An Enhanced Differential Evolution Algorithm with Bernstein Operator and Refracted Oppositional-Mutual Learning Strategy
Numerical optimization has been a popular research topic within various engineering applications, where differential evolution (DE) is one of the most extensively applied methods. However, it is difficult to choose appropriate control parameters and to avoid falling into local optimum and poor conve...
Ausführliche Beschreibung
Autor*in: |
Fengbin Wu [verfasserIn] Junxing Zhang [verfasserIn] Shaobo Li [verfasserIn] Dongchao Lv [verfasserIn] Menghan Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
refracted oppositional learning |
---|
Übergeordnetes Werk: |
In: Entropy - MDPI AG, 2003, 24(2022), 9, p 1205 |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2022 ; number:9, p 1205 |
Links: |
---|
DOI / URN: |
10.3390/e24091205 |
---|
Katalog-ID: |
DOAJ007785402 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ007785402 | ||
003 | DE-627 | ||
005 | 20240414204621.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/e24091205 |2 doi | |
035 | |a (DE-627)DOAJ007785402 | ||
035 | |a (DE-599)DOAJ7f7f258d8dfb4a51ac91064f62502964 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB460-466 | |
050 | 0 | |a QC1-999 | |
100 | 0 | |a Fengbin Wu |e verfasserin |4 aut | |
245 | 1 | 3 | |a An Enhanced Differential Evolution Algorithm with Bernstein Operator and Refracted Oppositional-Mutual Learning Strategy |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Numerical optimization has been a popular research topic within various engineering applications, where differential evolution (DE) is one of the most extensively applied methods. However, it is difficult to choose appropriate control parameters and to avoid falling into local optimum and poor convergence when handling complex numerical optimization problems. To handle these problems, an improved DE (BROMLDE) with the Bernstein operator and refracted oppositional-mutual learning (ROML) is proposed, which can reduce parameter selection, converge faster, and avoid trapping in local optimum. Firstly, a new ROML strategy integrates mutual learning (ML) and refractive oppositional learning (ROL), achieving stochastic switching between ROL and ML during the population initialization and generation jumping period to balance exploration and exploitation. Meanwhile, a dynamic adjustment factor is constructed to improve the ability of the algorithm to jump out of the local optimum. Secondly, a Bernstein operator, which has no parameters setting and intrinsic parameters tuning phase, is introduced to improve convergence performance. Finally, the performance of BROMLDE is evaluated by 10 bound-constrained benchmark functions from CEC 2019 and CEC 2020, respectively. Two engineering optimization problems are utilized simultaneously. The comparative experimental results show that BROMLDE has higher global optimization capability and convergence speed on most functions and engineering problems. | ||
650 | 4 | |a refracted oppositional learning | |
650 | 4 | |a mutual learning | |
650 | 4 | |a refracted oppositional-mutual learning | |
650 | 4 | |a differential evolution | |
650 | 4 | |a Bernstein operator | |
650 | 4 | |a CEC 2019 and 2020 | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
653 | 0 | |a Astrophysics | |
653 | 0 | |a Physics | |
700 | 0 | |a Junxing Zhang |e verfasserin |4 aut | |
700 | 0 | |a Shaobo Li |e verfasserin |4 aut | |
700 | 0 | |a Dongchao Lv |e verfasserin |4 aut | |
700 | 0 | |a Menghan Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Entropy |d MDPI AG, 2003 |g 24(2022), 9, p 1205 |w (DE-627)316340359 |w (DE-600)2014734-X |x 10994300 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2022 |g number:9, p 1205 |
856 | 4 | 0 | |u https://doi.org/10.3390/e24091205 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/7f7f258d8dfb4a51ac91064f62502964 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1099-4300/24/9/1205 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1099-4300 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 24 |j 2022 |e 9, p 1205 |
author_variant |
f w fw j z jz s l sl d l dl m l ml |
---|---|
matchkey_str |
article:10994300:2022----::nnacdifrnilvltoagrtmihentioeaoaderceops |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QB |
publishDate |
2022 |
allfields |
10.3390/e24091205 doi (DE-627)DOAJ007785402 (DE-599)DOAJ7f7f258d8dfb4a51ac91064f62502964 DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Fengbin Wu verfasserin aut An Enhanced Differential Evolution Algorithm with Bernstein Operator and Refracted Oppositional-Mutual Learning Strategy 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Numerical optimization has been a popular research topic within various engineering applications, where differential evolution (DE) is one of the most extensively applied methods. However, it is difficult to choose appropriate control parameters and to avoid falling into local optimum and poor convergence when handling complex numerical optimization problems. To handle these problems, an improved DE (BROMLDE) with the Bernstein operator and refracted oppositional-mutual learning (ROML) is proposed, which can reduce parameter selection, converge faster, and avoid trapping in local optimum. Firstly, a new ROML strategy integrates mutual learning (ML) and refractive oppositional learning (ROL), achieving stochastic switching between ROL and ML during the population initialization and generation jumping period to balance exploration and exploitation. Meanwhile, a dynamic adjustment factor is constructed to improve the ability of the algorithm to jump out of the local optimum. Secondly, a Bernstein operator, which has no parameters setting and intrinsic parameters tuning phase, is introduced to improve convergence performance. Finally, the performance of BROMLDE is evaluated by 10 bound-constrained benchmark functions from CEC 2019 and CEC 2020, respectively. Two engineering optimization problems are utilized simultaneously. The comparative experimental results show that BROMLDE has higher global optimization capability and convergence speed on most functions and engineering problems. refracted oppositional learning mutual learning refracted oppositional-mutual learning differential evolution Bernstein operator CEC 2019 and 2020 Science Q Astrophysics Physics Junxing Zhang verfasserin aut Shaobo Li verfasserin aut Dongchao Lv verfasserin aut Menghan Li verfasserin aut In Entropy MDPI AG, 2003 24(2022), 9, p 1205 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:24 year:2022 number:9, p 1205 https://doi.org/10.3390/e24091205 kostenfrei https://doaj.org/article/7f7f258d8dfb4a51ac91064f62502964 kostenfrei https://www.mdpi.com/1099-4300/24/9/1205 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2022 9, p 1205 |
spelling |
10.3390/e24091205 doi (DE-627)DOAJ007785402 (DE-599)DOAJ7f7f258d8dfb4a51ac91064f62502964 DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Fengbin Wu verfasserin aut An Enhanced Differential Evolution Algorithm with Bernstein Operator and Refracted Oppositional-Mutual Learning Strategy 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Numerical optimization has been a popular research topic within various engineering applications, where differential evolution (DE) is one of the most extensively applied methods. However, it is difficult to choose appropriate control parameters and to avoid falling into local optimum and poor convergence when handling complex numerical optimization problems. To handle these problems, an improved DE (BROMLDE) with the Bernstein operator and refracted oppositional-mutual learning (ROML) is proposed, which can reduce parameter selection, converge faster, and avoid trapping in local optimum. Firstly, a new ROML strategy integrates mutual learning (ML) and refractive oppositional learning (ROL), achieving stochastic switching between ROL and ML during the population initialization and generation jumping period to balance exploration and exploitation. Meanwhile, a dynamic adjustment factor is constructed to improve the ability of the algorithm to jump out of the local optimum. Secondly, a Bernstein operator, which has no parameters setting and intrinsic parameters tuning phase, is introduced to improve convergence performance. Finally, the performance of BROMLDE is evaluated by 10 bound-constrained benchmark functions from CEC 2019 and CEC 2020, respectively. Two engineering optimization problems are utilized simultaneously. The comparative experimental results show that BROMLDE has higher global optimization capability and convergence speed on most functions and engineering problems. refracted oppositional learning mutual learning refracted oppositional-mutual learning differential evolution Bernstein operator CEC 2019 and 2020 Science Q Astrophysics Physics Junxing Zhang verfasserin aut Shaobo Li verfasserin aut Dongchao Lv verfasserin aut Menghan Li verfasserin aut In Entropy MDPI AG, 2003 24(2022), 9, p 1205 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:24 year:2022 number:9, p 1205 https://doi.org/10.3390/e24091205 kostenfrei https://doaj.org/article/7f7f258d8dfb4a51ac91064f62502964 kostenfrei https://www.mdpi.com/1099-4300/24/9/1205 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2022 9, p 1205 |
allfields_unstemmed |
10.3390/e24091205 doi (DE-627)DOAJ007785402 (DE-599)DOAJ7f7f258d8dfb4a51ac91064f62502964 DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Fengbin Wu verfasserin aut An Enhanced Differential Evolution Algorithm with Bernstein Operator and Refracted Oppositional-Mutual Learning Strategy 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Numerical optimization has been a popular research topic within various engineering applications, where differential evolution (DE) is one of the most extensively applied methods. However, it is difficult to choose appropriate control parameters and to avoid falling into local optimum and poor convergence when handling complex numerical optimization problems. To handle these problems, an improved DE (BROMLDE) with the Bernstein operator and refracted oppositional-mutual learning (ROML) is proposed, which can reduce parameter selection, converge faster, and avoid trapping in local optimum. Firstly, a new ROML strategy integrates mutual learning (ML) and refractive oppositional learning (ROL), achieving stochastic switching between ROL and ML during the population initialization and generation jumping period to balance exploration and exploitation. Meanwhile, a dynamic adjustment factor is constructed to improve the ability of the algorithm to jump out of the local optimum. Secondly, a Bernstein operator, which has no parameters setting and intrinsic parameters tuning phase, is introduced to improve convergence performance. Finally, the performance of BROMLDE is evaluated by 10 bound-constrained benchmark functions from CEC 2019 and CEC 2020, respectively. Two engineering optimization problems are utilized simultaneously. The comparative experimental results show that BROMLDE has higher global optimization capability and convergence speed on most functions and engineering problems. refracted oppositional learning mutual learning refracted oppositional-mutual learning differential evolution Bernstein operator CEC 2019 and 2020 Science Q Astrophysics Physics Junxing Zhang verfasserin aut Shaobo Li verfasserin aut Dongchao Lv verfasserin aut Menghan Li verfasserin aut In Entropy MDPI AG, 2003 24(2022), 9, p 1205 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:24 year:2022 number:9, p 1205 https://doi.org/10.3390/e24091205 kostenfrei https://doaj.org/article/7f7f258d8dfb4a51ac91064f62502964 kostenfrei https://www.mdpi.com/1099-4300/24/9/1205 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2022 9, p 1205 |
allfieldsGer |
10.3390/e24091205 doi (DE-627)DOAJ007785402 (DE-599)DOAJ7f7f258d8dfb4a51ac91064f62502964 DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Fengbin Wu verfasserin aut An Enhanced Differential Evolution Algorithm with Bernstein Operator and Refracted Oppositional-Mutual Learning Strategy 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Numerical optimization has been a popular research topic within various engineering applications, where differential evolution (DE) is one of the most extensively applied methods. However, it is difficult to choose appropriate control parameters and to avoid falling into local optimum and poor convergence when handling complex numerical optimization problems. To handle these problems, an improved DE (BROMLDE) with the Bernstein operator and refracted oppositional-mutual learning (ROML) is proposed, which can reduce parameter selection, converge faster, and avoid trapping in local optimum. Firstly, a new ROML strategy integrates mutual learning (ML) and refractive oppositional learning (ROL), achieving stochastic switching between ROL and ML during the population initialization and generation jumping period to balance exploration and exploitation. Meanwhile, a dynamic adjustment factor is constructed to improve the ability of the algorithm to jump out of the local optimum. Secondly, a Bernstein operator, which has no parameters setting and intrinsic parameters tuning phase, is introduced to improve convergence performance. Finally, the performance of BROMLDE is evaluated by 10 bound-constrained benchmark functions from CEC 2019 and CEC 2020, respectively. Two engineering optimization problems are utilized simultaneously. The comparative experimental results show that BROMLDE has higher global optimization capability and convergence speed on most functions and engineering problems. refracted oppositional learning mutual learning refracted oppositional-mutual learning differential evolution Bernstein operator CEC 2019 and 2020 Science Q Astrophysics Physics Junxing Zhang verfasserin aut Shaobo Li verfasserin aut Dongchao Lv verfasserin aut Menghan Li verfasserin aut In Entropy MDPI AG, 2003 24(2022), 9, p 1205 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:24 year:2022 number:9, p 1205 https://doi.org/10.3390/e24091205 kostenfrei https://doaj.org/article/7f7f258d8dfb4a51ac91064f62502964 kostenfrei https://www.mdpi.com/1099-4300/24/9/1205 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2022 9, p 1205 |
allfieldsSound |
10.3390/e24091205 doi (DE-627)DOAJ007785402 (DE-599)DOAJ7f7f258d8dfb4a51ac91064f62502964 DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Fengbin Wu verfasserin aut An Enhanced Differential Evolution Algorithm with Bernstein Operator and Refracted Oppositional-Mutual Learning Strategy 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Numerical optimization has been a popular research topic within various engineering applications, where differential evolution (DE) is one of the most extensively applied methods. However, it is difficult to choose appropriate control parameters and to avoid falling into local optimum and poor convergence when handling complex numerical optimization problems. To handle these problems, an improved DE (BROMLDE) with the Bernstein operator and refracted oppositional-mutual learning (ROML) is proposed, which can reduce parameter selection, converge faster, and avoid trapping in local optimum. Firstly, a new ROML strategy integrates mutual learning (ML) and refractive oppositional learning (ROL), achieving stochastic switching between ROL and ML during the population initialization and generation jumping period to balance exploration and exploitation. Meanwhile, a dynamic adjustment factor is constructed to improve the ability of the algorithm to jump out of the local optimum. Secondly, a Bernstein operator, which has no parameters setting and intrinsic parameters tuning phase, is introduced to improve convergence performance. Finally, the performance of BROMLDE is evaluated by 10 bound-constrained benchmark functions from CEC 2019 and CEC 2020, respectively. Two engineering optimization problems are utilized simultaneously. The comparative experimental results show that BROMLDE has higher global optimization capability and convergence speed on most functions and engineering problems. refracted oppositional learning mutual learning refracted oppositional-mutual learning differential evolution Bernstein operator CEC 2019 and 2020 Science Q Astrophysics Physics Junxing Zhang verfasserin aut Shaobo Li verfasserin aut Dongchao Lv verfasserin aut Menghan Li verfasserin aut In Entropy MDPI AG, 2003 24(2022), 9, p 1205 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:24 year:2022 number:9, p 1205 https://doi.org/10.3390/e24091205 kostenfrei https://doaj.org/article/7f7f258d8dfb4a51ac91064f62502964 kostenfrei https://www.mdpi.com/1099-4300/24/9/1205 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2022 9, p 1205 |
language |
English |
source |
In Entropy 24(2022), 9, p 1205 volume:24 year:2022 number:9, p 1205 |
sourceStr |
In Entropy 24(2022), 9, p 1205 volume:24 year:2022 number:9, p 1205 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
refracted oppositional learning mutual learning refracted oppositional-mutual learning differential evolution Bernstein operator CEC 2019 and 2020 Science Q Astrophysics Physics |
isfreeaccess_bool |
true |
container_title |
Entropy |
authorswithroles_txt_mv |
Fengbin Wu @@aut@@ Junxing Zhang @@aut@@ Shaobo Li @@aut@@ Dongchao Lv @@aut@@ Menghan Li @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
316340359 |
id |
DOAJ007785402 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007785402</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414204621.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/e24091205</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007785402</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7f7f258d8dfb4a51ac91064f62502964</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Fengbin Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Enhanced Differential Evolution Algorithm with Bernstein Operator and Refracted Oppositional-Mutual Learning Strategy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Numerical optimization has been a popular research topic within various engineering applications, where differential evolution (DE) is one of the most extensively applied methods. However, it is difficult to choose appropriate control parameters and to avoid falling into local optimum and poor convergence when handling complex numerical optimization problems. To handle these problems, an improved DE (BROMLDE) with the Bernstein operator and refracted oppositional-mutual learning (ROML) is proposed, which can reduce parameter selection, converge faster, and avoid trapping in local optimum. Firstly, a new ROML strategy integrates mutual learning (ML) and refractive oppositional learning (ROL), achieving stochastic switching between ROL and ML during the population initialization and generation jumping period to balance exploration and exploitation. Meanwhile, a dynamic adjustment factor is constructed to improve the ability of the algorithm to jump out of the local optimum. Secondly, a Bernstein operator, which has no parameters setting and intrinsic parameters tuning phase, is introduced to improve convergence performance. Finally, the performance of BROMLDE is evaluated by 10 bound-constrained benchmark functions from CEC 2019 and CEC 2020, respectively. Two engineering optimization problems are utilized simultaneously. The comparative experimental results show that BROMLDE has higher global optimization capability and convergence speed on most functions and engineering problems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">refracted oppositional learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mutual learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">refracted oppositional-mutual learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">differential evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bernstein operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CEC 2019 and 2020</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junxing Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shaobo Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dongchao Lv</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Menghan Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Entropy</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">24(2022), 9, p 1205</subfield><subfield code="w">(DE-627)316340359</subfield><subfield code="w">(DE-600)2014734-X</subfield><subfield code="x">10994300</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:9, p 1205</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/e24091205</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7f7f258d8dfb4a51ac91064f62502964</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1099-4300/24/9/1205</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1099-4300</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2022</subfield><subfield code="e">9, p 1205</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Fengbin Wu |
spellingShingle |
Fengbin Wu misc QB460-466 misc QC1-999 misc refracted oppositional learning misc mutual learning misc refracted oppositional-mutual learning misc differential evolution misc Bernstein operator misc CEC 2019 and 2020 misc Science misc Q misc Astrophysics misc Physics An Enhanced Differential Evolution Algorithm with Bernstein Operator and Refracted Oppositional-Mutual Learning Strategy |
authorStr |
Fengbin Wu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)316340359 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB460-466 |
illustrated |
Not Illustrated |
issn |
10994300 |
topic_title |
QB460-466 QC1-999 An Enhanced Differential Evolution Algorithm with Bernstein Operator and Refracted Oppositional-Mutual Learning Strategy refracted oppositional learning mutual learning refracted oppositional-mutual learning differential evolution Bernstein operator CEC 2019 and 2020 |
topic |
misc QB460-466 misc QC1-999 misc refracted oppositional learning misc mutual learning misc refracted oppositional-mutual learning misc differential evolution misc Bernstein operator misc CEC 2019 and 2020 misc Science misc Q misc Astrophysics misc Physics |
topic_unstemmed |
misc QB460-466 misc QC1-999 misc refracted oppositional learning misc mutual learning misc refracted oppositional-mutual learning misc differential evolution misc Bernstein operator misc CEC 2019 and 2020 misc Science misc Q misc Astrophysics misc Physics |
topic_browse |
misc QB460-466 misc QC1-999 misc refracted oppositional learning misc mutual learning misc refracted oppositional-mutual learning misc differential evolution misc Bernstein operator misc CEC 2019 and 2020 misc Science misc Q misc Astrophysics misc Physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Entropy |
hierarchy_parent_id |
316340359 |
hierarchy_top_title |
Entropy |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)316340359 (DE-600)2014734-X |
title |
An Enhanced Differential Evolution Algorithm with Bernstein Operator and Refracted Oppositional-Mutual Learning Strategy |
ctrlnum |
(DE-627)DOAJ007785402 (DE-599)DOAJ7f7f258d8dfb4a51ac91064f62502964 |
title_full |
An Enhanced Differential Evolution Algorithm with Bernstein Operator and Refracted Oppositional-Mutual Learning Strategy |
author_sort |
Fengbin Wu |
journal |
Entropy |
journalStr |
Entropy |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Fengbin Wu Junxing Zhang Shaobo Li Dongchao Lv Menghan Li |
container_volume |
24 |
class |
QB460-466 QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Fengbin Wu |
doi_str_mv |
10.3390/e24091205 |
author2-role |
verfasserin |
title_sort |
enhanced differential evolution algorithm with bernstein operator and refracted oppositional-mutual learning strategy |
callnumber |
QB460-466 |
title_auth |
An Enhanced Differential Evolution Algorithm with Bernstein Operator and Refracted Oppositional-Mutual Learning Strategy |
abstract |
Numerical optimization has been a popular research topic within various engineering applications, where differential evolution (DE) is one of the most extensively applied methods. However, it is difficult to choose appropriate control parameters and to avoid falling into local optimum and poor convergence when handling complex numerical optimization problems. To handle these problems, an improved DE (BROMLDE) with the Bernstein operator and refracted oppositional-mutual learning (ROML) is proposed, which can reduce parameter selection, converge faster, and avoid trapping in local optimum. Firstly, a new ROML strategy integrates mutual learning (ML) and refractive oppositional learning (ROL), achieving stochastic switching between ROL and ML during the population initialization and generation jumping period to balance exploration and exploitation. Meanwhile, a dynamic adjustment factor is constructed to improve the ability of the algorithm to jump out of the local optimum. Secondly, a Bernstein operator, which has no parameters setting and intrinsic parameters tuning phase, is introduced to improve convergence performance. Finally, the performance of BROMLDE is evaluated by 10 bound-constrained benchmark functions from CEC 2019 and CEC 2020, respectively. Two engineering optimization problems are utilized simultaneously. The comparative experimental results show that BROMLDE has higher global optimization capability and convergence speed on most functions and engineering problems. |
abstractGer |
Numerical optimization has been a popular research topic within various engineering applications, where differential evolution (DE) is one of the most extensively applied methods. However, it is difficult to choose appropriate control parameters and to avoid falling into local optimum and poor convergence when handling complex numerical optimization problems. To handle these problems, an improved DE (BROMLDE) with the Bernstein operator and refracted oppositional-mutual learning (ROML) is proposed, which can reduce parameter selection, converge faster, and avoid trapping in local optimum. Firstly, a new ROML strategy integrates mutual learning (ML) and refractive oppositional learning (ROL), achieving stochastic switching between ROL and ML during the population initialization and generation jumping period to balance exploration and exploitation. Meanwhile, a dynamic adjustment factor is constructed to improve the ability of the algorithm to jump out of the local optimum. Secondly, a Bernstein operator, which has no parameters setting and intrinsic parameters tuning phase, is introduced to improve convergence performance. Finally, the performance of BROMLDE is evaluated by 10 bound-constrained benchmark functions from CEC 2019 and CEC 2020, respectively. Two engineering optimization problems are utilized simultaneously. The comparative experimental results show that BROMLDE has higher global optimization capability and convergence speed on most functions and engineering problems. |
abstract_unstemmed |
Numerical optimization has been a popular research topic within various engineering applications, where differential evolution (DE) is one of the most extensively applied methods. However, it is difficult to choose appropriate control parameters and to avoid falling into local optimum and poor convergence when handling complex numerical optimization problems. To handle these problems, an improved DE (BROMLDE) with the Bernstein operator and refracted oppositional-mutual learning (ROML) is proposed, which can reduce parameter selection, converge faster, and avoid trapping in local optimum. Firstly, a new ROML strategy integrates mutual learning (ML) and refractive oppositional learning (ROL), achieving stochastic switching between ROL and ML during the population initialization and generation jumping period to balance exploration and exploitation. Meanwhile, a dynamic adjustment factor is constructed to improve the ability of the algorithm to jump out of the local optimum. Secondly, a Bernstein operator, which has no parameters setting and intrinsic parameters tuning phase, is introduced to improve convergence performance. Finally, the performance of BROMLDE is evaluated by 10 bound-constrained benchmark functions from CEC 2019 and CEC 2020, respectively. Two engineering optimization problems are utilized simultaneously. The comparative experimental results show that BROMLDE has higher global optimization capability and convergence speed on most functions and engineering problems. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
9, p 1205 |
title_short |
An Enhanced Differential Evolution Algorithm with Bernstein Operator and Refracted Oppositional-Mutual Learning Strategy |
url |
https://doi.org/10.3390/e24091205 https://doaj.org/article/7f7f258d8dfb4a51ac91064f62502964 https://www.mdpi.com/1099-4300/24/9/1205 https://doaj.org/toc/1099-4300 |
remote_bool |
true |
author2 |
Junxing Zhang Shaobo Li Dongchao Lv Menghan Li |
author2Str |
Junxing Zhang Shaobo Li Dongchao Lv Menghan Li |
ppnlink |
316340359 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/e24091205 |
callnumber-a |
QB460-466 |
up_date |
2024-07-03T14:06:03.432Z |
_version_ |
1803567039445467136 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007785402</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414204621.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/e24091205</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007785402</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7f7f258d8dfb4a51ac91064f62502964</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Fengbin Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Enhanced Differential Evolution Algorithm with Bernstein Operator and Refracted Oppositional-Mutual Learning Strategy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Numerical optimization has been a popular research topic within various engineering applications, where differential evolution (DE) is one of the most extensively applied methods. However, it is difficult to choose appropriate control parameters and to avoid falling into local optimum and poor convergence when handling complex numerical optimization problems. To handle these problems, an improved DE (BROMLDE) with the Bernstein operator and refracted oppositional-mutual learning (ROML) is proposed, which can reduce parameter selection, converge faster, and avoid trapping in local optimum. Firstly, a new ROML strategy integrates mutual learning (ML) and refractive oppositional learning (ROL), achieving stochastic switching between ROL and ML during the population initialization and generation jumping period to balance exploration and exploitation. Meanwhile, a dynamic adjustment factor is constructed to improve the ability of the algorithm to jump out of the local optimum. Secondly, a Bernstein operator, which has no parameters setting and intrinsic parameters tuning phase, is introduced to improve convergence performance. Finally, the performance of BROMLDE is evaluated by 10 bound-constrained benchmark functions from CEC 2019 and CEC 2020, respectively. Two engineering optimization problems are utilized simultaneously. The comparative experimental results show that BROMLDE has higher global optimization capability and convergence speed on most functions and engineering problems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">refracted oppositional learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mutual learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">refracted oppositional-mutual learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">differential evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bernstein operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CEC 2019 and 2020</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junxing Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shaobo Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dongchao Lv</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Menghan Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Entropy</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">24(2022), 9, p 1205</subfield><subfield code="w">(DE-627)316340359</subfield><subfield code="w">(DE-600)2014734-X</subfield><subfield code="x">10994300</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:9, p 1205</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/e24091205</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7f7f258d8dfb4a51ac91064f62502964</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1099-4300/24/9/1205</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1099-4300</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2022</subfield><subfield code="e">9, p 1205</subfield></datafield></record></collection>
|
score |
7.401515 |