Quantification of Precipitation and Evapotranspiration Uncertainty in Rainfall-Runoff Modeling
Mountainous watersheds have always been a challenge for modelers due to large variability and insufficient ground observations, which cause forcing data, model structure, and parameter uncertainty. This study employed Differential Evolution Adaptive Metropolis (DREAM) algorithm which utilizes Markov...
Ausführliche Beschreibung
Autor*in: |
Faisal Baig [verfasserIn] Mohsen Sherif [verfasserIn] Muhammad Abrar Faiz [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Hydrology - MDPI AG, 2015, 9(2022), 3, p 51 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2022 ; number:3, p 51 |
Links: |
---|
DOI / URN: |
10.3390/hydrology9030051 |
---|
Katalog-ID: |
DOAJ007893213 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ007893213 | ||
003 | DE-627 | ||
005 | 20240414174541.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/hydrology9030051 |2 doi | |
035 | |a (DE-627)DOAJ007893213 | ||
035 | |a (DE-599)DOAJ8fbc76231e01471b98ceedc00ac718f2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Faisal Baig |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quantification of Precipitation and Evapotranspiration Uncertainty in Rainfall-Runoff Modeling |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Mountainous watersheds have always been a challenge for modelers due to large variability and insufficient ground observations, which cause forcing data, model structure, and parameter uncertainty. This study employed Differential Evolution Adaptive Metropolis (DREAM) algorithm which utilizes Markov Chain Monte Carlo (MCMC) approach to account for forcing data uncertainty. A conceptual degree day snowmelt model, MIKE 11 NAM (Nedbor Afstromnings Model), was used to simulate snowmelt runoff from Ilgaz basin, with an area of 28.4 km<sup<2</sup< area, located in the northern part of Turkey. The mean elevation is around 1700 m and the basin is covered with broadleaf forest and has mainly brown soil with a high water holding capacity. Precipitation and evapotranspiration (ET) values were optimized in combination with model parameters conditioned on observed discharges and corrected values of input data were utilized for calibration and validation. Results showed that the observed precipitation was over-estimated by almost 10%, while evapotranspiration calculated by Penman–Monteith method was underestimated. The mean values of storm and ET multipliers were obtained as 1.14 and 0.84, respectively. When only parameter uncertainty was considered, calibration did not yield Nash–Sutcliffe Efficiency (NSE) greater than 0.64. However, when forcing data uncertainty was incorporated in the DREAM approach, an improved value of NSE (0.84) was obtained. After calibration and treatment of forcing data errors, the model yielded reasonable prediction uncertainty bounds and well-defined posterior distributions of NAM model parameters. Main objectives of the study are to assess the applicability of MIKE 11 NAM model to the selected catchment. In addition, the importance of errors in the input forcing variables to the model is demonstrated. | ||
650 | 4 | |a uncertainty | |
650 | 4 | |a hydrological modeling | |
650 | 4 | |a NAM | |
650 | 4 | |a DREAM | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Mohsen Sherif |e verfasserin |4 aut | |
700 | 0 | |a Muhammad Abrar Faiz |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Hydrology |d MDPI AG, 2015 |g 9(2022), 3, p 51 |w (DE-627)791048659 |w (DE-600)2777964-6 |x 23065338 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2022 |g number:3, p 51 |
856 | 4 | 0 | |u https://doi.org/10.3390/hydrology9030051 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8fbc76231e01471b98ceedc00ac718f2 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2306-5338/9/3/51 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2306-5338 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2022 |e 3, p 51 |
author_variant |
f b fb m s ms m a f maf |
---|---|
matchkey_str |
article:23065338:2022----::uniiainfrcpttoadvptasiainnetiti |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3390/hydrology9030051 doi (DE-627)DOAJ007893213 (DE-599)DOAJ8fbc76231e01471b98ceedc00ac718f2 DE-627 ger DE-627 rakwb eng Faisal Baig verfasserin aut Quantification of Precipitation and Evapotranspiration Uncertainty in Rainfall-Runoff Modeling 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mountainous watersheds have always been a challenge for modelers due to large variability and insufficient ground observations, which cause forcing data, model structure, and parameter uncertainty. This study employed Differential Evolution Adaptive Metropolis (DREAM) algorithm which utilizes Markov Chain Monte Carlo (MCMC) approach to account for forcing data uncertainty. A conceptual degree day snowmelt model, MIKE 11 NAM (Nedbor Afstromnings Model), was used to simulate snowmelt runoff from Ilgaz basin, with an area of 28.4 km<sup<2</sup< area, located in the northern part of Turkey. The mean elevation is around 1700 m and the basin is covered with broadleaf forest and has mainly brown soil with a high water holding capacity. Precipitation and evapotranspiration (ET) values were optimized in combination with model parameters conditioned on observed discharges and corrected values of input data were utilized for calibration and validation. Results showed that the observed precipitation was over-estimated by almost 10%, while evapotranspiration calculated by Penman–Monteith method was underestimated. The mean values of storm and ET multipliers were obtained as 1.14 and 0.84, respectively. When only parameter uncertainty was considered, calibration did not yield Nash–Sutcliffe Efficiency (NSE) greater than 0.64. However, when forcing data uncertainty was incorporated in the DREAM approach, an improved value of NSE (0.84) was obtained. After calibration and treatment of forcing data errors, the model yielded reasonable prediction uncertainty bounds and well-defined posterior distributions of NAM model parameters. Main objectives of the study are to assess the applicability of MIKE 11 NAM model to the selected catchment. In addition, the importance of errors in the input forcing variables to the model is demonstrated. uncertainty hydrological modeling NAM DREAM Science Q Mohsen Sherif verfasserin aut Muhammad Abrar Faiz verfasserin aut In Hydrology MDPI AG, 2015 9(2022), 3, p 51 (DE-627)791048659 (DE-600)2777964-6 23065338 nnns volume:9 year:2022 number:3, p 51 https://doi.org/10.3390/hydrology9030051 kostenfrei https://doaj.org/article/8fbc76231e01471b98ceedc00ac718f2 kostenfrei https://www.mdpi.com/2306-5338/9/3/51 kostenfrei https://doaj.org/toc/2306-5338 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 9 2022 3, p 51 |
spelling |
10.3390/hydrology9030051 doi (DE-627)DOAJ007893213 (DE-599)DOAJ8fbc76231e01471b98ceedc00ac718f2 DE-627 ger DE-627 rakwb eng Faisal Baig verfasserin aut Quantification of Precipitation and Evapotranspiration Uncertainty in Rainfall-Runoff Modeling 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mountainous watersheds have always been a challenge for modelers due to large variability and insufficient ground observations, which cause forcing data, model structure, and parameter uncertainty. This study employed Differential Evolution Adaptive Metropolis (DREAM) algorithm which utilizes Markov Chain Monte Carlo (MCMC) approach to account for forcing data uncertainty. A conceptual degree day snowmelt model, MIKE 11 NAM (Nedbor Afstromnings Model), was used to simulate snowmelt runoff from Ilgaz basin, with an area of 28.4 km<sup<2</sup< area, located in the northern part of Turkey. The mean elevation is around 1700 m and the basin is covered with broadleaf forest and has mainly brown soil with a high water holding capacity. Precipitation and evapotranspiration (ET) values were optimized in combination with model parameters conditioned on observed discharges and corrected values of input data were utilized for calibration and validation. Results showed that the observed precipitation was over-estimated by almost 10%, while evapotranspiration calculated by Penman–Monteith method was underestimated. The mean values of storm and ET multipliers were obtained as 1.14 and 0.84, respectively. When only parameter uncertainty was considered, calibration did not yield Nash–Sutcliffe Efficiency (NSE) greater than 0.64. However, when forcing data uncertainty was incorporated in the DREAM approach, an improved value of NSE (0.84) was obtained. After calibration and treatment of forcing data errors, the model yielded reasonable prediction uncertainty bounds and well-defined posterior distributions of NAM model parameters. Main objectives of the study are to assess the applicability of MIKE 11 NAM model to the selected catchment. In addition, the importance of errors in the input forcing variables to the model is demonstrated. uncertainty hydrological modeling NAM DREAM Science Q Mohsen Sherif verfasserin aut Muhammad Abrar Faiz verfasserin aut In Hydrology MDPI AG, 2015 9(2022), 3, p 51 (DE-627)791048659 (DE-600)2777964-6 23065338 nnns volume:9 year:2022 number:3, p 51 https://doi.org/10.3390/hydrology9030051 kostenfrei https://doaj.org/article/8fbc76231e01471b98ceedc00ac718f2 kostenfrei https://www.mdpi.com/2306-5338/9/3/51 kostenfrei https://doaj.org/toc/2306-5338 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 9 2022 3, p 51 |
allfields_unstemmed |
10.3390/hydrology9030051 doi (DE-627)DOAJ007893213 (DE-599)DOAJ8fbc76231e01471b98ceedc00ac718f2 DE-627 ger DE-627 rakwb eng Faisal Baig verfasserin aut Quantification of Precipitation and Evapotranspiration Uncertainty in Rainfall-Runoff Modeling 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mountainous watersheds have always been a challenge for modelers due to large variability and insufficient ground observations, which cause forcing data, model structure, and parameter uncertainty. This study employed Differential Evolution Adaptive Metropolis (DREAM) algorithm which utilizes Markov Chain Monte Carlo (MCMC) approach to account for forcing data uncertainty. A conceptual degree day snowmelt model, MIKE 11 NAM (Nedbor Afstromnings Model), was used to simulate snowmelt runoff from Ilgaz basin, with an area of 28.4 km<sup<2</sup< area, located in the northern part of Turkey. The mean elevation is around 1700 m and the basin is covered with broadleaf forest and has mainly brown soil with a high water holding capacity. Precipitation and evapotranspiration (ET) values were optimized in combination with model parameters conditioned on observed discharges and corrected values of input data were utilized for calibration and validation. Results showed that the observed precipitation was over-estimated by almost 10%, while evapotranspiration calculated by Penman–Monteith method was underestimated. The mean values of storm and ET multipliers were obtained as 1.14 and 0.84, respectively. When only parameter uncertainty was considered, calibration did not yield Nash–Sutcliffe Efficiency (NSE) greater than 0.64. However, when forcing data uncertainty was incorporated in the DREAM approach, an improved value of NSE (0.84) was obtained. After calibration and treatment of forcing data errors, the model yielded reasonable prediction uncertainty bounds and well-defined posterior distributions of NAM model parameters. Main objectives of the study are to assess the applicability of MIKE 11 NAM model to the selected catchment. In addition, the importance of errors in the input forcing variables to the model is demonstrated. uncertainty hydrological modeling NAM DREAM Science Q Mohsen Sherif verfasserin aut Muhammad Abrar Faiz verfasserin aut In Hydrology MDPI AG, 2015 9(2022), 3, p 51 (DE-627)791048659 (DE-600)2777964-6 23065338 nnns volume:9 year:2022 number:3, p 51 https://doi.org/10.3390/hydrology9030051 kostenfrei https://doaj.org/article/8fbc76231e01471b98ceedc00ac718f2 kostenfrei https://www.mdpi.com/2306-5338/9/3/51 kostenfrei https://doaj.org/toc/2306-5338 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 9 2022 3, p 51 |
allfieldsGer |
10.3390/hydrology9030051 doi (DE-627)DOAJ007893213 (DE-599)DOAJ8fbc76231e01471b98ceedc00ac718f2 DE-627 ger DE-627 rakwb eng Faisal Baig verfasserin aut Quantification of Precipitation and Evapotranspiration Uncertainty in Rainfall-Runoff Modeling 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mountainous watersheds have always been a challenge for modelers due to large variability and insufficient ground observations, which cause forcing data, model structure, and parameter uncertainty. This study employed Differential Evolution Adaptive Metropolis (DREAM) algorithm which utilizes Markov Chain Monte Carlo (MCMC) approach to account for forcing data uncertainty. A conceptual degree day snowmelt model, MIKE 11 NAM (Nedbor Afstromnings Model), was used to simulate snowmelt runoff from Ilgaz basin, with an area of 28.4 km<sup<2</sup< area, located in the northern part of Turkey. The mean elevation is around 1700 m and the basin is covered with broadleaf forest and has mainly brown soil with a high water holding capacity. Precipitation and evapotranspiration (ET) values were optimized in combination with model parameters conditioned on observed discharges and corrected values of input data were utilized for calibration and validation. Results showed that the observed precipitation was over-estimated by almost 10%, while evapotranspiration calculated by Penman–Monteith method was underestimated. The mean values of storm and ET multipliers were obtained as 1.14 and 0.84, respectively. When only parameter uncertainty was considered, calibration did not yield Nash–Sutcliffe Efficiency (NSE) greater than 0.64. However, when forcing data uncertainty was incorporated in the DREAM approach, an improved value of NSE (0.84) was obtained. After calibration and treatment of forcing data errors, the model yielded reasonable prediction uncertainty bounds and well-defined posterior distributions of NAM model parameters. Main objectives of the study are to assess the applicability of MIKE 11 NAM model to the selected catchment. In addition, the importance of errors in the input forcing variables to the model is demonstrated. uncertainty hydrological modeling NAM DREAM Science Q Mohsen Sherif verfasserin aut Muhammad Abrar Faiz verfasserin aut In Hydrology MDPI AG, 2015 9(2022), 3, p 51 (DE-627)791048659 (DE-600)2777964-6 23065338 nnns volume:9 year:2022 number:3, p 51 https://doi.org/10.3390/hydrology9030051 kostenfrei https://doaj.org/article/8fbc76231e01471b98ceedc00ac718f2 kostenfrei https://www.mdpi.com/2306-5338/9/3/51 kostenfrei https://doaj.org/toc/2306-5338 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 9 2022 3, p 51 |
allfieldsSound |
10.3390/hydrology9030051 doi (DE-627)DOAJ007893213 (DE-599)DOAJ8fbc76231e01471b98ceedc00ac718f2 DE-627 ger DE-627 rakwb eng Faisal Baig verfasserin aut Quantification of Precipitation and Evapotranspiration Uncertainty in Rainfall-Runoff Modeling 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mountainous watersheds have always been a challenge for modelers due to large variability and insufficient ground observations, which cause forcing data, model structure, and parameter uncertainty. This study employed Differential Evolution Adaptive Metropolis (DREAM) algorithm which utilizes Markov Chain Monte Carlo (MCMC) approach to account for forcing data uncertainty. A conceptual degree day snowmelt model, MIKE 11 NAM (Nedbor Afstromnings Model), was used to simulate snowmelt runoff from Ilgaz basin, with an area of 28.4 km<sup<2</sup< area, located in the northern part of Turkey. The mean elevation is around 1700 m and the basin is covered with broadleaf forest and has mainly brown soil with a high water holding capacity. Precipitation and evapotranspiration (ET) values were optimized in combination with model parameters conditioned on observed discharges and corrected values of input data were utilized for calibration and validation. Results showed that the observed precipitation was over-estimated by almost 10%, while evapotranspiration calculated by Penman–Monteith method was underestimated. The mean values of storm and ET multipliers were obtained as 1.14 and 0.84, respectively. When only parameter uncertainty was considered, calibration did not yield Nash–Sutcliffe Efficiency (NSE) greater than 0.64. However, when forcing data uncertainty was incorporated in the DREAM approach, an improved value of NSE (0.84) was obtained. After calibration and treatment of forcing data errors, the model yielded reasonable prediction uncertainty bounds and well-defined posterior distributions of NAM model parameters. Main objectives of the study are to assess the applicability of MIKE 11 NAM model to the selected catchment. In addition, the importance of errors in the input forcing variables to the model is demonstrated. uncertainty hydrological modeling NAM DREAM Science Q Mohsen Sherif verfasserin aut Muhammad Abrar Faiz verfasserin aut In Hydrology MDPI AG, 2015 9(2022), 3, p 51 (DE-627)791048659 (DE-600)2777964-6 23065338 nnns volume:9 year:2022 number:3, p 51 https://doi.org/10.3390/hydrology9030051 kostenfrei https://doaj.org/article/8fbc76231e01471b98ceedc00ac718f2 kostenfrei https://www.mdpi.com/2306-5338/9/3/51 kostenfrei https://doaj.org/toc/2306-5338 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 9 2022 3, p 51 |
language |
English |
source |
In Hydrology 9(2022), 3, p 51 volume:9 year:2022 number:3, p 51 |
sourceStr |
In Hydrology 9(2022), 3, p 51 volume:9 year:2022 number:3, p 51 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
uncertainty hydrological modeling NAM DREAM Science Q |
isfreeaccess_bool |
true |
container_title |
Hydrology |
authorswithroles_txt_mv |
Faisal Baig @@aut@@ Mohsen Sherif @@aut@@ Muhammad Abrar Faiz @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
791048659 |
id |
DOAJ007893213 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007893213</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414174541.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/hydrology9030051</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007893213</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8fbc76231e01471b98ceedc00ac718f2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Faisal Baig</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantification of Precipitation and Evapotranspiration Uncertainty in Rainfall-Runoff Modeling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mountainous watersheds have always been a challenge for modelers due to large variability and insufficient ground observations, which cause forcing data, model structure, and parameter uncertainty. This study employed Differential Evolution Adaptive Metropolis (DREAM) algorithm which utilizes Markov Chain Monte Carlo (MCMC) approach to account for forcing data uncertainty. A conceptual degree day snowmelt model, MIKE 11 NAM (Nedbor Afstromnings Model), was used to simulate snowmelt runoff from Ilgaz basin, with an area of 28.4 km<sup<2</sup< area, located in the northern part of Turkey. The mean elevation is around 1700 m and the basin is covered with broadleaf forest and has mainly brown soil with a high water holding capacity. Precipitation and evapotranspiration (ET) values were optimized in combination with model parameters conditioned on observed discharges and corrected values of input data were utilized for calibration and validation. Results showed that the observed precipitation was over-estimated by almost 10%, while evapotranspiration calculated by Penman–Monteith method was underestimated. The mean values of storm and ET multipliers were obtained as 1.14 and 0.84, respectively. When only parameter uncertainty was considered, calibration did not yield Nash–Sutcliffe Efficiency (NSE) greater than 0.64. However, when forcing data uncertainty was incorporated in the DREAM approach, an improved value of NSE (0.84) was obtained. After calibration and treatment of forcing data errors, the model yielded reasonable prediction uncertainty bounds and well-defined posterior distributions of NAM model parameters. Main objectives of the study are to assess the applicability of MIKE 11 NAM model to the selected catchment. In addition, the importance of errors in the input forcing variables to the model is demonstrated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">uncertainty</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydrological modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NAM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DREAM</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohsen Sherif</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muhammad Abrar Faiz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Hydrology</subfield><subfield code="d">MDPI AG, 2015</subfield><subfield code="g">9(2022), 3, p 51</subfield><subfield code="w">(DE-627)791048659</subfield><subfield code="w">(DE-600)2777964-6</subfield><subfield code="x">23065338</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3, p 51</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/hydrology9030051</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8fbc76231e01471b98ceedc00ac718f2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2306-5338/9/3/51</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2306-5338</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield><subfield code="e">3, p 51</subfield></datafield></record></collection>
|
author |
Faisal Baig |
spellingShingle |
Faisal Baig misc uncertainty misc hydrological modeling misc NAM misc DREAM misc Science misc Q Quantification of Precipitation and Evapotranspiration Uncertainty in Rainfall-Runoff Modeling |
authorStr |
Faisal Baig |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)791048659 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
23065338 |
topic_title |
Quantification of Precipitation and Evapotranspiration Uncertainty in Rainfall-Runoff Modeling uncertainty hydrological modeling NAM DREAM |
topic |
misc uncertainty misc hydrological modeling misc NAM misc DREAM misc Science misc Q |
topic_unstemmed |
misc uncertainty misc hydrological modeling misc NAM misc DREAM misc Science misc Q |
topic_browse |
misc uncertainty misc hydrological modeling misc NAM misc DREAM misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Hydrology |
hierarchy_parent_id |
791048659 |
hierarchy_top_title |
Hydrology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)791048659 (DE-600)2777964-6 |
title |
Quantification of Precipitation and Evapotranspiration Uncertainty in Rainfall-Runoff Modeling |
ctrlnum |
(DE-627)DOAJ007893213 (DE-599)DOAJ8fbc76231e01471b98ceedc00ac718f2 |
title_full |
Quantification of Precipitation and Evapotranspiration Uncertainty in Rainfall-Runoff Modeling |
author_sort |
Faisal Baig |
journal |
Hydrology |
journalStr |
Hydrology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Faisal Baig Mohsen Sherif Muhammad Abrar Faiz |
container_volume |
9 |
format_se |
Elektronische Aufsätze |
author-letter |
Faisal Baig |
doi_str_mv |
10.3390/hydrology9030051 |
author2-role |
verfasserin |
title_sort |
quantification of precipitation and evapotranspiration uncertainty in rainfall-runoff modeling |
title_auth |
Quantification of Precipitation and Evapotranspiration Uncertainty in Rainfall-Runoff Modeling |
abstract |
Mountainous watersheds have always been a challenge for modelers due to large variability and insufficient ground observations, which cause forcing data, model structure, and parameter uncertainty. This study employed Differential Evolution Adaptive Metropolis (DREAM) algorithm which utilizes Markov Chain Monte Carlo (MCMC) approach to account for forcing data uncertainty. A conceptual degree day snowmelt model, MIKE 11 NAM (Nedbor Afstromnings Model), was used to simulate snowmelt runoff from Ilgaz basin, with an area of 28.4 km<sup<2</sup< area, located in the northern part of Turkey. The mean elevation is around 1700 m and the basin is covered with broadleaf forest and has mainly brown soil with a high water holding capacity. Precipitation and evapotranspiration (ET) values were optimized in combination with model parameters conditioned on observed discharges and corrected values of input data were utilized for calibration and validation. Results showed that the observed precipitation was over-estimated by almost 10%, while evapotranspiration calculated by Penman–Monteith method was underestimated. The mean values of storm and ET multipliers were obtained as 1.14 and 0.84, respectively. When only parameter uncertainty was considered, calibration did not yield Nash–Sutcliffe Efficiency (NSE) greater than 0.64. However, when forcing data uncertainty was incorporated in the DREAM approach, an improved value of NSE (0.84) was obtained. After calibration and treatment of forcing data errors, the model yielded reasonable prediction uncertainty bounds and well-defined posterior distributions of NAM model parameters. Main objectives of the study are to assess the applicability of MIKE 11 NAM model to the selected catchment. In addition, the importance of errors in the input forcing variables to the model is demonstrated. |
abstractGer |
Mountainous watersheds have always been a challenge for modelers due to large variability and insufficient ground observations, which cause forcing data, model structure, and parameter uncertainty. This study employed Differential Evolution Adaptive Metropolis (DREAM) algorithm which utilizes Markov Chain Monte Carlo (MCMC) approach to account for forcing data uncertainty. A conceptual degree day snowmelt model, MIKE 11 NAM (Nedbor Afstromnings Model), was used to simulate snowmelt runoff from Ilgaz basin, with an area of 28.4 km<sup<2</sup< area, located in the northern part of Turkey. The mean elevation is around 1700 m and the basin is covered with broadleaf forest and has mainly brown soil with a high water holding capacity. Precipitation and evapotranspiration (ET) values were optimized in combination with model parameters conditioned on observed discharges and corrected values of input data were utilized for calibration and validation. Results showed that the observed precipitation was over-estimated by almost 10%, while evapotranspiration calculated by Penman–Monteith method was underestimated. The mean values of storm and ET multipliers were obtained as 1.14 and 0.84, respectively. When only parameter uncertainty was considered, calibration did not yield Nash–Sutcliffe Efficiency (NSE) greater than 0.64. However, when forcing data uncertainty was incorporated in the DREAM approach, an improved value of NSE (0.84) was obtained. After calibration and treatment of forcing data errors, the model yielded reasonable prediction uncertainty bounds and well-defined posterior distributions of NAM model parameters. Main objectives of the study are to assess the applicability of MIKE 11 NAM model to the selected catchment. In addition, the importance of errors in the input forcing variables to the model is demonstrated. |
abstract_unstemmed |
Mountainous watersheds have always been a challenge for modelers due to large variability and insufficient ground observations, which cause forcing data, model structure, and parameter uncertainty. This study employed Differential Evolution Adaptive Metropolis (DREAM) algorithm which utilizes Markov Chain Monte Carlo (MCMC) approach to account for forcing data uncertainty. A conceptual degree day snowmelt model, MIKE 11 NAM (Nedbor Afstromnings Model), was used to simulate snowmelt runoff from Ilgaz basin, with an area of 28.4 km<sup<2</sup< area, located in the northern part of Turkey. The mean elevation is around 1700 m and the basin is covered with broadleaf forest and has mainly brown soil with a high water holding capacity. Precipitation and evapotranspiration (ET) values were optimized in combination with model parameters conditioned on observed discharges and corrected values of input data were utilized for calibration and validation. Results showed that the observed precipitation was over-estimated by almost 10%, while evapotranspiration calculated by Penman–Monteith method was underestimated. The mean values of storm and ET multipliers were obtained as 1.14 and 0.84, respectively. When only parameter uncertainty was considered, calibration did not yield Nash–Sutcliffe Efficiency (NSE) greater than 0.64. However, when forcing data uncertainty was incorporated in the DREAM approach, an improved value of NSE (0.84) was obtained. After calibration and treatment of forcing data errors, the model yielded reasonable prediction uncertainty bounds and well-defined posterior distributions of NAM model parameters. Main objectives of the study are to assess the applicability of MIKE 11 NAM model to the selected catchment. In addition, the importance of errors in the input forcing variables to the model is demonstrated. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
3, p 51 |
title_short |
Quantification of Precipitation and Evapotranspiration Uncertainty in Rainfall-Runoff Modeling |
url |
https://doi.org/10.3390/hydrology9030051 https://doaj.org/article/8fbc76231e01471b98ceedc00ac718f2 https://www.mdpi.com/2306-5338/9/3/51 https://doaj.org/toc/2306-5338 |
remote_bool |
true |
author2 |
Mohsen Sherif Muhammad Abrar Faiz |
author2Str |
Mohsen Sherif Muhammad Abrar Faiz |
ppnlink |
791048659 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/hydrology9030051 |
up_date |
2024-07-03T14:44:47.254Z |
_version_ |
1803569476155736064 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007893213</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414174541.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/hydrology9030051</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007893213</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8fbc76231e01471b98ceedc00ac718f2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Faisal Baig</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantification of Precipitation and Evapotranspiration Uncertainty in Rainfall-Runoff Modeling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mountainous watersheds have always been a challenge for modelers due to large variability and insufficient ground observations, which cause forcing data, model structure, and parameter uncertainty. This study employed Differential Evolution Adaptive Metropolis (DREAM) algorithm which utilizes Markov Chain Monte Carlo (MCMC) approach to account for forcing data uncertainty. A conceptual degree day snowmelt model, MIKE 11 NAM (Nedbor Afstromnings Model), was used to simulate snowmelt runoff from Ilgaz basin, with an area of 28.4 km<sup<2</sup< area, located in the northern part of Turkey. The mean elevation is around 1700 m and the basin is covered with broadleaf forest and has mainly brown soil with a high water holding capacity. Precipitation and evapotranspiration (ET) values were optimized in combination with model parameters conditioned on observed discharges and corrected values of input data were utilized for calibration and validation. Results showed that the observed precipitation was over-estimated by almost 10%, while evapotranspiration calculated by Penman–Monteith method was underestimated. The mean values of storm and ET multipliers were obtained as 1.14 and 0.84, respectively. When only parameter uncertainty was considered, calibration did not yield Nash–Sutcliffe Efficiency (NSE) greater than 0.64. However, when forcing data uncertainty was incorporated in the DREAM approach, an improved value of NSE (0.84) was obtained. After calibration and treatment of forcing data errors, the model yielded reasonable prediction uncertainty bounds and well-defined posterior distributions of NAM model parameters. Main objectives of the study are to assess the applicability of MIKE 11 NAM model to the selected catchment. In addition, the importance of errors in the input forcing variables to the model is demonstrated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">uncertainty</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydrological modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NAM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DREAM</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohsen Sherif</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muhammad Abrar Faiz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Hydrology</subfield><subfield code="d">MDPI AG, 2015</subfield><subfield code="g">9(2022), 3, p 51</subfield><subfield code="w">(DE-627)791048659</subfield><subfield code="w">(DE-600)2777964-6</subfield><subfield code="x">23065338</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3, p 51</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/hydrology9030051</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8fbc76231e01471b98ceedc00ac718f2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2306-5338/9/3/51</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2306-5338</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield><subfield code="e">3, p 51</subfield></datafield></record></collection>
|
score |
7.398796 |