An Efficient Wireless Control Plane for Software Defined Networking in Data Center Networks
Software defined networking (SDN) has re-defined the way data center networks are deployed and functioned. The ability to separate the control plane and data plane have led to the simpler design and easier management. In SDN, the data plane and control plane are separately managed, so building an ad...
Ausführliche Beschreibung
Autor*in: |
Zuneera Umair [verfasserIn] Umair Mujtaba Qureshi [verfasserIn] Yingying Cheng [verfasserIn] Xiaohua Jia [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 7(2019), Seite 58158-58167 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2019 ; pages:58158-58167 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2019.2914771 |
---|
Katalog-ID: |
DOAJ007584172 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ007584172 | ||
003 | DE-627 | ||
005 | 20230309234107.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2019.2914771 |2 doi | |
035 | |a (DE-627)DOAJ007584172 | ||
035 | |a (DE-599)DOAJ12236fd3a7a44821a05438237479a541 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Zuneera Umair |e verfasserin |4 aut | |
245 | 1 | 3 | |a An Efficient Wireless Control Plane for Software Defined Networking in Data Center Networks |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Software defined networking (SDN) has re-defined the way data center networks are deployed and functioned. The ability to separate the control plane and data plane have led to the simpler design and easier management. In SDN, the data plane and control plane are separately managed, so building an additional wired network to connect the control plane and the data plane can lead to a high cabling complexity. This paper proposes an end-to-end end wireless control plane architecture for SDN-enabled data center networks. In the proposed architecture, the switches form clusters that are wirelessly connected to the controller via access points (APs) and relay nodes (RNs). The switches use the 2.4/5-GHz band to connect with the APs, whereas the APs and the RNs are connected to the controller using the 60-GHz band. We have presented an analytical model to derive achievable data rates in our wireless control plane. We have also proposed two algorithms that allow an optimal number of a cluster size of the switches to be connected with the Controller via minimum number to APs/RNs such that the control traffic demands of the switches is guaranteed in interference constrained environment. Through extensive simulations, the results of our proposed architecture show that the cabling complexity in the control plane is reduced to zero and additional switches may be easily added in SDN data center. Thus, a pure wireless solution for building a control plane in a data center network is feasible. | ||
650 | 4 | |a Data center networks | |
650 | 4 | |a software-defined networks | |
650 | 4 | |a wireless control plane | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Umair Mujtaba Qureshi |e verfasserin |4 aut | |
700 | 0 | |a Yingying Cheng |e verfasserin |4 aut | |
700 | 0 | |a Xiaohua Jia |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 7(2019), Seite 58158-58167 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2019 |g pages:58158-58167 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2019.2914771 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/12236fd3a7a44821a05438237479a541 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8705348/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2019 |h 58158-58167 |
author_variant |
z u zu u m q umq y c yc x j xj |
---|---|
matchkey_str |
article:21693536:2019----::nfiinwrlscnrllnfrotaeeientok |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TK |
publishDate |
2019 |
allfields |
10.1109/ACCESS.2019.2914771 doi (DE-627)DOAJ007584172 (DE-599)DOAJ12236fd3a7a44821a05438237479a541 DE-627 ger DE-627 rakwb eng TK1-9971 Zuneera Umair verfasserin aut An Efficient Wireless Control Plane for Software Defined Networking in Data Center Networks 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Software defined networking (SDN) has re-defined the way data center networks are deployed and functioned. The ability to separate the control plane and data plane have led to the simpler design and easier management. In SDN, the data plane and control plane are separately managed, so building an additional wired network to connect the control plane and the data plane can lead to a high cabling complexity. This paper proposes an end-to-end end wireless control plane architecture for SDN-enabled data center networks. In the proposed architecture, the switches form clusters that are wirelessly connected to the controller via access points (APs) and relay nodes (RNs). The switches use the 2.4/5-GHz band to connect with the APs, whereas the APs and the RNs are connected to the controller using the 60-GHz band. We have presented an analytical model to derive achievable data rates in our wireless control plane. We have also proposed two algorithms that allow an optimal number of a cluster size of the switches to be connected with the Controller via minimum number to APs/RNs such that the control traffic demands of the switches is guaranteed in interference constrained environment. Through extensive simulations, the results of our proposed architecture show that the cabling complexity in the control plane is reduced to zero and additional switches may be easily added in SDN data center. Thus, a pure wireless solution for building a control plane in a data center network is feasible. Data center networks software-defined networks wireless control plane Electrical engineering. Electronics. Nuclear engineering Umair Mujtaba Qureshi verfasserin aut Yingying Cheng verfasserin aut Xiaohua Jia verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 58158-58167 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:58158-58167 https://doi.org/10.1109/ACCESS.2019.2914771 kostenfrei https://doaj.org/article/12236fd3a7a44821a05438237479a541 kostenfrei https://ieeexplore.ieee.org/document/8705348/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 58158-58167 |
spelling |
10.1109/ACCESS.2019.2914771 doi (DE-627)DOAJ007584172 (DE-599)DOAJ12236fd3a7a44821a05438237479a541 DE-627 ger DE-627 rakwb eng TK1-9971 Zuneera Umair verfasserin aut An Efficient Wireless Control Plane for Software Defined Networking in Data Center Networks 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Software defined networking (SDN) has re-defined the way data center networks are deployed and functioned. The ability to separate the control plane and data plane have led to the simpler design and easier management. In SDN, the data plane and control plane are separately managed, so building an additional wired network to connect the control plane and the data plane can lead to a high cabling complexity. This paper proposes an end-to-end end wireless control plane architecture for SDN-enabled data center networks. In the proposed architecture, the switches form clusters that are wirelessly connected to the controller via access points (APs) and relay nodes (RNs). The switches use the 2.4/5-GHz band to connect with the APs, whereas the APs and the RNs are connected to the controller using the 60-GHz band. We have presented an analytical model to derive achievable data rates in our wireless control plane. We have also proposed two algorithms that allow an optimal number of a cluster size of the switches to be connected with the Controller via minimum number to APs/RNs such that the control traffic demands of the switches is guaranteed in interference constrained environment. Through extensive simulations, the results of our proposed architecture show that the cabling complexity in the control plane is reduced to zero and additional switches may be easily added in SDN data center. Thus, a pure wireless solution for building a control plane in a data center network is feasible. Data center networks software-defined networks wireless control plane Electrical engineering. Electronics. Nuclear engineering Umair Mujtaba Qureshi verfasserin aut Yingying Cheng verfasserin aut Xiaohua Jia verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 58158-58167 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:58158-58167 https://doi.org/10.1109/ACCESS.2019.2914771 kostenfrei https://doaj.org/article/12236fd3a7a44821a05438237479a541 kostenfrei https://ieeexplore.ieee.org/document/8705348/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 58158-58167 |
allfields_unstemmed |
10.1109/ACCESS.2019.2914771 doi (DE-627)DOAJ007584172 (DE-599)DOAJ12236fd3a7a44821a05438237479a541 DE-627 ger DE-627 rakwb eng TK1-9971 Zuneera Umair verfasserin aut An Efficient Wireless Control Plane for Software Defined Networking in Data Center Networks 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Software defined networking (SDN) has re-defined the way data center networks are deployed and functioned. The ability to separate the control plane and data plane have led to the simpler design and easier management. In SDN, the data plane and control plane are separately managed, so building an additional wired network to connect the control plane and the data plane can lead to a high cabling complexity. This paper proposes an end-to-end end wireless control plane architecture for SDN-enabled data center networks. In the proposed architecture, the switches form clusters that are wirelessly connected to the controller via access points (APs) and relay nodes (RNs). The switches use the 2.4/5-GHz band to connect with the APs, whereas the APs and the RNs are connected to the controller using the 60-GHz band. We have presented an analytical model to derive achievable data rates in our wireless control plane. We have also proposed two algorithms that allow an optimal number of a cluster size of the switches to be connected with the Controller via minimum number to APs/RNs such that the control traffic demands of the switches is guaranteed in interference constrained environment. Through extensive simulations, the results of our proposed architecture show that the cabling complexity in the control plane is reduced to zero and additional switches may be easily added in SDN data center. Thus, a pure wireless solution for building a control plane in a data center network is feasible. Data center networks software-defined networks wireless control plane Electrical engineering. Electronics. Nuclear engineering Umair Mujtaba Qureshi verfasserin aut Yingying Cheng verfasserin aut Xiaohua Jia verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 58158-58167 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:58158-58167 https://doi.org/10.1109/ACCESS.2019.2914771 kostenfrei https://doaj.org/article/12236fd3a7a44821a05438237479a541 kostenfrei https://ieeexplore.ieee.org/document/8705348/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 58158-58167 |
allfieldsGer |
10.1109/ACCESS.2019.2914771 doi (DE-627)DOAJ007584172 (DE-599)DOAJ12236fd3a7a44821a05438237479a541 DE-627 ger DE-627 rakwb eng TK1-9971 Zuneera Umair verfasserin aut An Efficient Wireless Control Plane for Software Defined Networking in Data Center Networks 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Software defined networking (SDN) has re-defined the way data center networks are deployed and functioned. The ability to separate the control plane and data plane have led to the simpler design and easier management. In SDN, the data plane and control plane are separately managed, so building an additional wired network to connect the control plane and the data plane can lead to a high cabling complexity. This paper proposes an end-to-end end wireless control plane architecture for SDN-enabled data center networks. In the proposed architecture, the switches form clusters that are wirelessly connected to the controller via access points (APs) and relay nodes (RNs). The switches use the 2.4/5-GHz band to connect with the APs, whereas the APs and the RNs are connected to the controller using the 60-GHz band. We have presented an analytical model to derive achievable data rates in our wireless control plane. We have also proposed two algorithms that allow an optimal number of a cluster size of the switches to be connected with the Controller via minimum number to APs/RNs such that the control traffic demands of the switches is guaranteed in interference constrained environment. Through extensive simulations, the results of our proposed architecture show that the cabling complexity in the control plane is reduced to zero and additional switches may be easily added in SDN data center. Thus, a pure wireless solution for building a control plane in a data center network is feasible. Data center networks software-defined networks wireless control plane Electrical engineering. Electronics. Nuclear engineering Umair Mujtaba Qureshi verfasserin aut Yingying Cheng verfasserin aut Xiaohua Jia verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 58158-58167 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:58158-58167 https://doi.org/10.1109/ACCESS.2019.2914771 kostenfrei https://doaj.org/article/12236fd3a7a44821a05438237479a541 kostenfrei https://ieeexplore.ieee.org/document/8705348/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 58158-58167 |
allfieldsSound |
10.1109/ACCESS.2019.2914771 doi (DE-627)DOAJ007584172 (DE-599)DOAJ12236fd3a7a44821a05438237479a541 DE-627 ger DE-627 rakwb eng TK1-9971 Zuneera Umair verfasserin aut An Efficient Wireless Control Plane for Software Defined Networking in Data Center Networks 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Software defined networking (SDN) has re-defined the way data center networks are deployed and functioned. The ability to separate the control plane and data plane have led to the simpler design and easier management. In SDN, the data plane and control plane are separately managed, so building an additional wired network to connect the control plane and the data plane can lead to a high cabling complexity. This paper proposes an end-to-end end wireless control plane architecture for SDN-enabled data center networks. In the proposed architecture, the switches form clusters that are wirelessly connected to the controller via access points (APs) and relay nodes (RNs). The switches use the 2.4/5-GHz band to connect with the APs, whereas the APs and the RNs are connected to the controller using the 60-GHz band. We have presented an analytical model to derive achievable data rates in our wireless control plane. We have also proposed two algorithms that allow an optimal number of a cluster size of the switches to be connected with the Controller via minimum number to APs/RNs such that the control traffic demands of the switches is guaranteed in interference constrained environment. Through extensive simulations, the results of our proposed architecture show that the cabling complexity in the control plane is reduced to zero and additional switches may be easily added in SDN data center. Thus, a pure wireless solution for building a control plane in a data center network is feasible. Data center networks software-defined networks wireless control plane Electrical engineering. Electronics. Nuclear engineering Umair Mujtaba Qureshi verfasserin aut Yingying Cheng verfasserin aut Xiaohua Jia verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 58158-58167 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:58158-58167 https://doi.org/10.1109/ACCESS.2019.2914771 kostenfrei https://doaj.org/article/12236fd3a7a44821a05438237479a541 kostenfrei https://ieeexplore.ieee.org/document/8705348/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 58158-58167 |
language |
English |
source |
In IEEE Access 7(2019), Seite 58158-58167 volume:7 year:2019 pages:58158-58167 |
sourceStr |
In IEEE Access 7(2019), Seite 58158-58167 volume:7 year:2019 pages:58158-58167 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Data center networks software-defined networks wireless control plane Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Zuneera Umair @@aut@@ Umair Mujtaba Qureshi @@aut@@ Yingying Cheng @@aut@@ Xiaohua Jia @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ007584172 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007584172</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309234107.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2914771</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007584172</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ12236fd3a7a44821a05438237479a541</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zuneera Umair</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Efficient Wireless Control Plane for Software Defined Networking in Data Center Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Software defined networking (SDN) has re-defined the way data center networks are deployed and functioned. The ability to separate the control plane and data plane have led to the simpler design and easier management. In SDN, the data plane and control plane are separately managed, so building an additional wired network to connect the control plane and the data plane can lead to a high cabling complexity. This paper proposes an end-to-end end wireless control plane architecture for SDN-enabled data center networks. In the proposed architecture, the switches form clusters that are wirelessly connected to the controller via access points (APs) and relay nodes (RNs). The switches use the 2.4/5-GHz band to connect with the APs, whereas the APs and the RNs are connected to the controller using the 60-GHz band. We have presented an analytical model to derive achievable data rates in our wireless control plane. We have also proposed two algorithms that allow an optimal number of a cluster size of the switches to be connected with the Controller via minimum number to APs/RNs such that the control traffic demands of the switches is guaranteed in interference constrained environment. Through extensive simulations, the results of our proposed architecture show that the cabling complexity in the control plane is reduced to zero and additional switches may be easily added in SDN data center. Thus, a pure wireless solution for building a control plane in a data center network is feasible.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data center networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">software-defined networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wireless control plane</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Umair Mujtaba Qureshi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yingying Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaohua Jia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 58158-58167</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:58158-58167</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2914771</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/12236fd3a7a44821a05438237479a541</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8705348/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">58158-58167</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Zuneera Umair |
spellingShingle |
Zuneera Umair misc TK1-9971 misc Data center networks misc software-defined networks misc wireless control plane misc Electrical engineering. Electronics. Nuclear engineering An Efficient Wireless Control Plane for Software Defined Networking in Data Center Networks |
authorStr |
Zuneera Umair |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 An Efficient Wireless Control Plane for Software Defined Networking in Data Center Networks Data center networks software-defined networks wireless control plane |
topic |
misc TK1-9971 misc Data center networks misc software-defined networks misc wireless control plane misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Data center networks misc software-defined networks misc wireless control plane misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Data center networks misc software-defined networks misc wireless control plane misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
An Efficient Wireless Control Plane for Software Defined Networking in Data Center Networks |
ctrlnum |
(DE-627)DOAJ007584172 (DE-599)DOAJ12236fd3a7a44821a05438237479a541 |
title_full |
An Efficient Wireless Control Plane for Software Defined Networking in Data Center Networks |
author_sort |
Zuneera Umair |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
58158 |
author_browse |
Zuneera Umair Umair Mujtaba Qureshi Yingying Cheng Xiaohua Jia |
container_volume |
7 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Zuneera Umair |
doi_str_mv |
10.1109/ACCESS.2019.2914771 |
author2-role |
verfasserin |
title_sort |
efficient wireless control plane for software defined networking in data center networks |
callnumber |
TK1-9971 |
title_auth |
An Efficient Wireless Control Plane for Software Defined Networking in Data Center Networks |
abstract |
Software defined networking (SDN) has re-defined the way data center networks are deployed and functioned. The ability to separate the control plane and data plane have led to the simpler design and easier management. In SDN, the data plane and control plane are separately managed, so building an additional wired network to connect the control plane and the data plane can lead to a high cabling complexity. This paper proposes an end-to-end end wireless control plane architecture for SDN-enabled data center networks. In the proposed architecture, the switches form clusters that are wirelessly connected to the controller via access points (APs) and relay nodes (RNs). The switches use the 2.4/5-GHz band to connect with the APs, whereas the APs and the RNs are connected to the controller using the 60-GHz band. We have presented an analytical model to derive achievable data rates in our wireless control plane. We have also proposed two algorithms that allow an optimal number of a cluster size of the switches to be connected with the Controller via minimum number to APs/RNs such that the control traffic demands of the switches is guaranteed in interference constrained environment. Through extensive simulations, the results of our proposed architecture show that the cabling complexity in the control plane is reduced to zero and additional switches may be easily added in SDN data center. Thus, a pure wireless solution for building a control plane in a data center network is feasible. |
abstractGer |
Software defined networking (SDN) has re-defined the way data center networks are deployed and functioned. The ability to separate the control plane and data plane have led to the simpler design and easier management. In SDN, the data plane and control plane are separately managed, so building an additional wired network to connect the control plane and the data plane can lead to a high cabling complexity. This paper proposes an end-to-end end wireless control plane architecture for SDN-enabled data center networks. In the proposed architecture, the switches form clusters that are wirelessly connected to the controller via access points (APs) and relay nodes (RNs). The switches use the 2.4/5-GHz band to connect with the APs, whereas the APs and the RNs are connected to the controller using the 60-GHz band. We have presented an analytical model to derive achievable data rates in our wireless control plane. We have also proposed two algorithms that allow an optimal number of a cluster size of the switches to be connected with the Controller via minimum number to APs/RNs such that the control traffic demands of the switches is guaranteed in interference constrained environment. Through extensive simulations, the results of our proposed architecture show that the cabling complexity in the control plane is reduced to zero and additional switches may be easily added in SDN data center. Thus, a pure wireless solution for building a control plane in a data center network is feasible. |
abstract_unstemmed |
Software defined networking (SDN) has re-defined the way data center networks are deployed and functioned. The ability to separate the control plane and data plane have led to the simpler design and easier management. In SDN, the data plane and control plane are separately managed, so building an additional wired network to connect the control plane and the data plane can lead to a high cabling complexity. This paper proposes an end-to-end end wireless control plane architecture for SDN-enabled data center networks. In the proposed architecture, the switches form clusters that are wirelessly connected to the controller via access points (APs) and relay nodes (RNs). The switches use the 2.4/5-GHz band to connect with the APs, whereas the APs and the RNs are connected to the controller using the 60-GHz band. We have presented an analytical model to derive achievable data rates in our wireless control plane. We have also proposed two algorithms that allow an optimal number of a cluster size of the switches to be connected with the Controller via minimum number to APs/RNs such that the control traffic demands of the switches is guaranteed in interference constrained environment. Through extensive simulations, the results of our proposed architecture show that the cabling complexity in the control plane is reduced to zero and additional switches may be easily added in SDN data center. Thus, a pure wireless solution for building a control plane in a data center network is feasible. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
An Efficient Wireless Control Plane for Software Defined Networking in Data Center Networks |
url |
https://doi.org/10.1109/ACCESS.2019.2914771 https://doaj.org/article/12236fd3a7a44821a05438237479a541 https://ieeexplore.ieee.org/document/8705348/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Umair Mujtaba Qureshi Yingying Cheng Xiaohua Jia |
author2Str |
Umair Mujtaba Qureshi Yingying Cheng Xiaohua Jia |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2019.2914771 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T02:07:06.017Z |
_version_ |
1803612403552747520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007584172</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309234107.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2914771</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007584172</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ12236fd3a7a44821a05438237479a541</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zuneera Umair</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Efficient Wireless Control Plane for Software Defined Networking in Data Center Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Software defined networking (SDN) has re-defined the way data center networks are deployed and functioned. The ability to separate the control plane and data plane have led to the simpler design and easier management. In SDN, the data plane and control plane are separately managed, so building an additional wired network to connect the control plane and the data plane can lead to a high cabling complexity. This paper proposes an end-to-end end wireless control plane architecture for SDN-enabled data center networks. In the proposed architecture, the switches form clusters that are wirelessly connected to the controller via access points (APs) and relay nodes (RNs). The switches use the 2.4/5-GHz band to connect with the APs, whereas the APs and the RNs are connected to the controller using the 60-GHz band. We have presented an analytical model to derive achievable data rates in our wireless control plane. We have also proposed two algorithms that allow an optimal number of a cluster size of the switches to be connected with the Controller via minimum number to APs/RNs such that the control traffic demands of the switches is guaranteed in interference constrained environment. Through extensive simulations, the results of our proposed architecture show that the cabling complexity in the control plane is reduced to zero and additional switches may be easily added in SDN data center. Thus, a pure wireless solution for building a control plane in a data center network is feasible.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data center networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">software-defined networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wireless control plane</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Umair Mujtaba Qureshi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yingying Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaohua Jia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 58158-58167</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:58158-58167</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2914771</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/12236fd3a7a44821a05438237479a541</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8705348/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">58158-58167</subfield></datafield></record></collection>
|
score |
7.4023104 |