Assessing the acoustic behaviour of Anopheles gambiae (s.l.) dsxF mutants: implications for vector control
Abstract Background Release of gene-drive mutants to suppress Anopheles mosquito reproduction is a promising method of malaria control. However, many scientific, regulatory and ethical questions remain before transgenic mosquitoes can be utilised in the field. At a behavioural level, gene-drive carr...
Ausführliche Beschreibung
Autor*in: |
Matthew P. Su [verfasserIn] Marcos Georgiades [verfasserIn] Judit Bagi [verfasserIn] Kyros Kyrou [verfasserIn] Andrea Crisanti [verfasserIn] Joerg T. Albert [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Parasites & Vectors - BMC, 2008, 13(2020), 1, Seite 9 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2020 ; number:1 ; pages:9 |
Links: |
---|
DOI / URN: |
10.1186/s13071-020-04382-x |
---|
Katalog-ID: |
DOAJ007716265 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ007716265 | ||
003 | DE-627 | ||
005 | 20230501203928.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13071-020-04382-x |2 doi | |
035 | |a (DE-627)DOAJ007716265 | ||
035 | |a (DE-599)DOAJa7f30ba82083428480105b014c8883dc | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC109-216 | |
100 | 0 | |a Matthew P. Su |e verfasserin |4 aut | |
245 | 1 | 0 | |a Assessing the acoustic behaviour of Anopheles gambiae (s.l.) dsxF mutants: implications for vector control |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Background Release of gene-drive mutants to suppress Anopheles mosquito reproduction is a promising method of malaria control. However, many scientific, regulatory and ethical questions remain before transgenic mosquitoes can be utilised in the field. At a behavioural level, gene-drive carrying mutants should be at least as sexually attractive as the wildtype populations they compete against, with a key element of Anopheles copulation being acoustic courtship. We analysed sound emissions and acoustic preference in a doublesex mutant previously used to collapse Anopheles gambiae (s.l.) cages. Methods Anopheles rely on flight tones produced by the beating of their wings for acoustic mating communication. We assessed the impact of disrupting a female-specific isoform of the doublesex gene (dsxF) on the wing beat frequency (WBF; measured as flight tone) of males (XY) and females (XX) in homozygous dsxF − mutants (dsxF −/− ), heterozygous dsxF − carriers (dsxF +/−) and G3 dsxF + controls (dsxF +/+). To exclude non-genetic influences, we controlled for temperature and wing length. We used a phonotaxis assay to test the acoustic preferences of mutant and control mosquitoes. Results A previous study showed an altered phenotype only for dsxF −/− females, who appear intersex, suggesting that the female-specific dsxF allele is haplosufficient. We identified significant, dose-dependent increases in the WBF of both dsxF −/− and dsxF +/− females compared to dsxF +/+ females. All female WBFs remained significantly lower than male equivalents, though. Males showed stronger phonotactic responses to the WBFs of control dsxF +/+ females than to those of dsxF +/− and dsxF −/− females. We found no evidence of phonotaxis in any female genotype. No male genotypes displayed any deviations from controls. Conclusions A prerequisite for anopheline copulation is the phonotactic attraction of males towards female flight tones within mating swarms. Reductions in mutant acoustic attractiveness diminish their mating efficiency and thus the efficacy of population control efforts. Caged population assessments may not successfully reproduce natural mating scenarios. We propose to amend existing testing protocols to better reflect competition between mutants and target populations. Our findings confirm that dsxF disruption has no effect on males; for some phenotypic traits, such as female WBFs, the effects of dsxF appear dose-dependent rather than haplosufficient. | ||
650 | 4 | |a Anopheles gambiae (s.l.) | |
650 | 4 | |a Anopheles coluzzii | |
650 | 4 | |a Doublesex | |
650 | 4 | |a Gene drive | |
650 | 4 | |a Wing beat frequency | |
650 | 4 | |a Flight tone | |
653 | 0 | |a Infectious and parasitic diseases | |
700 | 0 | |a Marcos Georgiades |e verfasserin |4 aut | |
700 | 0 | |a Judit Bagi |e verfasserin |4 aut | |
700 | 0 | |a Kyros Kyrou |e verfasserin |4 aut | |
700 | 0 | |a Andrea Crisanti |e verfasserin |4 aut | |
700 | 0 | |a Joerg T. Albert |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Parasites & Vectors |d BMC, 2008 |g 13(2020), 1, Seite 9 |w (DE-627)558690076 |w (DE-600)2409480-8 |x 17563305 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2020 |g number:1 |g pages:9 |
856 | 4 | 0 | |u https://doi.org/10.1186/s13071-020-04382-x |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a7f30ba82083428480105b014c8883dc |z kostenfrei |
856 | 4 | 0 | |u http://link.springer.com/article/10.1186/s13071-020-04382-x |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1756-3305 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2020 |e 1 |h 9 |
author_variant |
m p s mps m g mg j b jb k k kk a c ac j t a jta |
---|---|
matchkey_str |
article:17563305:2020----::sesntecutceaiuoaohlsabasdxmtnsmlc |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
RC |
publishDate |
2020 |
allfields |
10.1186/s13071-020-04382-x doi (DE-627)DOAJ007716265 (DE-599)DOAJa7f30ba82083428480105b014c8883dc DE-627 ger DE-627 rakwb eng RC109-216 Matthew P. Su verfasserin aut Assessing the acoustic behaviour of Anopheles gambiae (s.l.) dsxF mutants: implications for vector control 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Release of gene-drive mutants to suppress Anopheles mosquito reproduction is a promising method of malaria control. However, many scientific, regulatory and ethical questions remain before transgenic mosquitoes can be utilised in the field. At a behavioural level, gene-drive carrying mutants should be at least as sexually attractive as the wildtype populations they compete against, with a key element of Anopheles copulation being acoustic courtship. We analysed sound emissions and acoustic preference in a doublesex mutant previously used to collapse Anopheles gambiae (s.l.) cages. Methods Anopheles rely on flight tones produced by the beating of their wings for acoustic mating communication. We assessed the impact of disrupting a female-specific isoform of the doublesex gene (dsxF) on the wing beat frequency (WBF; measured as flight tone) of males (XY) and females (XX) in homozygous dsxF − mutants (dsxF −/− ), heterozygous dsxF − carriers (dsxF +/−) and G3 dsxF + controls (dsxF +/+). To exclude non-genetic influences, we controlled for temperature and wing length. We used a phonotaxis assay to test the acoustic preferences of mutant and control mosquitoes. Results A previous study showed an altered phenotype only for dsxF −/− females, who appear intersex, suggesting that the female-specific dsxF allele is haplosufficient. We identified significant, dose-dependent increases in the WBF of both dsxF −/− and dsxF +/− females compared to dsxF +/+ females. All female WBFs remained significantly lower than male equivalents, though. Males showed stronger phonotactic responses to the WBFs of control dsxF +/+ females than to those of dsxF +/− and dsxF −/− females. We found no evidence of phonotaxis in any female genotype. No male genotypes displayed any deviations from controls. Conclusions A prerequisite for anopheline copulation is the phonotactic attraction of males towards female flight tones within mating swarms. Reductions in mutant acoustic attractiveness diminish their mating efficiency and thus the efficacy of population control efforts. Caged population assessments may not successfully reproduce natural mating scenarios. We propose to amend existing testing protocols to better reflect competition between mutants and target populations. Our findings confirm that dsxF disruption has no effect on males; for some phenotypic traits, such as female WBFs, the effects of dsxF appear dose-dependent rather than haplosufficient. Anopheles gambiae (s.l.) Anopheles coluzzii Doublesex Gene drive Wing beat frequency Flight tone Infectious and parasitic diseases Marcos Georgiades verfasserin aut Judit Bagi verfasserin aut Kyros Kyrou verfasserin aut Andrea Crisanti verfasserin aut Joerg T. Albert verfasserin aut In Parasites & Vectors BMC, 2008 13(2020), 1, Seite 9 (DE-627)558690076 (DE-600)2409480-8 17563305 nnns volume:13 year:2020 number:1 pages:9 https://doi.org/10.1186/s13071-020-04382-x kostenfrei https://doaj.org/article/a7f30ba82083428480105b014c8883dc kostenfrei http://link.springer.com/article/10.1186/s13071-020-04382-x kostenfrei https://doaj.org/toc/1756-3305 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 1 9 |
spelling |
10.1186/s13071-020-04382-x doi (DE-627)DOAJ007716265 (DE-599)DOAJa7f30ba82083428480105b014c8883dc DE-627 ger DE-627 rakwb eng RC109-216 Matthew P. Su verfasserin aut Assessing the acoustic behaviour of Anopheles gambiae (s.l.) dsxF mutants: implications for vector control 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Release of gene-drive mutants to suppress Anopheles mosquito reproduction is a promising method of malaria control. However, many scientific, regulatory and ethical questions remain before transgenic mosquitoes can be utilised in the field. At a behavioural level, gene-drive carrying mutants should be at least as sexually attractive as the wildtype populations they compete against, with a key element of Anopheles copulation being acoustic courtship. We analysed sound emissions and acoustic preference in a doublesex mutant previously used to collapse Anopheles gambiae (s.l.) cages. Methods Anopheles rely on flight tones produced by the beating of their wings for acoustic mating communication. We assessed the impact of disrupting a female-specific isoform of the doublesex gene (dsxF) on the wing beat frequency (WBF; measured as flight tone) of males (XY) and females (XX) in homozygous dsxF − mutants (dsxF −/− ), heterozygous dsxF − carriers (dsxF +/−) and G3 dsxF + controls (dsxF +/+). To exclude non-genetic influences, we controlled for temperature and wing length. We used a phonotaxis assay to test the acoustic preferences of mutant and control mosquitoes. Results A previous study showed an altered phenotype only for dsxF −/− females, who appear intersex, suggesting that the female-specific dsxF allele is haplosufficient. We identified significant, dose-dependent increases in the WBF of both dsxF −/− and dsxF +/− females compared to dsxF +/+ females. All female WBFs remained significantly lower than male equivalents, though. Males showed stronger phonotactic responses to the WBFs of control dsxF +/+ females than to those of dsxF +/− and dsxF −/− females. We found no evidence of phonotaxis in any female genotype. No male genotypes displayed any deviations from controls. Conclusions A prerequisite for anopheline copulation is the phonotactic attraction of males towards female flight tones within mating swarms. Reductions in mutant acoustic attractiveness diminish their mating efficiency and thus the efficacy of population control efforts. Caged population assessments may not successfully reproduce natural mating scenarios. We propose to amend existing testing protocols to better reflect competition between mutants and target populations. Our findings confirm that dsxF disruption has no effect on males; for some phenotypic traits, such as female WBFs, the effects of dsxF appear dose-dependent rather than haplosufficient. Anopheles gambiae (s.l.) Anopheles coluzzii Doublesex Gene drive Wing beat frequency Flight tone Infectious and parasitic diseases Marcos Georgiades verfasserin aut Judit Bagi verfasserin aut Kyros Kyrou verfasserin aut Andrea Crisanti verfasserin aut Joerg T. Albert verfasserin aut In Parasites & Vectors BMC, 2008 13(2020), 1, Seite 9 (DE-627)558690076 (DE-600)2409480-8 17563305 nnns volume:13 year:2020 number:1 pages:9 https://doi.org/10.1186/s13071-020-04382-x kostenfrei https://doaj.org/article/a7f30ba82083428480105b014c8883dc kostenfrei http://link.springer.com/article/10.1186/s13071-020-04382-x kostenfrei https://doaj.org/toc/1756-3305 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 1 9 |
allfields_unstemmed |
10.1186/s13071-020-04382-x doi (DE-627)DOAJ007716265 (DE-599)DOAJa7f30ba82083428480105b014c8883dc DE-627 ger DE-627 rakwb eng RC109-216 Matthew P. Su verfasserin aut Assessing the acoustic behaviour of Anopheles gambiae (s.l.) dsxF mutants: implications for vector control 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Release of gene-drive mutants to suppress Anopheles mosquito reproduction is a promising method of malaria control. However, many scientific, regulatory and ethical questions remain before transgenic mosquitoes can be utilised in the field. At a behavioural level, gene-drive carrying mutants should be at least as sexually attractive as the wildtype populations they compete against, with a key element of Anopheles copulation being acoustic courtship. We analysed sound emissions and acoustic preference in a doublesex mutant previously used to collapse Anopheles gambiae (s.l.) cages. Methods Anopheles rely on flight tones produced by the beating of their wings for acoustic mating communication. We assessed the impact of disrupting a female-specific isoform of the doublesex gene (dsxF) on the wing beat frequency (WBF; measured as flight tone) of males (XY) and females (XX) in homozygous dsxF − mutants (dsxF −/− ), heterozygous dsxF − carriers (dsxF +/−) and G3 dsxF + controls (dsxF +/+). To exclude non-genetic influences, we controlled for temperature and wing length. We used a phonotaxis assay to test the acoustic preferences of mutant and control mosquitoes. Results A previous study showed an altered phenotype only for dsxF −/− females, who appear intersex, suggesting that the female-specific dsxF allele is haplosufficient. We identified significant, dose-dependent increases in the WBF of both dsxF −/− and dsxF +/− females compared to dsxF +/+ females. All female WBFs remained significantly lower than male equivalents, though. Males showed stronger phonotactic responses to the WBFs of control dsxF +/+ females than to those of dsxF +/− and dsxF −/− females. We found no evidence of phonotaxis in any female genotype. No male genotypes displayed any deviations from controls. Conclusions A prerequisite for anopheline copulation is the phonotactic attraction of males towards female flight tones within mating swarms. Reductions in mutant acoustic attractiveness diminish their mating efficiency and thus the efficacy of population control efforts. Caged population assessments may not successfully reproduce natural mating scenarios. We propose to amend existing testing protocols to better reflect competition between mutants and target populations. Our findings confirm that dsxF disruption has no effect on males; for some phenotypic traits, such as female WBFs, the effects of dsxF appear dose-dependent rather than haplosufficient. Anopheles gambiae (s.l.) Anopheles coluzzii Doublesex Gene drive Wing beat frequency Flight tone Infectious and parasitic diseases Marcos Georgiades verfasserin aut Judit Bagi verfasserin aut Kyros Kyrou verfasserin aut Andrea Crisanti verfasserin aut Joerg T. Albert verfasserin aut In Parasites & Vectors BMC, 2008 13(2020), 1, Seite 9 (DE-627)558690076 (DE-600)2409480-8 17563305 nnns volume:13 year:2020 number:1 pages:9 https://doi.org/10.1186/s13071-020-04382-x kostenfrei https://doaj.org/article/a7f30ba82083428480105b014c8883dc kostenfrei http://link.springer.com/article/10.1186/s13071-020-04382-x kostenfrei https://doaj.org/toc/1756-3305 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 1 9 |
allfieldsGer |
10.1186/s13071-020-04382-x doi (DE-627)DOAJ007716265 (DE-599)DOAJa7f30ba82083428480105b014c8883dc DE-627 ger DE-627 rakwb eng RC109-216 Matthew P. Su verfasserin aut Assessing the acoustic behaviour of Anopheles gambiae (s.l.) dsxF mutants: implications for vector control 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Release of gene-drive mutants to suppress Anopheles mosquito reproduction is a promising method of malaria control. However, many scientific, regulatory and ethical questions remain before transgenic mosquitoes can be utilised in the field. At a behavioural level, gene-drive carrying mutants should be at least as sexually attractive as the wildtype populations they compete against, with a key element of Anopheles copulation being acoustic courtship. We analysed sound emissions and acoustic preference in a doublesex mutant previously used to collapse Anopheles gambiae (s.l.) cages. Methods Anopheles rely on flight tones produced by the beating of their wings for acoustic mating communication. We assessed the impact of disrupting a female-specific isoform of the doublesex gene (dsxF) on the wing beat frequency (WBF; measured as flight tone) of males (XY) and females (XX) in homozygous dsxF − mutants (dsxF −/− ), heterozygous dsxF − carriers (dsxF +/−) and G3 dsxF + controls (dsxF +/+). To exclude non-genetic influences, we controlled for temperature and wing length. We used a phonotaxis assay to test the acoustic preferences of mutant and control mosquitoes. Results A previous study showed an altered phenotype only for dsxF −/− females, who appear intersex, suggesting that the female-specific dsxF allele is haplosufficient. We identified significant, dose-dependent increases in the WBF of both dsxF −/− and dsxF +/− females compared to dsxF +/+ females. All female WBFs remained significantly lower than male equivalents, though. Males showed stronger phonotactic responses to the WBFs of control dsxF +/+ females than to those of dsxF +/− and dsxF −/− females. We found no evidence of phonotaxis in any female genotype. No male genotypes displayed any deviations from controls. Conclusions A prerequisite for anopheline copulation is the phonotactic attraction of males towards female flight tones within mating swarms. Reductions in mutant acoustic attractiveness diminish their mating efficiency and thus the efficacy of population control efforts. Caged population assessments may not successfully reproduce natural mating scenarios. We propose to amend existing testing protocols to better reflect competition between mutants and target populations. Our findings confirm that dsxF disruption has no effect on males; for some phenotypic traits, such as female WBFs, the effects of dsxF appear dose-dependent rather than haplosufficient. Anopheles gambiae (s.l.) Anopheles coluzzii Doublesex Gene drive Wing beat frequency Flight tone Infectious and parasitic diseases Marcos Georgiades verfasserin aut Judit Bagi verfasserin aut Kyros Kyrou verfasserin aut Andrea Crisanti verfasserin aut Joerg T. Albert verfasserin aut In Parasites & Vectors BMC, 2008 13(2020), 1, Seite 9 (DE-627)558690076 (DE-600)2409480-8 17563305 nnns volume:13 year:2020 number:1 pages:9 https://doi.org/10.1186/s13071-020-04382-x kostenfrei https://doaj.org/article/a7f30ba82083428480105b014c8883dc kostenfrei http://link.springer.com/article/10.1186/s13071-020-04382-x kostenfrei https://doaj.org/toc/1756-3305 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 1 9 |
allfieldsSound |
10.1186/s13071-020-04382-x doi (DE-627)DOAJ007716265 (DE-599)DOAJa7f30ba82083428480105b014c8883dc DE-627 ger DE-627 rakwb eng RC109-216 Matthew P. Su verfasserin aut Assessing the acoustic behaviour of Anopheles gambiae (s.l.) dsxF mutants: implications for vector control 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Release of gene-drive mutants to suppress Anopheles mosquito reproduction is a promising method of malaria control. However, many scientific, regulatory and ethical questions remain before transgenic mosquitoes can be utilised in the field. At a behavioural level, gene-drive carrying mutants should be at least as sexually attractive as the wildtype populations they compete against, with a key element of Anopheles copulation being acoustic courtship. We analysed sound emissions and acoustic preference in a doublesex mutant previously used to collapse Anopheles gambiae (s.l.) cages. Methods Anopheles rely on flight tones produced by the beating of their wings for acoustic mating communication. We assessed the impact of disrupting a female-specific isoform of the doublesex gene (dsxF) on the wing beat frequency (WBF; measured as flight tone) of males (XY) and females (XX) in homozygous dsxF − mutants (dsxF −/− ), heterozygous dsxF − carriers (dsxF +/−) and G3 dsxF + controls (dsxF +/+). To exclude non-genetic influences, we controlled for temperature and wing length. We used a phonotaxis assay to test the acoustic preferences of mutant and control mosquitoes. Results A previous study showed an altered phenotype only for dsxF −/− females, who appear intersex, suggesting that the female-specific dsxF allele is haplosufficient. We identified significant, dose-dependent increases in the WBF of both dsxF −/− and dsxF +/− females compared to dsxF +/+ females. All female WBFs remained significantly lower than male equivalents, though. Males showed stronger phonotactic responses to the WBFs of control dsxF +/+ females than to those of dsxF +/− and dsxF −/− females. We found no evidence of phonotaxis in any female genotype. No male genotypes displayed any deviations from controls. Conclusions A prerequisite for anopheline copulation is the phonotactic attraction of males towards female flight tones within mating swarms. Reductions in mutant acoustic attractiveness diminish their mating efficiency and thus the efficacy of population control efforts. Caged population assessments may not successfully reproduce natural mating scenarios. We propose to amend existing testing protocols to better reflect competition between mutants and target populations. Our findings confirm that dsxF disruption has no effect on males; for some phenotypic traits, such as female WBFs, the effects of dsxF appear dose-dependent rather than haplosufficient. Anopheles gambiae (s.l.) Anopheles coluzzii Doublesex Gene drive Wing beat frequency Flight tone Infectious and parasitic diseases Marcos Georgiades verfasserin aut Judit Bagi verfasserin aut Kyros Kyrou verfasserin aut Andrea Crisanti verfasserin aut Joerg T. Albert verfasserin aut In Parasites & Vectors BMC, 2008 13(2020), 1, Seite 9 (DE-627)558690076 (DE-600)2409480-8 17563305 nnns volume:13 year:2020 number:1 pages:9 https://doi.org/10.1186/s13071-020-04382-x kostenfrei https://doaj.org/article/a7f30ba82083428480105b014c8883dc kostenfrei http://link.springer.com/article/10.1186/s13071-020-04382-x kostenfrei https://doaj.org/toc/1756-3305 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 1 9 |
language |
English |
source |
In Parasites & Vectors 13(2020), 1, Seite 9 volume:13 year:2020 number:1 pages:9 |
sourceStr |
In Parasites & Vectors 13(2020), 1, Seite 9 volume:13 year:2020 number:1 pages:9 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Anopheles gambiae (s.l.) Anopheles coluzzii Doublesex Gene drive Wing beat frequency Flight tone Infectious and parasitic diseases |
isfreeaccess_bool |
true |
container_title |
Parasites & Vectors |
authorswithroles_txt_mv |
Matthew P. Su @@aut@@ Marcos Georgiades @@aut@@ Judit Bagi @@aut@@ Kyros Kyrou @@aut@@ Andrea Crisanti @@aut@@ Joerg T. Albert @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
558690076 |
id |
DOAJ007716265 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007716265</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501203928.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13071-020-04382-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007716265</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa7f30ba82083428480105b014c8883dc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC109-216</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Matthew P. Su</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessing the acoustic behaviour of Anopheles gambiae (s.l.) dsxF mutants: implications for vector control</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Release of gene-drive mutants to suppress Anopheles mosquito reproduction is a promising method of malaria control. However, many scientific, regulatory and ethical questions remain before transgenic mosquitoes can be utilised in the field. At a behavioural level, gene-drive carrying mutants should be at least as sexually attractive as the wildtype populations they compete against, with a key element of Anopheles copulation being acoustic courtship. We analysed sound emissions and acoustic preference in a doublesex mutant previously used to collapse Anopheles gambiae (s.l.) cages. Methods Anopheles rely on flight tones produced by the beating of their wings for acoustic mating communication. We assessed the impact of disrupting a female-specific isoform of the doublesex gene (dsxF) on the wing beat frequency (WBF; measured as flight tone) of males (XY) and females (XX) in homozygous dsxF − mutants (dsxF −/− ), heterozygous dsxF − carriers (dsxF +/−) and G3 dsxF + controls (dsxF +/+). To exclude non-genetic influences, we controlled for temperature and wing length. We used a phonotaxis assay to test the acoustic preferences of mutant and control mosquitoes. Results A previous study showed an altered phenotype only for dsxF −/− females, who appear intersex, suggesting that the female-specific dsxF allele is haplosufficient. We identified significant, dose-dependent increases in the WBF of both dsxF −/− and dsxF +/− females compared to dsxF +/+ females. All female WBFs remained significantly lower than male equivalents, though. Males showed stronger phonotactic responses to the WBFs of control dsxF +/+ females than to those of dsxF +/− and dsxF −/− females. We found no evidence of phonotaxis in any female genotype. No male genotypes displayed any deviations from controls. Conclusions A prerequisite for anopheline copulation is the phonotactic attraction of males towards female flight tones within mating swarms. Reductions in mutant acoustic attractiveness diminish their mating efficiency and thus the efficacy of population control efforts. Caged population assessments may not successfully reproduce natural mating scenarios. We propose to amend existing testing protocols to better reflect competition between mutants and target populations. Our findings confirm that dsxF disruption has no effect on males; for some phenotypic traits, such as female WBFs, the effects of dsxF appear dose-dependent rather than haplosufficient.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anopheles gambiae (s.l.)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anopheles coluzzii</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Doublesex</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gene drive</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wing beat frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flight tone</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Infectious and parasitic diseases</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marcos Georgiades</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Judit Bagi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kyros Kyrou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea Crisanti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Joerg T. Albert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Parasites & Vectors</subfield><subfield code="d">BMC, 2008</subfield><subfield code="g">13(2020), 1, Seite 9</subfield><subfield code="w">(DE-627)558690076</subfield><subfield code="w">(DE-600)2409480-8</subfield><subfield code="x">17563305</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13071-020-04382-x</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a7f30ba82083428480105b014c8883dc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s13071-020-04382-x</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1756-3305</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="h">9</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Matthew P. Su |
spellingShingle |
Matthew P. Su misc RC109-216 misc Anopheles gambiae (s.l.) misc Anopheles coluzzii misc Doublesex misc Gene drive misc Wing beat frequency misc Flight tone misc Infectious and parasitic diseases Assessing the acoustic behaviour of Anopheles gambiae (s.l.) dsxF mutants: implications for vector control |
authorStr |
Matthew P. Su |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)558690076 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC109-216 |
illustrated |
Not Illustrated |
issn |
17563305 |
topic_title |
RC109-216 Assessing the acoustic behaviour of Anopheles gambiae (s.l.) dsxF mutants: implications for vector control Anopheles gambiae (s.l.) Anopheles coluzzii Doublesex Gene drive Wing beat frequency Flight tone |
topic |
misc RC109-216 misc Anopheles gambiae (s.l.) misc Anopheles coluzzii misc Doublesex misc Gene drive misc Wing beat frequency misc Flight tone misc Infectious and parasitic diseases |
topic_unstemmed |
misc RC109-216 misc Anopheles gambiae (s.l.) misc Anopheles coluzzii misc Doublesex misc Gene drive misc Wing beat frequency misc Flight tone misc Infectious and parasitic diseases |
topic_browse |
misc RC109-216 misc Anopheles gambiae (s.l.) misc Anopheles coluzzii misc Doublesex misc Gene drive misc Wing beat frequency misc Flight tone misc Infectious and parasitic diseases |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Parasites & Vectors |
hierarchy_parent_id |
558690076 |
hierarchy_top_title |
Parasites & Vectors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)558690076 (DE-600)2409480-8 |
title |
Assessing the acoustic behaviour of Anopheles gambiae (s.l.) dsxF mutants: implications for vector control |
ctrlnum |
(DE-627)DOAJ007716265 (DE-599)DOAJa7f30ba82083428480105b014c8883dc |
title_full |
Assessing the acoustic behaviour of Anopheles gambiae (s.l.) dsxF mutants: implications for vector control |
author_sort |
Matthew P. Su |
journal |
Parasites & Vectors |
journalStr |
Parasites & Vectors |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
9 |
author_browse |
Matthew P. Su Marcos Georgiades Judit Bagi Kyros Kyrou Andrea Crisanti Joerg T. Albert |
container_volume |
13 |
class |
RC109-216 |
format_se |
Elektronische Aufsätze |
author-letter |
Matthew P. Su |
doi_str_mv |
10.1186/s13071-020-04382-x |
author2-role |
verfasserin |
title_sort |
assessing the acoustic behaviour of anopheles gambiae (s.l.) dsxf mutants: implications for vector control |
callnumber |
RC109-216 |
title_auth |
Assessing the acoustic behaviour of Anopheles gambiae (s.l.) dsxF mutants: implications for vector control |
abstract |
Abstract Background Release of gene-drive mutants to suppress Anopheles mosquito reproduction is a promising method of malaria control. However, many scientific, regulatory and ethical questions remain before transgenic mosquitoes can be utilised in the field. At a behavioural level, gene-drive carrying mutants should be at least as sexually attractive as the wildtype populations they compete against, with a key element of Anopheles copulation being acoustic courtship. We analysed sound emissions and acoustic preference in a doublesex mutant previously used to collapse Anopheles gambiae (s.l.) cages. Methods Anopheles rely on flight tones produced by the beating of their wings for acoustic mating communication. We assessed the impact of disrupting a female-specific isoform of the doublesex gene (dsxF) on the wing beat frequency (WBF; measured as flight tone) of males (XY) and females (XX) in homozygous dsxF − mutants (dsxF −/− ), heterozygous dsxF − carriers (dsxF +/−) and G3 dsxF + controls (dsxF +/+). To exclude non-genetic influences, we controlled for temperature and wing length. We used a phonotaxis assay to test the acoustic preferences of mutant and control mosquitoes. Results A previous study showed an altered phenotype only for dsxF −/− females, who appear intersex, suggesting that the female-specific dsxF allele is haplosufficient. We identified significant, dose-dependent increases in the WBF of both dsxF −/− and dsxF +/− females compared to dsxF +/+ females. All female WBFs remained significantly lower than male equivalents, though. Males showed stronger phonotactic responses to the WBFs of control dsxF +/+ females than to those of dsxF +/− and dsxF −/− females. We found no evidence of phonotaxis in any female genotype. No male genotypes displayed any deviations from controls. Conclusions A prerequisite for anopheline copulation is the phonotactic attraction of males towards female flight tones within mating swarms. Reductions in mutant acoustic attractiveness diminish their mating efficiency and thus the efficacy of population control efforts. Caged population assessments may not successfully reproduce natural mating scenarios. We propose to amend existing testing protocols to better reflect competition between mutants and target populations. Our findings confirm that dsxF disruption has no effect on males; for some phenotypic traits, such as female WBFs, the effects of dsxF appear dose-dependent rather than haplosufficient. |
abstractGer |
Abstract Background Release of gene-drive mutants to suppress Anopheles mosquito reproduction is a promising method of malaria control. However, many scientific, regulatory and ethical questions remain before transgenic mosquitoes can be utilised in the field. At a behavioural level, gene-drive carrying mutants should be at least as sexually attractive as the wildtype populations they compete against, with a key element of Anopheles copulation being acoustic courtship. We analysed sound emissions and acoustic preference in a doublesex mutant previously used to collapse Anopheles gambiae (s.l.) cages. Methods Anopheles rely on flight tones produced by the beating of their wings for acoustic mating communication. We assessed the impact of disrupting a female-specific isoform of the doublesex gene (dsxF) on the wing beat frequency (WBF; measured as flight tone) of males (XY) and females (XX) in homozygous dsxF − mutants (dsxF −/− ), heterozygous dsxF − carriers (dsxF +/−) and G3 dsxF + controls (dsxF +/+). To exclude non-genetic influences, we controlled for temperature and wing length. We used a phonotaxis assay to test the acoustic preferences of mutant and control mosquitoes. Results A previous study showed an altered phenotype only for dsxF −/− females, who appear intersex, suggesting that the female-specific dsxF allele is haplosufficient. We identified significant, dose-dependent increases in the WBF of both dsxF −/− and dsxF +/− females compared to dsxF +/+ females. All female WBFs remained significantly lower than male equivalents, though. Males showed stronger phonotactic responses to the WBFs of control dsxF +/+ females than to those of dsxF +/− and dsxF −/− females. We found no evidence of phonotaxis in any female genotype. No male genotypes displayed any deviations from controls. Conclusions A prerequisite for anopheline copulation is the phonotactic attraction of males towards female flight tones within mating swarms. Reductions in mutant acoustic attractiveness diminish their mating efficiency and thus the efficacy of population control efforts. Caged population assessments may not successfully reproduce natural mating scenarios. We propose to amend existing testing protocols to better reflect competition between mutants and target populations. Our findings confirm that dsxF disruption has no effect on males; for some phenotypic traits, such as female WBFs, the effects of dsxF appear dose-dependent rather than haplosufficient. |
abstract_unstemmed |
Abstract Background Release of gene-drive mutants to suppress Anopheles mosquito reproduction is a promising method of malaria control. However, many scientific, regulatory and ethical questions remain before transgenic mosquitoes can be utilised in the field. At a behavioural level, gene-drive carrying mutants should be at least as sexually attractive as the wildtype populations they compete against, with a key element of Anopheles copulation being acoustic courtship. We analysed sound emissions and acoustic preference in a doublesex mutant previously used to collapse Anopheles gambiae (s.l.) cages. Methods Anopheles rely on flight tones produced by the beating of their wings for acoustic mating communication. We assessed the impact of disrupting a female-specific isoform of the doublesex gene (dsxF) on the wing beat frequency (WBF; measured as flight tone) of males (XY) and females (XX) in homozygous dsxF − mutants (dsxF −/− ), heterozygous dsxF − carriers (dsxF +/−) and G3 dsxF + controls (dsxF +/+). To exclude non-genetic influences, we controlled for temperature and wing length. We used a phonotaxis assay to test the acoustic preferences of mutant and control mosquitoes. Results A previous study showed an altered phenotype only for dsxF −/− females, who appear intersex, suggesting that the female-specific dsxF allele is haplosufficient. We identified significant, dose-dependent increases in the WBF of both dsxF −/− and dsxF +/− females compared to dsxF +/+ females. All female WBFs remained significantly lower than male equivalents, though. Males showed stronger phonotactic responses to the WBFs of control dsxF +/+ females than to those of dsxF +/− and dsxF −/− females. We found no evidence of phonotaxis in any female genotype. No male genotypes displayed any deviations from controls. Conclusions A prerequisite for anopheline copulation is the phonotactic attraction of males towards female flight tones within mating swarms. Reductions in mutant acoustic attractiveness diminish their mating efficiency and thus the efficacy of population control efforts. Caged population assessments may not successfully reproduce natural mating scenarios. We propose to amend existing testing protocols to better reflect competition between mutants and target populations. Our findings confirm that dsxF disruption has no effect on males; for some phenotypic traits, such as female WBFs, the effects of dsxF appear dose-dependent rather than haplosufficient. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Assessing the acoustic behaviour of Anopheles gambiae (s.l.) dsxF mutants: implications for vector control |
url |
https://doi.org/10.1186/s13071-020-04382-x https://doaj.org/article/a7f30ba82083428480105b014c8883dc http://link.springer.com/article/10.1186/s13071-020-04382-x https://doaj.org/toc/1756-3305 |
remote_bool |
true |
author2 |
Marcos Georgiades Judit Bagi Kyros Kyrou Andrea Crisanti Joerg T. Albert |
author2Str |
Marcos Georgiades Judit Bagi Kyros Kyrou Andrea Crisanti Joerg T. Albert |
ppnlink |
558690076 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13071-020-04382-x |
callnumber-a |
RC109-216 |
up_date |
2024-07-03T13:41:35.823Z |
_version_ |
1803565500546940928 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007716265</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501203928.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13071-020-04382-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007716265</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa7f30ba82083428480105b014c8883dc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC109-216</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Matthew P. Su</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessing the acoustic behaviour of Anopheles gambiae (s.l.) dsxF mutants: implications for vector control</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Release of gene-drive mutants to suppress Anopheles mosquito reproduction is a promising method of malaria control. However, many scientific, regulatory and ethical questions remain before transgenic mosquitoes can be utilised in the field. At a behavioural level, gene-drive carrying mutants should be at least as sexually attractive as the wildtype populations they compete against, with a key element of Anopheles copulation being acoustic courtship. We analysed sound emissions and acoustic preference in a doublesex mutant previously used to collapse Anopheles gambiae (s.l.) cages. Methods Anopheles rely on flight tones produced by the beating of their wings for acoustic mating communication. We assessed the impact of disrupting a female-specific isoform of the doublesex gene (dsxF) on the wing beat frequency (WBF; measured as flight tone) of males (XY) and females (XX) in homozygous dsxF − mutants (dsxF −/− ), heterozygous dsxF − carriers (dsxF +/−) and G3 dsxF + controls (dsxF +/+). To exclude non-genetic influences, we controlled for temperature and wing length. We used a phonotaxis assay to test the acoustic preferences of mutant and control mosquitoes. Results A previous study showed an altered phenotype only for dsxF −/− females, who appear intersex, suggesting that the female-specific dsxF allele is haplosufficient. We identified significant, dose-dependent increases in the WBF of both dsxF −/− and dsxF +/− females compared to dsxF +/+ females. All female WBFs remained significantly lower than male equivalents, though. Males showed stronger phonotactic responses to the WBFs of control dsxF +/+ females than to those of dsxF +/− and dsxF −/− females. We found no evidence of phonotaxis in any female genotype. No male genotypes displayed any deviations from controls. Conclusions A prerequisite for anopheline copulation is the phonotactic attraction of males towards female flight tones within mating swarms. Reductions in mutant acoustic attractiveness diminish their mating efficiency and thus the efficacy of population control efforts. Caged population assessments may not successfully reproduce natural mating scenarios. We propose to amend existing testing protocols to better reflect competition between mutants and target populations. Our findings confirm that dsxF disruption has no effect on males; for some phenotypic traits, such as female WBFs, the effects of dsxF appear dose-dependent rather than haplosufficient.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anopheles gambiae (s.l.)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anopheles coluzzii</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Doublesex</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gene drive</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wing beat frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flight tone</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Infectious and parasitic diseases</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marcos Georgiades</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Judit Bagi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kyros Kyrou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea Crisanti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Joerg T. Albert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Parasites & Vectors</subfield><subfield code="d">BMC, 2008</subfield><subfield code="g">13(2020), 1, Seite 9</subfield><subfield code="w">(DE-627)558690076</subfield><subfield code="w">(DE-600)2409480-8</subfield><subfield code="x">17563305</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13071-020-04382-x</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a7f30ba82083428480105b014c8883dc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s13071-020-04382-x</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1756-3305</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="h">9</subfield></datafield></record></collection>
|
score |
7.400943 |