A New Method to Compute Ratio of Secure Summations and Its Application in Privacy Preserving Distributed Data Mining
Computing the ratio of secure summations (RSS) is one of the most important tools for privacy preserving distributed data mining. It refers to such a problem; given the n parties and their respective secret values (x<sub<i</sub<,y<sub<i</sub<), where i=1, ..., n , how can the...
Ausführliche Beschreibung
Autor*in: |
Yan Shao [verfasserIn] Wenjing Hong [verfasserIn] Zhanjun Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 7(2019), Seite 20756-20766 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2019 ; pages:20756-20766 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2019.2894682 |
---|
Katalog-ID: |
DOAJ007574142 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ007574142 | ||
003 | DE-627 | ||
005 | 20230309233921.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2019.2894682 |2 doi | |
035 | |a (DE-627)DOAJ007574142 | ||
035 | |a (DE-599)DOAJ6d61c9215db748aa95e0f1b181228926 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Yan Shao |e verfasserin |4 aut | |
245 | 1 | 2 | |a A New Method to Compute Ratio of Secure Summations and Its Application in Privacy Preserving Distributed Data Mining |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Computing the ratio of secure summations (RSS) is one of the most important tools for privacy preserving distributed data mining. It refers to such a problem; given the n parties and their respective secret values (x<sub<i</sub<,y<sub<i</sub<), where i=1, ..., n , how can they get the value of Σ<sub<i=1</sub<<sup<n</sup< x<sub<i</sub</ Σ<sub<i=1</sub<<sup<n</sup< y<sub<i</sub< without disclosing (x<sub<i</sub<,y<sub<i</sub<), and Σ<sub<i=1</sub<<sup<n</sup< x<sub<i</sub< and Σ<sub<i=1</sub<<sup<n</sup< y<sub<i</sub< In this paper, we propose a new method to solve this problem. Compared with the existing methods, our method is not only secure under the assumption of semi-honest but also can resist collusion attacks-even when all but one party are corrupt. At the same time, the computational complexity and communication complexity of our method are both O(n) . Therefore, it can meet the needs of the practical application in terms of both security and efficiency. In addition to the theoretical guarantee, the practical usability of our method is also verified through experiments by constructing Naive Bayes classifiers in a privacy-preserving distributed environment. | ||
650 | 4 | |a Privacy-preserving | |
650 | 4 | |a distributed | |
650 | 4 | |a secure | |
650 | 4 | |a ratio | |
650 | 4 | |a data-mining | |
650 | 4 | |a secure multi-party computation | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Wenjing Hong |e verfasserin |4 aut | |
700 | 0 | |a Zhanjun Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 7(2019), Seite 20756-20766 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2019 |g pages:20756-20766 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2019.2894682 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6d61c9215db748aa95e0f1b181228926 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8625413/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2019 |h 20756-20766 |
author_variant |
y s ys w h wh z l zl |
---|---|
matchkey_str |
article:21693536:2019----::nwehdooptrtofeueumtosnisplctoipiayrs |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TK |
publishDate |
2019 |
allfields |
10.1109/ACCESS.2019.2894682 doi (DE-627)DOAJ007574142 (DE-599)DOAJ6d61c9215db748aa95e0f1b181228926 DE-627 ger DE-627 rakwb eng TK1-9971 Yan Shao verfasserin aut A New Method to Compute Ratio of Secure Summations and Its Application in Privacy Preserving Distributed Data Mining 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Computing the ratio of secure summations (RSS) is one of the most important tools for privacy preserving distributed data mining. It refers to such a problem; given the n parties and their respective secret values (x<sub<i</sub<,y<sub<i</sub<), where i=1, ..., n , how can they get the value of Σ<sub<i=1</sub<<sup<n</sup< x<sub<i</sub</ Σ<sub<i=1</sub<<sup<n</sup< y<sub<i</sub< without disclosing (x<sub<i</sub<,y<sub<i</sub<), and Σ<sub<i=1</sub<<sup<n</sup< x<sub<i</sub< and Σ<sub<i=1</sub<<sup<n</sup< y<sub<i</sub< In this paper, we propose a new method to solve this problem. Compared with the existing methods, our method is not only secure under the assumption of semi-honest but also can resist collusion attacks-even when all but one party are corrupt. At the same time, the computational complexity and communication complexity of our method are both O(n) . Therefore, it can meet the needs of the practical application in terms of both security and efficiency. In addition to the theoretical guarantee, the practical usability of our method is also verified through experiments by constructing Naive Bayes classifiers in a privacy-preserving distributed environment. Privacy-preserving distributed secure ratio data-mining secure multi-party computation Electrical engineering. Electronics. Nuclear engineering Wenjing Hong verfasserin aut Zhanjun Li verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 20756-20766 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:20756-20766 https://doi.org/10.1109/ACCESS.2019.2894682 kostenfrei https://doaj.org/article/6d61c9215db748aa95e0f1b181228926 kostenfrei https://ieeexplore.ieee.org/document/8625413/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 20756-20766 |
spelling |
10.1109/ACCESS.2019.2894682 doi (DE-627)DOAJ007574142 (DE-599)DOAJ6d61c9215db748aa95e0f1b181228926 DE-627 ger DE-627 rakwb eng TK1-9971 Yan Shao verfasserin aut A New Method to Compute Ratio of Secure Summations and Its Application in Privacy Preserving Distributed Data Mining 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Computing the ratio of secure summations (RSS) is one of the most important tools for privacy preserving distributed data mining. It refers to such a problem; given the n parties and their respective secret values (x<sub<i</sub<,y<sub<i</sub<), where i=1, ..., n , how can they get the value of Σ<sub<i=1</sub<<sup<n</sup< x<sub<i</sub</ Σ<sub<i=1</sub<<sup<n</sup< y<sub<i</sub< without disclosing (x<sub<i</sub<,y<sub<i</sub<), and Σ<sub<i=1</sub<<sup<n</sup< x<sub<i</sub< and Σ<sub<i=1</sub<<sup<n</sup< y<sub<i</sub< In this paper, we propose a new method to solve this problem. Compared with the existing methods, our method is not only secure under the assumption of semi-honest but also can resist collusion attacks-even when all but one party are corrupt. At the same time, the computational complexity and communication complexity of our method are both O(n) . Therefore, it can meet the needs of the practical application in terms of both security and efficiency. In addition to the theoretical guarantee, the practical usability of our method is also verified through experiments by constructing Naive Bayes classifiers in a privacy-preserving distributed environment. Privacy-preserving distributed secure ratio data-mining secure multi-party computation Electrical engineering. Electronics. Nuclear engineering Wenjing Hong verfasserin aut Zhanjun Li verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 20756-20766 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:20756-20766 https://doi.org/10.1109/ACCESS.2019.2894682 kostenfrei https://doaj.org/article/6d61c9215db748aa95e0f1b181228926 kostenfrei https://ieeexplore.ieee.org/document/8625413/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 20756-20766 |
allfields_unstemmed |
10.1109/ACCESS.2019.2894682 doi (DE-627)DOAJ007574142 (DE-599)DOAJ6d61c9215db748aa95e0f1b181228926 DE-627 ger DE-627 rakwb eng TK1-9971 Yan Shao verfasserin aut A New Method to Compute Ratio of Secure Summations and Its Application in Privacy Preserving Distributed Data Mining 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Computing the ratio of secure summations (RSS) is one of the most important tools for privacy preserving distributed data mining. It refers to such a problem; given the n parties and their respective secret values (x<sub<i</sub<,y<sub<i</sub<), where i=1, ..., n , how can they get the value of Σ<sub<i=1</sub<<sup<n</sup< x<sub<i</sub</ Σ<sub<i=1</sub<<sup<n</sup< y<sub<i</sub< without disclosing (x<sub<i</sub<,y<sub<i</sub<), and Σ<sub<i=1</sub<<sup<n</sup< x<sub<i</sub< and Σ<sub<i=1</sub<<sup<n</sup< y<sub<i</sub< In this paper, we propose a new method to solve this problem. Compared with the existing methods, our method is not only secure under the assumption of semi-honest but also can resist collusion attacks-even when all but one party are corrupt. At the same time, the computational complexity and communication complexity of our method are both O(n) . Therefore, it can meet the needs of the practical application in terms of both security and efficiency. In addition to the theoretical guarantee, the practical usability of our method is also verified through experiments by constructing Naive Bayes classifiers in a privacy-preserving distributed environment. Privacy-preserving distributed secure ratio data-mining secure multi-party computation Electrical engineering. Electronics. Nuclear engineering Wenjing Hong verfasserin aut Zhanjun Li verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 20756-20766 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:20756-20766 https://doi.org/10.1109/ACCESS.2019.2894682 kostenfrei https://doaj.org/article/6d61c9215db748aa95e0f1b181228926 kostenfrei https://ieeexplore.ieee.org/document/8625413/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 20756-20766 |
allfieldsGer |
10.1109/ACCESS.2019.2894682 doi (DE-627)DOAJ007574142 (DE-599)DOAJ6d61c9215db748aa95e0f1b181228926 DE-627 ger DE-627 rakwb eng TK1-9971 Yan Shao verfasserin aut A New Method to Compute Ratio of Secure Summations and Its Application in Privacy Preserving Distributed Data Mining 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Computing the ratio of secure summations (RSS) is one of the most important tools for privacy preserving distributed data mining. It refers to such a problem; given the n parties and their respective secret values (x<sub<i</sub<,y<sub<i</sub<), where i=1, ..., n , how can they get the value of Σ<sub<i=1</sub<<sup<n</sup< x<sub<i</sub</ Σ<sub<i=1</sub<<sup<n</sup< y<sub<i</sub< without disclosing (x<sub<i</sub<,y<sub<i</sub<), and Σ<sub<i=1</sub<<sup<n</sup< x<sub<i</sub< and Σ<sub<i=1</sub<<sup<n</sup< y<sub<i</sub< In this paper, we propose a new method to solve this problem. Compared with the existing methods, our method is not only secure under the assumption of semi-honest but also can resist collusion attacks-even when all but one party are corrupt. At the same time, the computational complexity and communication complexity of our method are both O(n) . Therefore, it can meet the needs of the practical application in terms of both security and efficiency. In addition to the theoretical guarantee, the practical usability of our method is also verified through experiments by constructing Naive Bayes classifiers in a privacy-preserving distributed environment. Privacy-preserving distributed secure ratio data-mining secure multi-party computation Electrical engineering. Electronics. Nuclear engineering Wenjing Hong verfasserin aut Zhanjun Li verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 20756-20766 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:20756-20766 https://doi.org/10.1109/ACCESS.2019.2894682 kostenfrei https://doaj.org/article/6d61c9215db748aa95e0f1b181228926 kostenfrei https://ieeexplore.ieee.org/document/8625413/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 20756-20766 |
allfieldsSound |
10.1109/ACCESS.2019.2894682 doi (DE-627)DOAJ007574142 (DE-599)DOAJ6d61c9215db748aa95e0f1b181228926 DE-627 ger DE-627 rakwb eng TK1-9971 Yan Shao verfasserin aut A New Method to Compute Ratio of Secure Summations and Its Application in Privacy Preserving Distributed Data Mining 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Computing the ratio of secure summations (RSS) is one of the most important tools for privacy preserving distributed data mining. It refers to such a problem; given the n parties and their respective secret values (x<sub<i</sub<,y<sub<i</sub<), where i=1, ..., n , how can they get the value of Σ<sub<i=1</sub<<sup<n</sup< x<sub<i</sub</ Σ<sub<i=1</sub<<sup<n</sup< y<sub<i</sub< without disclosing (x<sub<i</sub<,y<sub<i</sub<), and Σ<sub<i=1</sub<<sup<n</sup< x<sub<i</sub< and Σ<sub<i=1</sub<<sup<n</sup< y<sub<i</sub< In this paper, we propose a new method to solve this problem. Compared with the existing methods, our method is not only secure under the assumption of semi-honest but also can resist collusion attacks-even when all but one party are corrupt. At the same time, the computational complexity and communication complexity of our method are both O(n) . Therefore, it can meet the needs of the practical application in terms of both security and efficiency. In addition to the theoretical guarantee, the practical usability of our method is also verified through experiments by constructing Naive Bayes classifiers in a privacy-preserving distributed environment. Privacy-preserving distributed secure ratio data-mining secure multi-party computation Electrical engineering. Electronics. Nuclear engineering Wenjing Hong verfasserin aut Zhanjun Li verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 20756-20766 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:20756-20766 https://doi.org/10.1109/ACCESS.2019.2894682 kostenfrei https://doaj.org/article/6d61c9215db748aa95e0f1b181228926 kostenfrei https://ieeexplore.ieee.org/document/8625413/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 20756-20766 |
language |
English |
source |
In IEEE Access 7(2019), Seite 20756-20766 volume:7 year:2019 pages:20756-20766 |
sourceStr |
In IEEE Access 7(2019), Seite 20756-20766 volume:7 year:2019 pages:20756-20766 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Privacy-preserving distributed secure ratio data-mining secure multi-party computation Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Yan Shao @@aut@@ Wenjing Hong @@aut@@ Zhanjun Li @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ007574142 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007574142</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309233921.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2894682</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007574142</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6d61c9215db748aa95e0f1b181228926</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yan Shao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A New Method to Compute Ratio of Secure Summations and Its Application in Privacy Preserving Distributed Data Mining</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Computing the ratio of secure summations (RSS) is one of the most important tools for privacy preserving distributed data mining. It refers to such a problem; given the n parties and their respective secret values (x<sub<i</sub<,y<sub<i</sub<), where i=1, ..., n , how can they get the value of Σ<sub<i=1</sub<<sup<n</sup< x<sub<i</sub</ Σ<sub<i=1</sub<<sup<n</sup< y<sub<i</sub< without disclosing (x<sub<i</sub<,y<sub<i</sub<), and Σ<sub<i=1</sub<<sup<n</sup< x<sub<i</sub< and Σ<sub<i=1</sub<<sup<n</sup< y<sub<i</sub< In this paper, we propose a new method to solve this problem. Compared with the existing methods, our method is not only secure under the assumption of semi-honest but also can resist collusion attacks-even when all but one party are corrupt. At the same time, the computational complexity and communication complexity of our method are both O(n) . Therefore, it can meet the needs of the practical application in terms of both security and efficiency. In addition to the theoretical guarantee, the practical usability of our method is also verified through experiments by constructing Naive Bayes classifiers in a privacy-preserving distributed environment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Privacy-preserving</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">secure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ratio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">data-mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">secure multi-party computation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenjing Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhanjun Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 20756-20766</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:20756-20766</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2894682</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6d61c9215db748aa95e0f1b181228926</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8625413/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">20756-20766</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Yan Shao |
spellingShingle |
Yan Shao misc TK1-9971 misc Privacy-preserving misc distributed misc secure misc ratio misc data-mining misc secure multi-party computation misc Electrical engineering. Electronics. Nuclear engineering A New Method to Compute Ratio of Secure Summations and Its Application in Privacy Preserving Distributed Data Mining |
authorStr |
Yan Shao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 A New Method to Compute Ratio of Secure Summations and Its Application in Privacy Preserving Distributed Data Mining Privacy-preserving distributed secure ratio data-mining secure multi-party computation |
topic |
misc TK1-9971 misc Privacy-preserving misc distributed misc secure misc ratio misc data-mining misc secure multi-party computation misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Privacy-preserving misc distributed misc secure misc ratio misc data-mining misc secure multi-party computation misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Privacy-preserving misc distributed misc secure misc ratio misc data-mining misc secure multi-party computation misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
A New Method to Compute Ratio of Secure Summations and Its Application in Privacy Preserving Distributed Data Mining |
ctrlnum |
(DE-627)DOAJ007574142 (DE-599)DOAJ6d61c9215db748aa95e0f1b181228926 |
title_full |
A New Method to Compute Ratio of Secure Summations and Its Application in Privacy Preserving Distributed Data Mining |
author_sort |
Yan Shao |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
20756 |
author_browse |
Yan Shao Wenjing Hong Zhanjun Li |
container_volume |
7 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Yan Shao |
doi_str_mv |
10.1109/ACCESS.2019.2894682 |
author2-role |
verfasserin |
title_sort |
new method to compute ratio of secure summations and its application in privacy preserving distributed data mining |
callnumber |
TK1-9971 |
title_auth |
A New Method to Compute Ratio of Secure Summations and Its Application in Privacy Preserving Distributed Data Mining |
abstract |
Computing the ratio of secure summations (RSS) is one of the most important tools for privacy preserving distributed data mining. It refers to such a problem; given the n parties and their respective secret values (x<sub<i</sub<,y<sub<i</sub<), where i=1, ..., n , how can they get the value of Σ<sub<i=1</sub<<sup<n</sup< x<sub<i</sub</ Σ<sub<i=1</sub<<sup<n</sup< y<sub<i</sub< without disclosing (x<sub<i</sub<,y<sub<i</sub<), and Σ<sub<i=1</sub<<sup<n</sup< x<sub<i</sub< and Σ<sub<i=1</sub<<sup<n</sup< y<sub<i</sub< In this paper, we propose a new method to solve this problem. Compared with the existing methods, our method is not only secure under the assumption of semi-honest but also can resist collusion attacks-even when all but one party are corrupt. At the same time, the computational complexity and communication complexity of our method are both O(n) . Therefore, it can meet the needs of the practical application in terms of both security and efficiency. In addition to the theoretical guarantee, the practical usability of our method is also verified through experiments by constructing Naive Bayes classifiers in a privacy-preserving distributed environment. |
abstractGer |
Computing the ratio of secure summations (RSS) is one of the most important tools for privacy preserving distributed data mining. It refers to such a problem; given the n parties and their respective secret values (x<sub<i</sub<,y<sub<i</sub<), where i=1, ..., n , how can they get the value of Σ<sub<i=1</sub<<sup<n</sup< x<sub<i</sub</ Σ<sub<i=1</sub<<sup<n</sup< y<sub<i</sub< without disclosing (x<sub<i</sub<,y<sub<i</sub<), and Σ<sub<i=1</sub<<sup<n</sup< x<sub<i</sub< and Σ<sub<i=1</sub<<sup<n</sup< y<sub<i</sub< In this paper, we propose a new method to solve this problem. Compared with the existing methods, our method is not only secure under the assumption of semi-honest but also can resist collusion attacks-even when all but one party are corrupt. At the same time, the computational complexity and communication complexity of our method are both O(n) . Therefore, it can meet the needs of the practical application in terms of both security and efficiency. In addition to the theoretical guarantee, the practical usability of our method is also verified through experiments by constructing Naive Bayes classifiers in a privacy-preserving distributed environment. |
abstract_unstemmed |
Computing the ratio of secure summations (RSS) is one of the most important tools for privacy preserving distributed data mining. It refers to such a problem; given the n parties and their respective secret values (x<sub<i</sub<,y<sub<i</sub<), where i=1, ..., n , how can they get the value of Σ<sub<i=1</sub<<sup<n</sup< x<sub<i</sub</ Σ<sub<i=1</sub<<sup<n</sup< y<sub<i</sub< without disclosing (x<sub<i</sub<,y<sub<i</sub<), and Σ<sub<i=1</sub<<sup<n</sup< x<sub<i</sub< and Σ<sub<i=1</sub<<sup<n</sup< y<sub<i</sub< In this paper, we propose a new method to solve this problem. Compared with the existing methods, our method is not only secure under the assumption of semi-honest but also can resist collusion attacks-even when all but one party are corrupt. At the same time, the computational complexity and communication complexity of our method are both O(n) . Therefore, it can meet the needs of the practical application in terms of both security and efficiency. In addition to the theoretical guarantee, the practical usability of our method is also verified through experiments by constructing Naive Bayes classifiers in a privacy-preserving distributed environment. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
A New Method to Compute Ratio of Secure Summations and Its Application in Privacy Preserving Distributed Data Mining |
url |
https://doi.org/10.1109/ACCESS.2019.2894682 https://doaj.org/article/6d61c9215db748aa95e0f1b181228926 https://ieeexplore.ieee.org/document/8625413/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Wenjing Hong Zhanjun Li |
author2Str |
Wenjing Hong Zhanjun Li |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2019.2894682 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T02:05:00.998Z |
_version_ |
1803612272459776000 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007574142</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309233921.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2894682</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007574142</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6d61c9215db748aa95e0f1b181228926</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yan Shao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A New Method to Compute Ratio of Secure Summations and Its Application in Privacy Preserving Distributed Data Mining</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Computing the ratio of secure summations (RSS) is one of the most important tools for privacy preserving distributed data mining. It refers to such a problem; given the n parties and their respective secret values (x<sub<i</sub<,y<sub<i</sub<), where i=1, ..., n , how can they get the value of Σ<sub<i=1</sub<<sup<n</sup< x<sub<i</sub</ Σ<sub<i=1</sub<<sup<n</sup< y<sub<i</sub< without disclosing (x<sub<i</sub<,y<sub<i</sub<), and Σ<sub<i=1</sub<<sup<n</sup< x<sub<i</sub< and Σ<sub<i=1</sub<<sup<n</sup< y<sub<i</sub< In this paper, we propose a new method to solve this problem. Compared with the existing methods, our method is not only secure under the assumption of semi-honest but also can resist collusion attacks-even when all but one party are corrupt. At the same time, the computational complexity and communication complexity of our method are both O(n) . Therefore, it can meet the needs of the practical application in terms of both security and efficiency. In addition to the theoretical guarantee, the practical usability of our method is also verified through experiments by constructing Naive Bayes classifiers in a privacy-preserving distributed environment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Privacy-preserving</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">secure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ratio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">data-mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">secure multi-party computation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenjing Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhanjun Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 20756-20766</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:20756-20766</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2894682</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6d61c9215db748aa95e0f1b181228926</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8625413/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">20756-20766</subfield></datafield></record></collection>
|
score |
7.400259 |