Proteolysis Degree of Protein Corona Affect Ultrasound-Induced Sublethal Effects on <i<Saccharomyces cerevisiae</i<: Transcriptomics Analysis and Adaptive Regulation of Membrane Homeostasis
Protein corona (PC) adsorbed on the surface of nanoparticles brings new research perspectives on the interaction between nanoparticles and fermentative microorganisms. Herein, the proteolysis of wheat PC adsorbed on a nano-Se surface using cell-free protease extract from <i<S. cerevisiae</i...
Ausführliche Beschreibung
Autor*in: |
Zi-Yi Zheng [verfasserIn] Chao-Hua Feng [verfasserIn] Guo Xie [verfasserIn] Wen-Li Liu [verfasserIn] Xiao-Lei Zhu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Foods - MDPI AG, 2013, 11(2022), 23, p 3883 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2022 ; number:23, p 3883 |
Links: |
---|
DOI / URN: |
10.3390/foods11233883 |
---|
Katalog-ID: |
DOAJ007814941 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ007814941 | ||
003 | DE-627 | ||
005 | 20240414155634.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/foods11233883 |2 doi | |
035 | |a (DE-627)DOAJ007814941 | ||
035 | |a (DE-599)DOAJ77a00d24c2e840659ac871d601e073e2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Zi-Yi Zheng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Proteolysis Degree of Protein Corona Affect Ultrasound-Induced Sublethal Effects on <i<Saccharomyces cerevisiae</i<: Transcriptomics Analysis and Adaptive Regulation of Membrane Homeostasis |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Protein corona (PC) adsorbed on the surface of nanoparticles brings new research perspectives on the interaction between nanoparticles and fermentative microorganisms. Herein, the proteolysis of wheat PC adsorbed on a nano-Se surface using cell-free protease extract from <i<S. cerevisiae</i< was conducted. The proteolysis caused monotonic changes of ζ-potentials and surface hydrophobicity of PC. Notably, the innermost PC layer was difficult to be proteolyzed. Furthermore, when <i<S. cerevisiae</i< was stimulated by ultrasound + 0.1 mg/mL nano-SePC, the proportion of lethal and sublethal injured cells increased as a function of the proteolysis time of PC. The transcriptomics analysis revealed that 34 differentially expressed genes which varied monotonically were related to the plasma membrane, fatty acid metabolism, glycerolipid metabolism, etc. Significant declines in the membrane potential and proton motive force disruption of membrane were found with the prolonged proteolysis time; meanwhile, higher membrane permeability, membrane oxidative stress levels, membrane lipid fluidity, and micro-viscosity were triggered. | ||
650 | 4 | |a protein corona | |
650 | 4 | |a proteolysis | |
650 | 4 | |a nanoparticle | |
650 | 4 | |a ultrasound | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Chao-Hua Feng |e verfasserin |4 aut | |
700 | 0 | |a Guo Xie |e verfasserin |4 aut | |
700 | 0 | |a Wen-Li Liu |e verfasserin |4 aut | |
700 | 0 | |a Xiao-Lei Zhu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Foods |d MDPI AG, 2013 |g 11(2022), 23, p 3883 |w (DE-627)737287632 |w (DE-600)2704223-6 |x 23048158 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2022 |g number:23, p 3883 |
856 | 4 | 0 | |u https://doi.org/10.3390/foods11233883 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/77a00d24c2e840659ac871d601e073e2 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2304-8158/11/23/3883 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2304-8158 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2022 |e 23, p 3883 |
author_variant |
z y z zyz c h f chf g x gx w l l wll x l z xlz |
---|---|
matchkey_str |
article:23048158:2022----::rtoyidgeopoenooafetlrsudnuesbehlfetoiacaoyecrvsairncitmcaayi |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TP |
publishDate |
2022 |
allfields |
10.3390/foods11233883 doi (DE-627)DOAJ007814941 (DE-599)DOAJ77a00d24c2e840659ac871d601e073e2 DE-627 ger DE-627 rakwb eng TP1-1185 Zi-Yi Zheng verfasserin aut Proteolysis Degree of Protein Corona Affect Ultrasound-Induced Sublethal Effects on <i<Saccharomyces cerevisiae</i<: Transcriptomics Analysis and Adaptive Regulation of Membrane Homeostasis 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Protein corona (PC) adsorbed on the surface of nanoparticles brings new research perspectives on the interaction between nanoparticles and fermentative microorganisms. Herein, the proteolysis of wheat PC adsorbed on a nano-Se surface using cell-free protease extract from <i<S. cerevisiae</i< was conducted. The proteolysis caused monotonic changes of ζ-potentials and surface hydrophobicity of PC. Notably, the innermost PC layer was difficult to be proteolyzed. Furthermore, when <i<S. cerevisiae</i< was stimulated by ultrasound + 0.1 mg/mL nano-SePC, the proportion of lethal and sublethal injured cells increased as a function of the proteolysis time of PC. The transcriptomics analysis revealed that 34 differentially expressed genes which varied monotonically were related to the plasma membrane, fatty acid metabolism, glycerolipid metabolism, etc. Significant declines in the membrane potential and proton motive force disruption of membrane were found with the prolonged proteolysis time; meanwhile, higher membrane permeability, membrane oxidative stress levels, membrane lipid fluidity, and micro-viscosity were triggered. protein corona proteolysis nanoparticle ultrasound Chemical technology Chao-Hua Feng verfasserin aut Guo Xie verfasserin aut Wen-Li Liu verfasserin aut Xiao-Lei Zhu verfasserin aut In Foods MDPI AG, 2013 11(2022), 23, p 3883 (DE-627)737287632 (DE-600)2704223-6 23048158 nnns volume:11 year:2022 number:23, p 3883 https://doi.org/10.3390/foods11233883 kostenfrei https://doaj.org/article/77a00d24c2e840659ac871d601e073e2 kostenfrei https://www.mdpi.com/2304-8158/11/23/3883 kostenfrei https://doaj.org/toc/2304-8158 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 23, p 3883 |
spelling |
10.3390/foods11233883 doi (DE-627)DOAJ007814941 (DE-599)DOAJ77a00d24c2e840659ac871d601e073e2 DE-627 ger DE-627 rakwb eng TP1-1185 Zi-Yi Zheng verfasserin aut Proteolysis Degree of Protein Corona Affect Ultrasound-Induced Sublethal Effects on <i<Saccharomyces cerevisiae</i<: Transcriptomics Analysis and Adaptive Regulation of Membrane Homeostasis 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Protein corona (PC) adsorbed on the surface of nanoparticles brings new research perspectives on the interaction between nanoparticles and fermentative microorganisms. Herein, the proteolysis of wheat PC adsorbed on a nano-Se surface using cell-free protease extract from <i<S. cerevisiae</i< was conducted. The proteolysis caused monotonic changes of ζ-potentials and surface hydrophobicity of PC. Notably, the innermost PC layer was difficult to be proteolyzed. Furthermore, when <i<S. cerevisiae</i< was stimulated by ultrasound + 0.1 mg/mL nano-SePC, the proportion of lethal and sublethal injured cells increased as a function of the proteolysis time of PC. The transcriptomics analysis revealed that 34 differentially expressed genes which varied monotonically were related to the plasma membrane, fatty acid metabolism, glycerolipid metabolism, etc. Significant declines in the membrane potential and proton motive force disruption of membrane were found with the prolonged proteolysis time; meanwhile, higher membrane permeability, membrane oxidative stress levels, membrane lipid fluidity, and micro-viscosity were triggered. protein corona proteolysis nanoparticle ultrasound Chemical technology Chao-Hua Feng verfasserin aut Guo Xie verfasserin aut Wen-Li Liu verfasserin aut Xiao-Lei Zhu verfasserin aut In Foods MDPI AG, 2013 11(2022), 23, p 3883 (DE-627)737287632 (DE-600)2704223-6 23048158 nnns volume:11 year:2022 number:23, p 3883 https://doi.org/10.3390/foods11233883 kostenfrei https://doaj.org/article/77a00d24c2e840659ac871d601e073e2 kostenfrei https://www.mdpi.com/2304-8158/11/23/3883 kostenfrei https://doaj.org/toc/2304-8158 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 23, p 3883 |
allfields_unstemmed |
10.3390/foods11233883 doi (DE-627)DOAJ007814941 (DE-599)DOAJ77a00d24c2e840659ac871d601e073e2 DE-627 ger DE-627 rakwb eng TP1-1185 Zi-Yi Zheng verfasserin aut Proteolysis Degree of Protein Corona Affect Ultrasound-Induced Sublethal Effects on <i<Saccharomyces cerevisiae</i<: Transcriptomics Analysis and Adaptive Regulation of Membrane Homeostasis 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Protein corona (PC) adsorbed on the surface of nanoparticles brings new research perspectives on the interaction between nanoparticles and fermentative microorganisms. Herein, the proteolysis of wheat PC adsorbed on a nano-Se surface using cell-free protease extract from <i<S. cerevisiae</i< was conducted. The proteolysis caused monotonic changes of ζ-potentials and surface hydrophobicity of PC. Notably, the innermost PC layer was difficult to be proteolyzed. Furthermore, when <i<S. cerevisiae</i< was stimulated by ultrasound + 0.1 mg/mL nano-SePC, the proportion of lethal and sublethal injured cells increased as a function of the proteolysis time of PC. The transcriptomics analysis revealed that 34 differentially expressed genes which varied monotonically were related to the plasma membrane, fatty acid metabolism, glycerolipid metabolism, etc. Significant declines in the membrane potential and proton motive force disruption of membrane were found with the prolonged proteolysis time; meanwhile, higher membrane permeability, membrane oxidative stress levels, membrane lipid fluidity, and micro-viscosity were triggered. protein corona proteolysis nanoparticle ultrasound Chemical technology Chao-Hua Feng verfasserin aut Guo Xie verfasserin aut Wen-Li Liu verfasserin aut Xiao-Lei Zhu verfasserin aut In Foods MDPI AG, 2013 11(2022), 23, p 3883 (DE-627)737287632 (DE-600)2704223-6 23048158 nnns volume:11 year:2022 number:23, p 3883 https://doi.org/10.3390/foods11233883 kostenfrei https://doaj.org/article/77a00d24c2e840659ac871d601e073e2 kostenfrei https://www.mdpi.com/2304-8158/11/23/3883 kostenfrei https://doaj.org/toc/2304-8158 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 23, p 3883 |
allfieldsGer |
10.3390/foods11233883 doi (DE-627)DOAJ007814941 (DE-599)DOAJ77a00d24c2e840659ac871d601e073e2 DE-627 ger DE-627 rakwb eng TP1-1185 Zi-Yi Zheng verfasserin aut Proteolysis Degree of Protein Corona Affect Ultrasound-Induced Sublethal Effects on <i<Saccharomyces cerevisiae</i<: Transcriptomics Analysis and Adaptive Regulation of Membrane Homeostasis 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Protein corona (PC) adsorbed on the surface of nanoparticles brings new research perspectives on the interaction between nanoparticles and fermentative microorganisms. Herein, the proteolysis of wheat PC adsorbed on a nano-Se surface using cell-free protease extract from <i<S. cerevisiae</i< was conducted. The proteolysis caused monotonic changes of ζ-potentials and surface hydrophobicity of PC. Notably, the innermost PC layer was difficult to be proteolyzed. Furthermore, when <i<S. cerevisiae</i< was stimulated by ultrasound + 0.1 mg/mL nano-SePC, the proportion of lethal and sublethal injured cells increased as a function of the proteolysis time of PC. The transcriptomics analysis revealed that 34 differentially expressed genes which varied monotonically were related to the plasma membrane, fatty acid metabolism, glycerolipid metabolism, etc. Significant declines in the membrane potential and proton motive force disruption of membrane were found with the prolonged proteolysis time; meanwhile, higher membrane permeability, membrane oxidative stress levels, membrane lipid fluidity, and micro-viscosity were triggered. protein corona proteolysis nanoparticle ultrasound Chemical technology Chao-Hua Feng verfasserin aut Guo Xie verfasserin aut Wen-Li Liu verfasserin aut Xiao-Lei Zhu verfasserin aut In Foods MDPI AG, 2013 11(2022), 23, p 3883 (DE-627)737287632 (DE-600)2704223-6 23048158 nnns volume:11 year:2022 number:23, p 3883 https://doi.org/10.3390/foods11233883 kostenfrei https://doaj.org/article/77a00d24c2e840659ac871d601e073e2 kostenfrei https://www.mdpi.com/2304-8158/11/23/3883 kostenfrei https://doaj.org/toc/2304-8158 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 23, p 3883 |
allfieldsSound |
10.3390/foods11233883 doi (DE-627)DOAJ007814941 (DE-599)DOAJ77a00d24c2e840659ac871d601e073e2 DE-627 ger DE-627 rakwb eng TP1-1185 Zi-Yi Zheng verfasserin aut Proteolysis Degree of Protein Corona Affect Ultrasound-Induced Sublethal Effects on <i<Saccharomyces cerevisiae</i<: Transcriptomics Analysis and Adaptive Regulation of Membrane Homeostasis 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Protein corona (PC) adsorbed on the surface of nanoparticles brings new research perspectives on the interaction between nanoparticles and fermentative microorganisms. Herein, the proteolysis of wheat PC adsorbed on a nano-Se surface using cell-free protease extract from <i<S. cerevisiae</i< was conducted. The proteolysis caused monotonic changes of ζ-potentials and surface hydrophobicity of PC. Notably, the innermost PC layer was difficult to be proteolyzed. Furthermore, when <i<S. cerevisiae</i< was stimulated by ultrasound + 0.1 mg/mL nano-SePC, the proportion of lethal and sublethal injured cells increased as a function of the proteolysis time of PC. The transcriptomics analysis revealed that 34 differentially expressed genes which varied monotonically were related to the plasma membrane, fatty acid metabolism, glycerolipid metabolism, etc. Significant declines in the membrane potential and proton motive force disruption of membrane were found with the prolonged proteolysis time; meanwhile, higher membrane permeability, membrane oxidative stress levels, membrane lipid fluidity, and micro-viscosity were triggered. protein corona proteolysis nanoparticle ultrasound Chemical technology Chao-Hua Feng verfasserin aut Guo Xie verfasserin aut Wen-Li Liu verfasserin aut Xiao-Lei Zhu verfasserin aut In Foods MDPI AG, 2013 11(2022), 23, p 3883 (DE-627)737287632 (DE-600)2704223-6 23048158 nnns volume:11 year:2022 number:23, p 3883 https://doi.org/10.3390/foods11233883 kostenfrei https://doaj.org/article/77a00d24c2e840659ac871d601e073e2 kostenfrei https://www.mdpi.com/2304-8158/11/23/3883 kostenfrei https://doaj.org/toc/2304-8158 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 23, p 3883 |
language |
English |
source |
In Foods 11(2022), 23, p 3883 volume:11 year:2022 number:23, p 3883 |
sourceStr |
In Foods 11(2022), 23, p 3883 volume:11 year:2022 number:23, p 3883 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
protein corona proteolysis nanoparticle ultrasound Chemical technology |
isfreeaccess_bool |
true |
container_title |
Foods |
authorswithroles_txt_mv |
Zi-Yi Zheng @@aut@@ Chao-Hua Feng @@aut@@ Guo Xie @@aut@@ Wen-Li Liu @@aut@@ Xiao-Lei Zhu @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
737287632 |
id |
DOAJ007814941 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007814941</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414155634.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/foods11233883</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007814941</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ77a00d24c2e840659ac871d601e073e2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zi-Yi Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Proteolysis Degree of Protein Corona Affect Ultrasound-Induced Sublethal Effects on <i<Saccharomyces cerevisiae</i<: Transcriptomics Analysis and Adaptive Regulation of Membrane Homeostasis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Protein corona (PC) adsorbed on the surface of nanoparticles brings new research perspectives on the interaction between nanoparticles and fermentative microorganisms. Herein, the proteolysis of wheat PC adsorbed on a nano-Se surface using cell-free protease extract from <i<S. cerevisiae</i< was conducted. The proteolysis caused monotonic changes of ζ-potentials and surface hydrophobicity of PC. Notably, the innermost PC layer was difficult to be proteolyzed. Furthermore, when <i<S. cerevisiae</i< was stimulated by ultrasound + 0.1 mg/mL nano-SePC, the proportion of lethal and sublethal injured cells increased as a function of the proteolysis time of PC. The transcriptomics analysis revealed that 34 differentially expressed genes which varied monotonically were related to the plasma membrane, fatty acid metabolism, glycerolipid metabolism, etc. Significant declines in the membrane potential and proton motive force disruption of membrane were found with the prolonged proteolysis time; meanwhile, higher membrane permeability, membrane oxidative stress levels, membrane lipid fluidity, and micro-viscosity were triggered.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">protein corona</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">proteolysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanoparticle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ultrasound</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chao-Hua Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guo Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wen-Li Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiao-Lei Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Foods</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2022), 23, p 3883</subfield><subfield code="w">(DE-627)737287632</subfield><subfield code="w">(DE-600)2704223-6</subfield><subfield code="x">23048158</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:23, p 3883</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/foods11233883</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/77a00d24c2e840659ac871d601e073e2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2304-8158/11/23/3883</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2304-8158</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2022</subfield><subfield code="e">23, p 3883</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Zi-Yi Zheng |
spellingShingle |
Zi-Yi Zheng misc TP1-1185 misc protein corona misc proteolysis misc nanoparticle misc ultrasound misc Chemical technology Proteolysis Degree of Protein Corona Affect Ultrasound-Induced Sublethal Effects on <i<Saccharomyces cerevisiae</i<: Transcriptomics Analysis and Adaptive Regulation of Membrane Homeostasis |
authorStr |
Zi-Yi Zheng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287632 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
23048158 |
topic_title |
TP1-1185 Proteolysis Degree of Protein Corona Affect Ultrasound-Induced Sublethal Effects on <i<Saccharomyces cerevisiae</i<: Transcriptomics Analysis and Adaptive Regulation of Membrane Homeostasis protein corona proteolysis nanoparticle ultrasound |
topic |
misc TP1-1185 misc protein corona misc proteolysis misc nanoparticle misc ultrasound misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc protein corona misc proteolysis misc nanoparticle misc ultrasound misc Chemical technology |
topic_browse |
misc TP1-1185 misc protein corona misc proteolysis misc nanoparticle misc ultrasound misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Foods |
hierarchy_parent_id |
737287632 |
hierarchy_top_title |
Foods |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287632 (DE-600)2704223-6 |
title |
Proteolysis Degree of Protein Corona Affect Ultrasound-Induced Sublethal Effects on <i<Saccharomyces cerevisiae</i<: Transcriptomics Analysis and Adaptive Regulation of Membrane Homeostasis |
ctrlnum |
(DE-627)DOAJ007814941 (DE-599)DOAJ77a00d24c2e840659ac871d601e073e2 |
title_full |
Proteolysis Degree of Protein Corona Affect Ultrasound-Induced Sublethal Effects on <i<Saccharomyces cerevisiae</i<: Transcriptomics Analysis and Adaptive Regulation of Membrane Homeostasis |
author_sort |
Zi-Yi Zheng |
journal |
Foods |
journalStr |
Foods |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Zi-Yi Zheng Chao-Hua Feng Guo Xie Wen-Li Liu Xiao-Lei Zhu |
container_volume |
11 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Zi-Yi Zheng |
doi_str_mv |
10.3390/foods11233883 |
author2-role |
verfasserin |
title_sort |
proteolysis degree of protein corona affect ultrasound-induced sublethal effects on <i<saccharomyces cerevisiae</i<: transcriptomics analysis and adaptive regulation of membrane homeostasis |
callnumber |
TP1-1185 |
title_auth |
Proteolysis Degree of Protein Corona Affect Ultrasound-Induced Sublethal Effects on <i<Saccharomyces cerevisiae</i<: Transcriptomics Analysis and Adaptive Regulation of Membrane Homeostasis |
abstract |
Protein corona (PC) adsorbed on the surface of nanoparticles brings new research perspectives on the interaction between nanoparticles and fermentative microorganisms. Herein, the proteolysis of wheat PC adsorbed on a nano-Se surface using cell-free protease extract from <i<S. cerevisiae</i< was conducted. The proteolysis caused monotonic changes of ζ-potentials and surface hydrophobicity of PC. Notably, the innermost PC layer was difficult to be proteolyzed. Furthermore, when <i<S. cerevisiae</i< was stimulated by ultrasound + 0.1 mg/mL nano-SePC, the proportion of lethal and sublethal injured cells increased as a function of the proteolysis time of PC. The transcriptomics analysis revealed that 34 differentially expressed genes which varied monotonically were related to the plasma membrane, fatty acid metabolism, glycerolipid metabolism, etc. Significant declines in the membrane potential and proton motive force disruption of membrane were found with the prolonged proteolysis time; meanwhile, higher membrane permeability, membrane oxidative stress levels, membrane lipid fluidity, and micro-viscosity were triggered. |
abstractGer |
Protein corona (PC) adsorbed on the surface of nanoparticles brings new research perspectives on the interaction between nanoparticles and fermentative microorganisms. Herein, the proteolysis of wheat PC adsorbed on a nano-Se surface using cell-free protease extract from <i<S. cerevisiae</i< was conducted. The proteolysis caused monotonic changes of ζ-potentials and surface hydrophobicity of PC. Notably, the innermost PC layer was difficult to be proteolyzed. Furthermore, when <i<S. cerevisiae</i< was stimulated by ultrasound + 0.1 mg/mL nano-SePC, the proportion of lethal and sublethal injured cells increased as a function of the proteolysis time of PC. The transcriptomics analysis revealed that 34 differentially expressed genes which varied monotonically were related to the plasma membrane, fatty acid metabolism, glycerolipid metabolism, etc. Significant declines in the membrane potential and proton motive force disruption of membrane were found with the prolonged proteolysis time; meanwhile, higher membrane permeability, membrane oxidative stress levels, membrane lipid fluidity, and micro-viscosity were triggered. |
abstract_unstemmed |
Protein corona (PC) adsorbed on the surface of nanoparticles brings new research perspectives on the interaction between nanoparticles and fermentative microorganisms. Herein, the proteolysis of wheat PC adsorbed on a nano-Se surface using cell-free protease extract from <i<S. cerevisiae</i< was conducted. The proteolysis caused monotonic changes of ζ-potentials and surface hydrophobicity of PC. Notably, the innermost PC layer was difficult to be proteolyzed. Furthermore, when <i<S. cerevisiae</i< was stimulated by ultrasound + 0.1 mg/mL nano-SePC, the proportion of lethal and sublethal injured cells increased as a function of the proteolysis time of PC. The transcriptomics analysis revealed that 34 differentially expressed genes which varied monotonically were related to the plasma membrane, fatty acid metabolism, glycerolipid metabolism, etc. Significant declines in the membrane potential and proton motive force disruption of membrane were found with the prolonged proteolysis time; meanwhile, higher membrane permeability, membrane oxidative stress levels, membrane lipid fluidity, and micro-viscosity were triggered. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
23, p 3883 |
title_short |
Proteolysis Degree of Protein Corona Affect Ultrasound-Induced Sublethal Effects on <i<Saccharomyces cerevisiae</i<: Transcriptomics Analysis and Adaptive Regulation of Membrane Homeostasis |
url |
https://doi.org/10.3390/foods11233883 https://doaj.org/article/77a00d24c2e840659ac871d601e073e2 https://www.mdpi.com/2304-8158/11/23/3883 https://doaj.org/toc/2304-8158 |
remote_bool |
true |
author2 |
Chao-Hua Feng Guo Xie Wen-Li Liu Xiao-Lei Zhu |
author2Str |
Chao-Hua Feng Guo Xie Wen-Li Liu Xiao-Lei Zhu |
ppnlink |
737287632 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/foods11233883 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T14:16:44.029Z |
_version_ |
1803567711163252736 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007814941</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414155634.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/foods11233883</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007814941</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ77a00d24c2e840659ac871d601e073e2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zi-Yi Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Proteolysis Degree of Protein Corona Affect Ultrasound-Induced Sublethal Effects on <i<Saccharomyces cerevisiae</i<: Transcriptomics Analysis and Adaptive Regulation of Membrane Homeostasis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Protein corona (PC) adsorbed on the surface of nanoparticles brings new research perspectives on the interaction between nanoparticles and fermentative microorganisms. Herein, the proteolysis of wheat PC adsorbed on a nano-Se surface using cell-free protease extract from <i<S. cerevisiae</i< was conducted. The proteolysis caused monotonic changes of ζ-potentials and surface hydrophobicity of PC. Notably, the innermost PC layer was difficult to be proteolyzed. Furthermore, when <i<S. cerevisiae</i< was stimulated by ultrasound + 0.1 mg/mL nano-SePC, the proportion of lethal and sublethal injured cells increased as a function of the proteolysis time of PC. The transcriptomics analysis revealed that 34 differentially expressed genes which varied monotonically were related to the plasma membrane, fatty acid metabolism, glycerolipid metabolism, etc. Significant declines in the membrane potential and proton motive force disruption of membrane were found with the prolonged proteolysis time; meanwhile, higher membrane permeability, membrane oxidative stress levels, membrane lipid fluidity, and micro-viscosity were triggered.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">protein corona</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">proteolysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanoparticle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ultrasound</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chao-Hua Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guo Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wen-Li Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiao-Lei Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Foods</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2022), 23, p 3883</subfield><subfield code="w">(DE-627)737287632</subfield><subfield code="w">(DE-600)2704223-6</subfield><subfield code="x">23048158</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:23, p 3883</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/foods11233883</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/77a00d24c2e840659ac871d601e073e2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2304-8158/11/23/3883</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2304-8158</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2022</subfield><subfield code="e">23, p 3883</subfield></datafield></record></collection>
|
score |
7.401531 |