Big Data in Medicine, the Present and Hopefully the Future
The emergence of data coming from different venues, as several “omic” approaches, is providing already compelling evidence that the smart use of this information could provide invaluable information to prevent, diagnose and treat human diseases. However, the most daunting challenges remain ahead, as...
Ausführliche Beschreibung
Autor*in: |
Michela Riba [verfasserIn] Cinzia Sala [verfasserIn] Daniela Toniolo [verfasserIn] Giovanni Tonon [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Medicine - Frontiers Media S.A., 2014, 6(2019) |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2019 |
Links: |
---|
DOI / URN: |
10.3389/fmed.2019.00263 |
---|
Katalog-ID: |
DOAJ007873379 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ007873379 | ||
003 | DE-627 | ||
005 | 20230501174459.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fmed.2019.00263 |2 doi | |
035 | |a (DE-627)DOAJ007873379 | ||
035 | |a (DE-599)DOAJ53ede581ee4043d6add16643b4229dd8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a R5-920 | |
100 | 0 | |a Michela Riba |e verfasserin |4 aut | |
245 | 1 | 0 | |a Big Data in Medicine, the Present and Hopefully the Future |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The emergence of data coming from different venues, as several “omic” approaches, is providing already compelling evidence that the smart use of this information could provide invaluable information to prevent, diagnose and treat human diseases. However, the most daunting challenges remain ahead, as the explosive accumulation of data from additional perspectives, including social graphs, biosensors, and imaging, promise to deliver crucial information that could be exploited for the improvement of the entire human race, both in developed, and developing countries, optimizing health expenses and reaching also the less fortunate sections of the societies. And yet, formidable challenges remain, that pertain for the most part to the collection of the data, their organization, and most relevantly their integration. Here we provide few, pointed examples to the present relevance of these big data approaches in human health as well potential road maps toward the implementation of broader data collections and analyses. | ||
650 | 4 | |a personalized medicine | |
650 | 4 | |a genomics | |
650 | 4 | |a sequencing | |
650 | 4 | |a participatory medicine | |
650 | 4 | |a GDPR | |
653 | 0 | |a Medicine (General) | |
700 | 0 | |a Cinzia Sala |e verfasserin |4 aut | |
700 | 0 | |a Daniela Toniolo |e verfasserin |4 aut | |
700 | 0 | |a Giovanni Tonon |e verfasserin |4 aut | |
700 | 0 | |a Giovanni Tonon |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Medicine |d Frontiers Media S.A., 2014 |g 6(2019) |w (DE-627)789482991 |w (DE-600)2775999-4 |x 2296858X |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2019 |
856 | 4 | 0 | |u https://doi.org/10.3389/fmed.2019.00263 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/53ede581ee4043d6add16643b4229dd8 |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/article/10.3389/fmed.2019.00263/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2296-858X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2019 |
author_variant |
m r mr c s cs d t dt g t gt g t gt |
---|---|
matchkey_str |
article:2296858X:2019----::idtimdcntersnadoeu |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
R |
publishDate |
2019 |
allfields |
10.3389/fmed.2019.00263 doi (DE-627)DOAJ007873379 (DE-599)DOAJ53ede581ee4043d6add16643b4229dd8 DE-627 ger DE-627 rakwb eng R5-920 Michela Riba verfasserin aut Big Data in Medicine, the Present and Hopefully the Future 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The emergence of data coming from different venues, as several “omic” approaches, is providing already compelling evidence that the smart use of this information could provide invaluable information to prevent, diagnose and treat human diseases. However, the most daunting challenges remain ahead, as the explosive accumulation of data from additional perspectives, including social graphs, biosensors, and imaging, promise to deliver crucial information that could be exploited for the improvement of the entire human race, both in developed, and developing countries, optimizing health expenses and reaching also the less fortunate sections of the societies. And yet, formidable challenges remain, that pertain for the most part to the collection of the data, their organization, and most relevantly their integration. Here we provide few, pointed examples to the present relevance of these big data approaches in human health as well potential road maps toward the implementation of broader data collections and analyses. personalized medicine genomics sequencing participatory medicine GDPR Medicine (General) Cinzia Sala verfasserin aut Daniela Toniolo verfasserin aut Giovanni Tonon verfasserin aut Giovanni Tonon verfasserin aut In Frontiers in Medicine Frontiers Media S.A., 2014 6(2019) (DE-627)789482991 (DE-600)2775999-4 2296858X nnns volume:6 year:2019 https://doi.org/10.3389/fmed.2019.00263 kostenfrei https://doaj.org/article/53ede581ee4043d6add16643b4229dd8 kostenfrei https://www.frontiersin.org/article/10.3389/fmed.2019.00263/full kostenfrei https://doaj.org/toc/2296-858X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2019 |
spelling |
10.3389/fmed.2019.00263 doi (DE-627)DOAJ007873379 (DE-599)DOAJ53ede581ee4043d6add16643b4229dd8 DE-627 ger DE-627 rakwb eng R5-920 Michela Riba verfasserin aut Big Data in Medicine, the Present and Hopefully the Future 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The emergence of data coming from different venues, as several “omic” approaches, is providing already compelling evidence that the smart use of this information could provide invaluable information to prevent, diagnose and treat human diseases. However, the most daunting challenges remain ahead, as the explosive accumulation of data from additional perspectives, including social graphs, biosensors, and imaging, promise to deliver crucial information that could be exploited for the improvement of the entire human race, both in developed, and developing countries, optimizing health expenses and reaching also the less fortunate sections of the societies. And yet, formidable challenges remain, that pertain for the most part to the collection of the data, their organization, and most relevantly their integration. Here we provide few, pointed examples to the present relevance of these big data approaches in human health as well potential road maps toward the implementation of broader data collections and analyses. personalized medicine genomics sequencing participatory medicine GDPR Medicine (General) Cinzia Sala verfasserin aut Daniela Toniolo verfasserin aut Giovanni Tonon verfasserin aut Giovanni Tonon verfasserin aut In Frontiers in Medicine Frontiers Media S.A., 2014 6(2019) (DE-627)789482991 (DE-600)2775999-4 2296858X nnns volume:6 year:2019 https://doi.org/10.3389/fmed.2019.00263 kostenfrei https://doaj.org/article/53ede581ee4043d6add16643b4229dd8 kostenfrei https://www.frontiersin.org/article/10.3389/fmed.2019.00263/full kostenfrei https://doaj.org/toc/2296-858X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2019 |
allfields_unstemmed |
10.3389/fmed.2019.00263 doi (DE-627)DOAJ007873379 (DE-599)DOAJ53ede581ee4043d6add16643b4229dd8 DE-627 ger DE-627 rakwb eng R5-920 Michela Riba verfasserin aut Big Data in Medicine, the Present and Hopefully the Future 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The emergence of data coming from different venues, as several “omic” approaches, is providing already compelling evidence that the smart use of this information could provide invaluable information to prevent, diagnose and treat human diseases. However, the most daunting challenges remain ahead, as the explosive accumulation of data from additional perspectives, including social graphs, biosensors, and imaging, promise to deliver crucial information that could be exploited for the improvement of the entire human race, both in developed, and developing countries, optimizing health expenses and reaching also the less fortunate sections of the societies. And yet, formidable challenges remain, that pertain for the most part to the collection of the data, their organization, and most relevantly their integration. Here we provide few, pointed examples to the present relevance of these big data approaches in human health as well potential road maps toward the implementation of broader data collections and analyses. personalized medicine genomics sequencing participatory medicine GDPR Medicine (General) Cinzia Sala verfasserin aut Daniela Toniolo verfasserin aut Giovanni Tonon verfasserin aut Giovanni Tonon verfasserin aut In Frontiers in Medicine Frontiers Media S.A., 2014 6(2019) (DE-627)789482991 (DE-600)2775999-4 2296858X nnns volume:6 year:2019 https://doi.org/10.3389/fmed.2019.00263 kostenfrei https://doaj.org/article/53ede581ee4043d6add16643b4229dd8 kostenfrei https://www.frontiersin.org/article/10.3389/fmed.2019.00263/full kostenfrei https://doaj.org/toc/2296-858X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2019 |
allfieldsGer |
10.3389/fmed.2019.00263 doi (DE-627)DOAJ007873379 (DE-599)DOAJ53ede581ee4043d6add16643b4229dd8 DE-627 ger DE-627 rakwb eng R5-920 Michela Riba verfasserin aut Big Data in Medicine, the Present and Hopefully the Future 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The emergence of data coming from different venues, as several “omic” approaches, is providing already compelling evidence that the smart use of this information could provide invaluable information to prevent, diagnose and treat human diseases. However, the most daunting challenges remain ahead, as the explosive accumulation of data from additional perspectives, including social graphs, biosensors, and imaging, promise to deliver crucial information that could be exploited for the improvement of the entire human race, both in developed, and developing countries, optimizing health expenses and reaching also the less fortunate sections of the societies. And yet, formidable challenges remain, that pertain for the most part to the collection of the data, their organization, and most relevantly their integration. Here we provide few, pointed examples to the present relevance of these big data approaches in human health as well potential road maps toward the implementation of broader data collections and analyses. personalized medicine genomics sequencing participatory medicine GDPR Medicine (General) Cinzia Sala verfasserin aut Daniela Toniolo verfasserin aut Giovanni Tonon verfasserin aut Giovanni Tonon verfasserin aut In Frontiers in Medicine Frontiers Media S.A., 2014 6(2019) (DE-627)789482991 (DE-600)2775999-4 2296858X nnns volume:6 year:2019 https://doi.org/10.3389/fmed.2019.00263 kostenfrei https://doaj.org/article/53ede581ee4043d6add16643b4229dd8 kostenfrei https://www.frontiersin.org/article/10.3389/fmed.2019.00263/full kostenfrei https://doaj.org/toc/2296-858X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2019 |
allfieldsSound |
10.3389/fmed.2019.00263 doi (DE-627)DOAJ007873379 (DE-599)DOAJ53ede581ee4043d6add16643b4229dd8 DE-627 ger DE-627 rakwb eng R5-920 Michela Riba verfasserin aut Big Data in Medicine, the Present and Hopefully the Future 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The emergence of data coming from different venues, as several “omic” approaches, is providing already compelling evidence that the smart use of this information could provide invaluable information to prevent, diagnose and treat human diseases. However, the most daunting challenges remain ahead, as the explosive accumulation of data from additional perspectives, including social graphs, biosensors, and imaging, promise to deliver crucial information that could be exploited for the improvement of the entire human race, both in developed, and developing countries, optimizing health expenses and reaching also the less fortunate sections of the societies. And yet, formidable challenges remain, that pertain for the most part to the collection of the data, their organization, and most relevantly their integration. Here we provide few, pointed examples to the present relevance of these big data approaches in human health as well potential road maps toward the implementation of broader data collections and analyses. personalized medicine genomics sequencing participatory medicine GDPR Medicine (General) Cinzia Sala verfasserin aut Daniela Toniolo verfasserin aut Giovanni Tonon verfasserin aut Giovanni Tonon verfasserin aut In Frontiers in Medicine Frontiers Media S.A., 2014 6(2019) (DE-627)789482991 (DE-600)2775999-4 2296858X nnns volume:6 year:2019 https://doi.org/10.3389/fmed.2019.00263 kostenfrei https://doaj.org/article/53ede581ee4043d6add16643b4229dd8 kostenfrei https://www.frontiersin.org/article/10.3389/fmed.2019.00263/full kostenfrei https://doaj.org/toc/2296-858X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2019 |
language |
English |
source |
In Frontiers in Medicine 6(2019) volume:6 year:2019 |
sourceStr |
In Frontiers in Medicine 6(2019) volume:6 year:2019 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
personalized medicine genomics sequencing participatory medicine GDPR Medicine (General) |
isfreeaccess_bool |
true |
container_title |
Frontiers in Medicine |
authorswithroles_txt_mv |
Michela Riba @@aut@@ Cinzia Sala @@aut@@ Daniela Toniolo @@aut@@ Giovanni Tonon @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
789482991 |
id |
DOAJ007873379 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007873379</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501174459.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fmed.2019.00263</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007873379</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ53ede581ee4043d6add16643b4229dd8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R5-920</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Michela Riba</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Big Data in Medicine, the Present and Hopefully the Future</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The emergence of data coming from different venues, as several “omic” approaches, is providing already compelling evidence that the smart use of this information could provide invaluable information to prevent, diagnose and treat human diseases. However, the most daunting challenges remain ahead, as the explosive accumulation of data from additional perspectives, including social graphs, biosensors, and imaging, promise to deliver crucial information that could be exploited for the improvement of the entire human race, both in developed, and developing countries, optimizing health expenses and reaching also the less fortunate sections of the societies. And yet, formidable challenges remain, that pertain for the most part to the collection of the data, their organization, and most relevantly their integration. Here we provide few, pointed examples to the present relevance of these big data approaches in human health as well potential road maps toward the implementation of broader data collections and analyses.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">personalized medicine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sequencing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">participatory medicine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GDPR</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cinzia Sala</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniela Toniolo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giovanni Tonon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giovanni Tonon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Medicine</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">6(2019)</subfield><subfield code="w">(DE-627)789482991</subfield><subfield code="w">(DE-600)2775999-4</subfield><subfield code="x">2296858X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2019</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fmed.2019.00263</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/53ede581ee4043d6add16643b4229dd8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/article/10.3389/fmed.2019.00263/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-858X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2019</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Michela Riba |
spellingShingle |
Michela Riba misc R5-920 misc personalized medicine misc genomics misc sequencing misc participatory medicine misc GDPR misc Medicine (General) Big Data in Medicine, the Present and Hopefully the Future |
authorStr |
Michela Riba |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)789482991 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
R5-920 |
illustrated |
Not Illustrated |
issn |
2296858X |
topic_title |
R5-920 Big Data in Medicine, the Present and Hopefully the Future personalized medicine genomics sequencing participatory medicine GDPR |
topic |
misc R5-920 misc personalized medicine misc genomics misc sequencing misc participatory medicine misc GDPR misc Medicine (General) |
topic_unstemmed |
misc R5-920 misc personalized medicine misc genomics misc sequencing misc participatory medicine misc GDPR misc Medicine (General) |
topic_browse |
misc R5-920 misc personalized medicine misc genomics misc sequencing misc participatory medicine misc GDPR misc Medicine (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Medicine |
hierarchy_parent_id |
789482991 |
hierarchy_top_title |
Frontiers in Medicine |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)789482991 (DE-600)2775999-4 |
title |
Big Data in Medicine, the Present and Hopefully the Future |
ctrlnum |
(DE-627)DOAJ007873379 (DE-599)DOAJ53ede581ee4043d6add16643b4229dd8 |
title_full |
Big Data in Medicine, the Present and Hopefully the Future |
author_sort |
Michela Riba |
journal |
Frontiers in Medicine |
journalStr |
Frontiers in Medicine |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Michela Riba Cinzia Sala Daniela Toniolo Giovanni Tonon |
container_volume |
6 |
class |
R5-920 |
format_se |
Elektronische Aufsätze |
author-letter |
Michela Riba |
doi_str_mv |
10.3389/fmed.2019.00263 |
author2-role |
verfasserin |
title_sort |
big data in medicine, the present and hopefully the future |
callnumber |
R5-920 |
title_auth |
Big Data in Medicine, the Present and Hopefully the Future |
abstract |
The emergence of data coming from different venues, as several “omic” approaches, is providing already compelling evidence that the smart use of this information could provide invaluable information to prevent, diagnose and treat human diseases. However, the most daunting challenges remain ahead, as the explosive accumulation of data from additional perspectives, including social graphs, biosensors, and imaging, promise to deliver crucial information that could be exploited for the improvement of the entire human race, both in developed, and developing countries, optimizing health expenses and reaching also the less fortunate sections of the societies. And yet, formidable challenges remain, that pertain for the most part to the collection of the data, their organization, and most relevantly their integration. Here we provide few, pointed examples to the present relevance of these big data approaches in human health as well potential road maps toward the implementation of broader data collections and analyses. |
abstractGer |
The emergence of data coming from different venues, as several “omic” approaches, is providing already compelling evidence that the smart use of this information could provide invaluable information to prevent, diagnose and treat human diseases. However, the most daunting challenges remain ahead, as the explosive accumulation of data from additional perspectives, including social graphs, biosensors, and imaging, promise to deliver crucial information that could be exploited for the improvement of the entire human race, both in developed, and developing countries, optimizing health expenses and reaching also the less fortunate sections of the societies. And yet, formidable challenges remain, that pertain for the most part to the collection of the data, their organization, and most relevantly their integration. Here we provide few, pointed examples to the present relevance of these big data approaches in human health as well potential road maps toward the implementation of broader data collections and analyses. |
abstract_unstemmed |
The emergence of data coming from different venues, as several “omic” approaches, is providing already compelling evidence that the smart use of this information could provide invaluable information to prevent, diagnose and treat human diseases. However, the most daunting challenges remain ahead, as the explosive accumulation of data from additional perspectives, including social graphs, biosensors, and imaging, promise to deliver crucial information that could be exploited for the improvement of the entire human race, both in developed, and developing countries, optimizing health expenses and reaching also the less fortunate sections of the societies. And yet, formidable challenges remain, that pertain for the most part to the collection of the data, their organization, and most relevantly their integration. Here we provide few, pointed examples to the present relevance of these big data approaches in human health as well potential road maps toward the implementation of broader data collections and analyses. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Big Data in Medicine, the Present and Hopefully the Future |
url |
https://doi.org/10.3389/fmed.2019.00263 https://doaj.org/article/53ede581ee4043d6add16643b4229dd8 https://www.frontiersin.org/article/10.3389/fmed.2019.00263/full https://doaj.org/toc/2296-858X |
remote_bool |
true |
author2 |
Cinzia Sala Daniela Toniolo Giovanni Tonon |
author2Str |
Cinzia Sala Daniela Toniolo Giovanni Tonon |
ppnlink |
789482991 |
callnumber-subject |
R - General Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fmed.2019.00263 |
callnumber-a |
R5-920 |
up_date |
2024-07-03T14:37:30.533Z |
_version_ |
1803569018210091008 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007873379</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501174459.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fmed.2019.00263</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007873379</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ53ede581ee4043d6add16643b4229dd8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R5-920</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Michela Riba</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Big Data in Medicine, the Present and Hopefully the Future</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The emergence of data coming from different venues, as several “omic” approaches, is providing already compelling evidence that the smart use of this information could provide invaluable information to prevent, diagnose and treat human diseases. However, the most daunting challenges remain ahead, as the explosive accumulation of data from additional perspectives, including social graphs, biosensors, and imaging, promise to deliver crucial information that could be exploited for the improvement of the entire human race, both in developed, and developing countries, optimizing health expenses and reaching also the less fortunate sections of the societies. And yet, formidable challenges remain, that pertain for the most part to the collection of the data, their organization, and most relevantly their integration. Here we provide few, pointed examples to the present relevance of these big data approaches in human health as well potential road maps toward the implementation of broader data collections and analyses.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">personalized medicine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sequencing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">participatory medicine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GDPR</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cinzia Sala</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniela Toniolo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giovanni Tonon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giovanni Tonon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Medicine</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">6(2019)</subfield><subfield code="w">(DE-627)789482991</subfield><subfield code="w">(DE-600)2775999-4</subfield><subfield code="x">2296858X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2019</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fmed.2019.00263</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/53ede581ee4043d6add16643b4229dd8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/article/10.3389/fmed.2019.00263/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-858X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2019</subfield></datafield></record></collection>
|
score |
7.4020147 |