Seite 21 (DE-627)353898597 (DE-600)2087663-4 18805981 nnns volume:73 year:2021 number:1 pages:21 https://doi.org/10.1186/s40623-020-01316-w kostenfrei https://doaj.org/article/a54aa68da3364d58ab59bedf385b65a3 kostenfrei https://doi.org/10.1186/s40623-020-01316-w kostenfrei https://doaj.org/toc/1880-5981 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 73 2021 1 21 |
language |
English |
source |
In Earth, Planets and Space 73(2021), 1, Seite 21 volume:73 year:2021 number:1 pages:21 |
sourceStr |
In Earth, Planets and Space 73(2021), 1, Seite 21 volume:73 year:2021 number:1 pages:21 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
CSES CGGM IGRF Geomagnetism Space magnetometry Geography. Anthropology. Recreation G Geodesy Geology |
isfreeaccess_bool |
true |
container_title |
Earth, Planets and Space |
authorswithroles_txt_mv |
Yanyan Yang @@aut@@ Gauthier Hulot @@aut@@ Pierre Vigneron @@aut@@ Xuhui Shen @@aut@@ Zeren Zhima @@aut@@ Bin Zhou @@aut@@ Werner Magnes @@aut@@ Nils Olsen @@aut@@ Lars Tøffner-Clausen @@aut@@ Jianpin Huang @@aut@@ Xuemin Zhang @@aut@@ Shigeng Yuan @@aut@@ Lanwei Wang @@aut@@ Bingjun Cheng @@aut@@ Andreas Pollinger @@aut@@ Roland Lammegger @@aut@@ Jianpin Dai @@aut@@ Jun Lin @@aut@@ Feng Guo @@aut@@ Jingbo Yu @@aut@@ Jie Wang @@aut@@ Yingyan Wu @@aut@@ Xudong Zhao @@aut@@ Xinghong Zhu @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
353898597 |
id |
DOAJ007526539 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007526539</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502222441.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40623-020-01316-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007526539</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa54aa68da3364d58ab59bedf385b65a3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB275-343</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE1-996.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yanyan Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The CSES global geomagnetic field model (CGGM): an IGRF-type global geomagnetic field model based on data from the China Seismo-Electromagnetic Satellite</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Using magnetic field data from the China Seismo-Electromagnetic Satellite (CSES) mission, we derive a global geomagnetic field model, which we call the CSES Global Geomagnetic Field Model (CGGM). This model describes the Earth’s magnetic main field and its linear temporal evolution over the time period between March 2018 and September 2019. As the CSES mission was not originally designed for main field modelling, we carefully assess the ability of the CSES orbits and data to provide relevant data for such a purpose. A number of issues are identified, and an appropriate modelling approach is found to mitigate these. The resulting CGGM model appears to be of high enough quality, and it is next used as a parent model to produce a main field model extrapolated to epoch 2020.0, which was eventually submitted on October 1, 2019 as one of the IGRF-13 2020 candidate models. This CGGM candidate model, the first ever produced by a Chinese-led team, is also the only one relying on a data set completely independent from that used by all other candidate models. A successful validation of this candidate model is performed by comparison with the final (now published) IGRF-13 2020 model and all other candidate models. Comparisons of the secular variation predicted by the CGGM parent model with the final IGRF-13 2020–2025 predictive secular variation also reveal a remarkable agreement. This shows that, despite their current limitations, CSES magnetic data can already be used to produce useful IGRF 2020 and 2020–2025 secular variation candidate models to contribute to the official IGRF-13 2020 and predictive secular variation models for the coming 2020–2025 time period. These very encouraging results show that additional efforts to improve the CSES magnetic data quality could make these data very useful for long-term monitoring of the main field and possibly other magnetic field sources, in complement to the data provided by missions such as the ESA Swarm mission.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CSES</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CGGM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IGRF</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geomagnetism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Space magnetometry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geography. Anthropology. Recreation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">G</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geodesy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gauthier Hulot</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pierre Vigneron</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuhui Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zeren Zhima</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bin Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Werner Magnes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nils Olsen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lars Tøffner-Clausen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianpin Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuemin Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shigeng Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lanwei Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bingjun Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andreas Pollinger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roland Lammegger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianpin Dai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Feng Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingbo Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jie Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yingyan Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xudong Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinghong Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Earth, Planets and Space</subfield><subfield code="d">SpringerOpen, 2015</subfield><subfield code="g">73(2021), 1, Seite 21</subfield><subfield code="w">(DE-627)353898597</subfield><subfield code="w">(DE-600)2087663-4</subfield><subfield code="x">18805981</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:73</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:21</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s40623-020-01316-w</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a54aa68da3364d58ab59bedf385b65a3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s40623-020-01316-w</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1880-5981</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">73</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="h">21</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Yanyan Yang |
spellingShingle |
Yanyan Yang misc QB275-343 misc QE1-996.5 misc CSES misc CGGM misc IGRF misc Geomagnetism misc Space magnetometry misc Geography. Anthropology. Recreation misc G misc Geodesy misc Geology The CSES global geomagnetic field model (CGGM): an IGRF-type global geomagnetic field model based on data from the China Seismo-Electromagnetic Satellite |
authorStr |
Yanyan Yang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)353898597 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB275-343 |
illustrated |
Not Illustrated |
issn |
18805981 |
topic_title |
QB275-343 QE1-996.5 The CSES global geomagnetic field model (CGGM): an IGRF-type global geomagnetic field model based on data from the China Seismo-Electromagnetic Satellite CSES CGGM IGRF Geomagnetism Space magnetometry |
topic |
misc QB275-343 misc QE1-996.5 misc CSES misc CGGM misc IGRF misc Geomagnetism misc Space magnetometry misc Geography. Anthropology. Recreation misc G misc Geodesy misc Geology |
topic_unstemmed |
misc QB275-343 misc QE1-996.5 misc CSES misc CGGM misc IGRF misc Geomagnetism misc Space magnetometry misc Geography. Anthropology. Recreation misc G misc Geodesy misc Geology |
topic_browse |
misc QB275-343 misc QE1-996.5 misc CSES misc CGGM misc IGRF misc Geomagnetism misc Space magnetometry misc Geography. Anthropology. Recreation misc G misc Geodesy misc Geology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Earth, Planets and Space |
hierarchy_parent_id |
353898597 |
hierarchy_top_title |
Earth, Planets and Space |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)353898597 (DE-600)2087663-4 |
title |
The CSES global geomagnetic field model (CGGM): an IGRF-type global geomagnetic field model based on data from the China Seismo-Electromagnetic Satellite |
ctrlnum |
(DE-627)DOAJ007526539 (DE-599)DOAJa54aa68da3364d58ab59bedf385b65a3 |
title_full |
The CSES global geomagnetic field model (CGGM): an IGRF-type global geomagnetic field model based on data from the China Seismo-Electromagnetic Satellite |
author_sort |
Yanyan Yang |
journal |
Earth, Planets and Space |
journalStr |
Earth, Planets and Space |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
21 |
author_browse |
Yanyan Yang Gauthier Hulot Pierre Vigneron Xuhui Shen Zeren Zhima Bin Zhou Werner Magnes Nils Olsen Lars Tøffner-Clausen Jianpin Huang Xuemin Zhang Shigeng Yuan Lanwei Wang Bingjun Cheng Andreas Pollinger Roland Lammegger Jianpin Dai Jun Lin Feng Guo Jingbo Yu Jie Wang Yingyan Wu Xudong Zhao Xinghong Zhu |
container_volume |
73 |
class |
QB275-343 QE1-996.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Yanyan Yang |
doi_str_mv |
10.1186/s40623-020-01316-w |
author2-role |
verfasserin |
title_sort |
cses global geomagnetic field model (cggm): an igrf-type global geomagnetic field model based on data from the china seismo-electromagnetic satellite |
callnumber |
QB275-343 |
title_auth |
The CSES global geomagnetic field model (CGGM): an IGRF-type global geomagnetic field model based on data from the China Seismo-Electromagnetic Satellite |
abstract |
Abstract Using magnetic field data from the China Seismo-Electromagnetic Satellite (CSES) mission, we derive a global geomagnetic field model, which we call the CSES Global Geomagnetic Field Model (CGGM). This model describes the Earth’s magnetic main field and its linear temporal evolution over the time period between March 2018 and September 2019. As the CSES mission was not originally designed for main field modelling, we carefully assess the ability of the CSES orbits and data to provide relevant data for such a purpose. A number of issues are identified, and an appropriate modelling approach is found to mitigate these. The resulting CGGM model appears to be of high enough quality, and it is next used as a parent model to produce a main field model extrapolated to epoch 2020.0, which was eventually submitted on October 1, 2019 as one of the IGRF-13 2020 candidate models. This CGGM candidate model, the first ever produced by a Chinese-led team, is also the only one relying on a data set completely independent from that used by all other candidate models. A successful validation of this candidate model is performed by comparison with the final (now published) IGRF-13 2020 model and all other candidate models. Comparisons of the secular variation predicted by the CGGM parent model with the final IGRF-13 2020–2025 predictive secular variation also reveal a remarkable agreement. This shows that, despite their current limitations, CSES magnetic data can already be used to produce useful IGRF 2020 and 2020–2025 secular variation candidate models to contribute to the official IGRF-13 2020 and predictive secular variation models for the coming 2020–2025 time period. These very encouraging results show that additional efforts to improve the CSES magnetic data quality could make these data very useful for long-term monitoring of the main field and possibly other magnetic field sources, in complement to the data provided by missions such as the ESA Swarm mission. |
abstractGer |
Abstract Using magnetic field data from the China Seismo-Electromagnetic Satellite (CSES) mission, we derive a global geomagnetic field model, which we call the CSES Global Geomagnetic Field Model (CGGM). This model describes the Earth’s magnetic main field and its linear temporal evolution over the time period between March 2018 and September 2019. As the CSES mission was not originally designed for main field modelling, we carefully assess the ability of the CSES orbits and data to provide relevant data for such a purpose. A number of issues are identified, and an appropriate modelling approach is found to mitigate these. The resulting CGGM model appears to be of high enough quality, and it is next used as a parent model to produce a main field model extrapolated to epoch 2020.0, which was eventually submitted on October 1, 2019 as one of the IGRF-13 2020 candidate models. This CGGM candidate model, the first ever produced by a Chinese-led team, is also the only one relying on a data set completely independent from that used by all other candidate models. A successful validation of this candidate model is performed by comparison with the final (now published) IGRF-13 2020 model and all other candidate models. Comparisons of the secular variation predicted by the CGGM parent model with the final IGRF-13 2020–2025 predictive secular variation also reveal a remarkable agreement. This shows that, despite their current limitations, CSES magnetic data can already be used to produce useful IGRF 2020 and 2020–2025 secular variation candidate models to contribute to the official IGRF-13 2020 and predictive secular variation models for the coming 2020–2025 time period. These very encouraging results show that additional efforts to improve the CSES magnetic data quality could make these data very useful for long-term monitoring of the main field and possibly other magnetic field sources, in complement to the data provided by missions such as the ESA Swarm mission. |
abstract_unstemmed |
Abstract Using magnetic field data from the China Seismo-Electromagnetic Satellite (CSES) mission, we derive a global geomagnetic field model, which we call the CSES Global Geomagnetic Field Model (CGGM). This model describes the Earth’s magnetic main field and its linear temporal evolution over the time period between March 2018 and September 2019. As the CSES mission was not originally designed for main field modelling, we carefully assess the ability of the CSES orbits and data to provide relevant data for such a purpose. A number of issues are identified, and an appropriate modelling approach is found to mitigate these. The resulting CGGM model appears to be of high enough quality, and it is next used as a parent model to produce a main field model extrapolated to epoch 2020.0, which was eventually submitted on October 1, 2019 as one of the IGRF-13 2020 candidate models. This CGGM candidate model, the first ever produced by a Chinese-led team, is also the only one relying on a data set completely independent from that used by all other candidate models. A successful validation of this candidate model is performed by comparison with the final (now published) IGRF-13 2020 model and all other candidate models. Comparisons of the secular variation predicted by the CGGM parent model with the final IGRF-13 2020–2025 predictive secular variation also reveal a remarkable agreement. This shows that, despite their current limitations, CSES magnetic data can already be used to produce useful IGRF 2020 and 2020–2025 secular variation candidate models to contribute to the official IGRF-13 2020 and predictive secular variation models for the coming 2020–2025 time period. These very encouraging results show that additional efforts to improve the CSES magnetic data quality could make these data very useful for long-term monitoring of the main field and possibly other magnetic field sources, in complement to the data provided by missions such as the ESA Swarm mission. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
The CSES global geomagnetic field model (CGGM): an IGRF-type global geomagnetic field model based on data from the China Seismo-Electromagnetic Satellite |
url |
https://doi.org/10.1186/s40623-020-01316-w https://doaj.org/article/a54aa68da3364d58ab59bedf385b65a3 https://doaj.org/toc/1880-5981 |
remote_bool |
true |
author2 |
Gauthier Hulot Pierre Vigneron Xuhui Shen Zeren Zhima Bin Zhou Werner Magnes Nils Olsen Lars Tøffner-Clausen Jianpin Huang Xuemin Zhang Shigeng Yuan Lanwei Wang Bingjun Cheng Andreas Pollinger Roland Lammegger Jianpin Dai Jun Lin Feng Guo Jingbo Yu Jie Wang Yingyan Wu Xudong Zhao Xinghong Zhu |
author2Str |
Gauthier Hulot Pierre Vigneron Xuhui Shen Zeren Zhima Bin Zhou Werner Magnes Nils Olsen Lars Tøffner-Clausen Jianpin Huang Xuemin Zhang Shigeng Yuan Lanwei Wang Bingjun Cheng Andreas Pollinger Roland Lammegger Jianpin Dai Jun Lin Feng Guo Jingbo Yu Jie Wang Yingyan Wu Xudong Zhao Xinghong Zhu |
ppnlink |
353898597 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40623-020-01316-w |
callnumber-a |
QB275-343 |
up_date |
2024-07-04T01:54:24.103Z |
_version_ |
1803611604628013056 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007526539</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502222441.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40623-020-01316-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007526539</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa54aa68da3364d58ab59bedf385b65a3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB275-343</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE1-996.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yanyan Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The CSES global geomagnetic field model (CGGM): an IGRF-type global geomagnetic field model based on data from the China Seismo-Electromagnetic Satellite</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Using magnetic field data from the China Seismo-Electromagnetic Satellite (CSES) mission, we derive a global geomagnetic field model, which we call the CSES Global Geomagnetic Field Model (CGGM). This model describes the Earth’s magnetic main field and its linear temporal evolution over the time period between March 2018 and September 2019. As the CSES mission was not originally designed for main field modelling, we carefully assess the ability of the CSES orbits and data to provide relevant data for such a purpose. A number of issues are identified, and an appropriate modelling approach is found to mitigate these. The resulting CGGM model appears to be of high enough quality, and it is next used as a parent model to produce a main field model extrapolated to epoch 2020.0, which was eventually submitted on October 1, 2019 as one of the IGRF-13 2020 candidate models. This CGGM candidate model, the first ever produced by a Chinese-led team, is also the only one relying on a data set completely independent from that used by all other candidate models. A successful validation of this candidate model is performed by comparison with the final (now published) IGRF-13 2020 model and all other candidate models. Comparisons of the secular variation predicted by the CGGM parent model with the final IGRF-13 2020–2025 predictive secular variation also reveal a remarkable agreement. This shows that, despite their current limitations, CSES magnetic data can already be used to produce useful IGRF 2020 and 2020–2025 secular variation candidate models to contribute to the official IGRF-13 2020 and predictive secular variation models for the coming 2020–2025 time period. These very encouraging results show that additional efforts to improve the CSES magnetic data quality could make these data very useful for long-term monitoring of the main field and possibly other magnetic field sources, in complement to the data provided by missions such as the ESA Swarm mission.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CSES</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CGGM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IGRF</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geomagnetism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Space magnetometry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geography. Anthropology. Recreation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">G</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geodesy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gauthier Hulot</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pierre Vigneron</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuhui Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zeren Zhima</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bin Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Werner Magnes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nils Olsen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lars Tøffner-Clausen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianpin Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuemin Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shigeng Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lanwei Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bingjun Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andreas Pollinger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roland Lammegger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianpin Dai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Feng Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingbo Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jie Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yingyan Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xudong Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinghong Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Earth, Planets and Space</subfield><subfield code="d">SpringerOpen, 2015</subfield><subfield code="g">73(2021), 1, Seite 21</subfield><subfield code="w">(DE-627)353898597</subfield><subfield code="w">(DE-600)2087663-4</subfield><subfield code="x">18805981</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:73</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:21</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s40623-020-01316-w</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a54aa68da3364d58ab59bedf385b65a3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s40623-020-01316-w</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1880-5981</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">73</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="h">21</subfield></datafield></record></collection>
|
score |
7.40189 |