Reliable Ge2Sb2Te5 based phase-change electronic synapses using carbon doping and programmed pulses
Hardware electronic synapse and neuro-inspired computing system based on phase change random access memory (PCRAM) have attracted an extensive investigation. However, due to the intrinsic asymmetric reversible phase transition, the defective weight update of PCRAM synapses in aspects of tuning range...
Ausführliche Beschreibung
Autor*in: |
Qiang Wang [verfasserIn] Gang Niu [verfasserIn] Ruobing Wang [verfasserIn] Ren Luo [verfasserIn] Zuo-Guang Ye [verfasserIn] Jinshun Bi [verfasserIn] Xi Li [verfasserIn] Zhitang Song [verfasserIn] Wei Ren [verfasserIn] Sannian Song [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Materiomics - Elsevier, 2016, 8(2022), 2, Seite 382-391 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2022 ; number:2 ; pages:382-391 |
Links: |
---|
DOI / URN: |
10.1016/j.jmat.2021.08.004 |
---|
Katalog-ID: |
DOAJ007966679 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ007966679 | ||
003 | DE-627 | ||
005 | 20230310002511.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jmat.2021.08.004 |2 doi | |
035 | |a (DE-627)DOAJ007966679 | ||
035 | |a (DE-599)DOAJ09ece65b6d5b410982e9c12afd5ec63b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA401-492 | |
100 | 0 | |a Qiang Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Reliable Ge2Sb2Te5 based phase-change electronic synapses using carbon doping and programmed pulses |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Hardware electronic synapse and neuro-inspired computing system based on phase change random access memory (PCRAM) have attracted an extensive investigation. However, due to the intrinsic asymmetric reversible phase transition, the defective weight update of PCRAM synapses in aspects of tuning range, linearity and continuity has long required a system-level complexity of circuits and algorithms. The cell-level improvements to a great extent may slim the system thus achieving efficient computing. We report in this work the great enhancement of Ge2Sb2Te5 (GST) based PCRAM synapses by combining materials engineering and pulse programming. It is found that carbon doping in GST retards the rate of phase changing thus increasing the controllability of the conductance, while non-linear programmable pulse excitations can eventually lead to a reliable synaptic potentiation and depression. A set of improved programmable pulse schemes for spike-timing dependent plasticity was then demonstrated, suggesting its potential superiority in flexible programming and reliable data collection. Our methods and results are of great significance for implementing PCRAM electronic synapses and high-performance neuro-inspired computing. | ||
650 | 4 | |a Programmable synapse | |
650 | 4 | |a Synaptic simulation | |
650 | 4 | |a PCRAM | |
650 | 4 | |a C-doped Ge2Sb2Te5 | |
650 | 4 | |a Electronic synapse | |
653 | 0 | |a Materials of engineering and construction. Mechanics of materials | |
700 | 0 | |a Gang Niu |e verfasserin |4 aut | |
700 | 0 | |a Ruobing Wang |e verfasserin |4 aut | |
700 | 0 | |a Ren Luo |e verfasserin |4 aut | |
700 | 0 | |a Zuo-Guang Ye |e verfasserin |4 aut | |
700 | 0 | |a Jinshun Bi |e verfasserin |4 aut | |
700 | 0 | |a Xi Li |e verfasserin |4 aut | |
700 | 0 | |a Zhitang Song |e verfasserin |4 aut | |
700 | 0 | |a Wei Ren |e verfasserin |4 aut | |
700 | 0 | |a Sannian Song |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Materiomics |d Elsevier, 2016 |g 8(2022), 2, Seite 382-391 |w (DE-627)DOAJ000063401 |x 23528486 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2022 |g number:2 |g pages:382-391 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jmat.2021.08.004 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/09ece65b6d5b410982e9c12afd5ec63b |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2352847821001210 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2352-8478 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
951 | |a AR | ||
952 | |d 8 |j 2022 |e 2 |h 382-391 |
author_variant |
q w qw g n gn r w rw r l rl z g y zgy j b jb x l xl z s zs w r wr s s ss |
---|---|
matchkey_str |
article:23528486:2022----::eibees2ebsdhscageetoisnpeuigabn |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TA |
publishDate |
2022 |
allfields |
10.1016/j.jmat.2021.08.004 doi (DE-627)DOAJ007966679 (DE-599)DOAJ09ece65b6d5b410982e9c12afd5ec63b DE-627 ger DE-627 rakwb eng TA401-492 Qiang Wang verfasserin aut Reliable Ge2Sb2Te5 based phase-change electronic synapses using carbon doping and programmed pulses 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hardware electronic synapse and neuro-inspired computing system based on phase change random access memory (PCRAM) have attracted an extensive investigation. However, due to the intrinsic asymmetric reversible phase transition, the defective weight update of PCRAM synapses in aspects of tuning range, linearity and continuity has long required a system-level complexity of circuits and algorithms. The cell-level improvements to a great extent may slim the system thus achieving efficient computing. We report in this work the great enhancement of Ge2Sb2Te5 (GST) based PCRAM synapses by combining materials engineering and pulse programming. It is found that carbon doping in GST retards the rate of phase changing thus increasing the controllability of the conductance, while non-linear programmable pulse excitations can eventually lead to a reliable synaptic potentiation and depression. A set of improved programmable pulse schemes for spike-timing dependent plasticity was then demonstrated, suggesting its potential superiority in flexible programming and reliable data collection. Our methods and results are of great significance for implementing PCRAM electronic synapses and high-performance neuro-inspired computing. Programmable synapse Synaptic simulation PCRAM C-doped Ge2Sb2Te5 Electronic synapse Materials of engineering and construction. Mechanics of materials Gang Niu verfasserin aut Ruobing Wang verfasserin aut Ren Luo verfasserin aut Zuo-Guang Ye verfasserin aut Jinshun Bi verfasserin aut Xi Li verfasserin aut Zhitang Song verfasserin aut Wei Ren verfasserin aut Sannian Song verfasserin aut In Journal of Materiomics Elsevier, 2016 8(2022), 2, Seite 382-391 (DE-627)DOAJ000063401 23528486 nnns volume:8 year:2022 number:2 pages:382-391 https://doi.org/10.1016/j.jmat.2021.08.004 kostenfrei https://doaj.org/article/09ece65b6d5b410982e9c12afd5ec63b kostenfrei http://www.sciencedirect.com/science/article/pii/S2352847821001210 kostenfrei https://doaj.org/toc/2352-8478 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 8 2022 2 382-391 |
spelling |
10.1016/j.jmat.2021.08.004 doi (DE-627)DOAJ007966679 (DE-599)DOAJ09ece65b6d5b410982e9c12afd5ec63b DE-627 ger DE-627 rakwb eng TA401-492 Qiang Wang verfasserin aut Reliable Ge2Sb2Te5 based phase-change electronic synapses using carbon doping and programmed pulses 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hardware electronic synapse and neuro-inspired computing system based on phase change random access memory (PCRAM) have attracted an extensive investigation. However, due to the intrinsic asymmetric reversible phase transition, the defective weight update of PCRAM synapses in aspects of tuning range, linearity and continuity has long required a system-level complexity of circuits and algorithms. The cell-level improvements to a great extent may slim the system thus achieving efficient computing. We report in this work the great enhancement of Ge2Sb2Te5 (GST) based PCRAM synapses by combining materials engineering and pulse programming. It is found that carbon doping in GST retards the rate of phase changing thus increasing the controllability of the conductance, while non-linear programmable pulse excitations can eventually lead to a reliable synaptic potentiation and depression. A set of improved programmable pulse schemes for spike-timing dependent plasticity was then demonstrated, suggesting its potential superiority in flexible programming and reliable data collection. Our methods and results are of great significance for implementing PCRAM electronic synapses and high-performance neuro-inspired computing. Programmable synapse Synaptic simulation PCRAM C-doped Ge2Sb2Te5 Electronic synapse Materials of engineering and construction. Mechanics of materials Gang Niu verfasserin aut Ruobing Wang verfasserin aut Ren Luo verfasserin aut Zuo-Guang Ye verfasserin aut Jinshun Bi verfasserin aut Xi Li verfasserin aut Zhitang Song verfasserin aut Wei Ren verfasserin aut Sannian Song verfasserin aut In Journal of Materiomics Elsevier, 2016 8(2022), 2, Seite 382-391 (DE-627)DOAJ000063401 23528486 nnns volume:8 year:2022 number:2 pages:382-391 https://doi.org/10.1016/j.jmat.2021.08.004 kostenfrei https://doaj.org/article/09ece65b6d5b410982e9c12afd5ec63b kostenfrei http://www.sciencedirect.com/science/article/pii/S2352847821001210 kostenfrei https://doaj.org/toc/2352-8478 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 8 2022 2 382-391 |
allfields_unstemmed |
10.1016/j.jmat.2021.08.004 doi (DE-627)DOAJ007966679 (DE-599)DOAJ09ece65b6d5b410982e9c12afd5ec63b DE-627 ger DE-627 rakwb eng TA401-492 Qiang Wang verfasserin aut Reliable Ge2Sb2Te5 based phase-change electronic synapses using carbon doping and programmed pulses 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hardware electronic synapse and neuro-inspired computing system based on phase change random access memory (PCRAM) have attracted an extensive investigation. However, due to the intrinsic asymmetric reversible phase transition, the defective weight update of PCRAM synapses in aspects of tuning range, linearity and continuity has long required a system-level complexity of circuits and algorithms. The cell-level improvements to a great extent may slim the system thus achieving efficient computing. We report in this work the great enhancement of Ge2Sb2Te5 (GST) based PCRAM synapses by combining materials engineering and pulse programming. It is found that carbon doping in GST retards the rate of phase changing thus increasing the controllability of the conductance, while non-linear programmable pulse excitations can eventually lead to a reliable synaptic potentiation and depression. A set of improved programmable pulse schemes for spike-timing dependent plasticity was then demonstrated, suggesting its potential superiority in flexible programming and reliable data collection. Our methods and results are of great significance for implementing PCRAM electronic synapses and high-performance neuro-inspired computing. Programmable synapse Synaptic simulation PCRAM C-doped Ge2Sb2Te5 Electronic synapse Materials of engineering and construction. Mechanics of materials Gang Niu verfasserin aut Ruobing Wang verfasserin aut Ren Luo verfasserin aut Zuo-Guang Ye verfasserin aut Jinshun Bi verfasserin aut Xi Li verfasserin aut Zhitang Song verfasserin aut Wei Ren verfasserin aut Sannian Song verfasserin aut In Journal of Materiomics Elsevier, 2016 8(2022), 2, Seite 382-391 (DE-627)DOAJ000063401 23528486 nnns volume:8 year:2022 number:2 pages:382-391 https://doi.org/10.1016/j.jmat.2021.08.004 kostenfrei https://doaj.org/article/09ece65b6d5b410982e9c12afd5ec63b kostenfrei http://www.sciencedirect.com/science/article/pii/S2352847821001210 kostenfrei https://doaj.org/toc/2352-8478 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 8 2022 2 382-391 |
allfieldsGer |
10.1016/j.jmat.2021.08.004 doi (DE-627)DOAJ007966679 (DE-599)DOAJ09ece65b6d5b410982e9c12afd5ec63b DE-627 ger DE-627 rakwb eng TA401-492 Qiang Wang verfasserin aut Reliable Ge2Sb2Te5 based phase-change electronic synapses using carbon doping and programmed pulses 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hardware electronic synapse and neuro-inspired computing system based on phase change random access memory (PCRAM) have attracted an extensive investigation. However, due to the intrinsic asymmetric reversible phase transition, the defective weight update of PCRAM synapses in aspects of tuning range, linearity and continuity has long required a system-level complexity of circuits and algorithms. The cell-level improvements to a great extent may slim the system thus achieving efficient computing. We report in this work the great enhancement of Ge2Sb2Te5 (GST) based PCRAM synapses by combining materials engineering and pulse programming. It is found that carbon doping in GST retards the rate of phase changing thus increasing the controllability of the conductance, while non-linear programmable pulse excitations can eventually lead to a reliable synaptic potentiation and depression. A set of improved programmable pulse schemes for spike-timing dependent plasticity was then demonstrated, suggesting its potential superiority in flexible programming and reliable data collection. Our methods and results are of great significance for implementing PCRAM electronic synapses and high-performance neuro-inspired computing. Programmable synapse Synaptic simulation PCRAM C-doped Ge2Sb2Te5 Electronic synapse Materials of engineering and construction. Mechanics of materials Gang Niu verfasserin aut Ruobing Wang verfasserin aut Ren Luo verfasserin aut Zuo-Guang Ye verfasserin aut Jinshun Bi verfasserin aut Xi Li verfasserin aut Zhitang Song verfasserin aut Wei Ren verfasserin aut Sannian Song verfasserin aut In Journal of Materiomics Elsevier, 2016 8(2022), 2, Seite 382-391 (DE-627)DOAJ000063401 23528486 nnns volume:8 year:2022 number:2 pages:382-391 https://doi.org/10.1016/j.jmat.2021.08.004 kostenfrei https://doaj.org/article/09ece65b6d5b410982e9c12afd5ec63b kostenfrei http://www.sciencedirect.com/science/article/pii/S2352847821001210 kostenfrei https://doaj.org/toc/2352-8478 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 8 2022 2 382-391 |
allfieldsSound |
10.1016/j.jmat.2021.08.004 doi (DE-627)DOAJ007966679 (DE-599)DOAJ09ece65b6d5b410982e9c12afd5ec63b DE-627 ger DE-627 rakwb eng TA401-492 Qiang Wang verfasserin aut Reliable Ge2Sb2Te5 based phase-change electronic synapses using carbon doping and programmed pulses 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hardware electronic synapse and neuro-inspired computing system based on phase change random access memory (PCRAM) have attracted an extensive investigation. However, due to the intrinsic asymmetric reversible phase transition, the defective weight update of PCRAM synapses in aspects of tuning range, linearity and continuity has long required a system-level complexity of circuits and algorithms. The cell-level improvements to a great extent may slim the system thus achieving efficient computing. We report in this work the great enhancement of Ge2Sb2Te5 (GST) based PCRAM synapses by combining materials engineering and pulse programming. It is found that carbon doping in GST retards the rate of phase changing thus increasing the controllability of the conductance, while non-linear programmable pulse excitations can eventually lead to a reliable synaptic potentiation and depression. A set of improved programmable pulse schemes for spike-timing dependent plasticity was then demonstrated, suggesting its potential superiority in flexible programming and reliable data collection. Our methods and results are of great significance for implementing PCRAM electronic synapses and high-performance neuro-inspired computing. Programmable synapse Synaptic simulation PCRAM C-doped Ge2Sb2Te5 Electronic synapse Materials of engineering and construction. Mechanics of materials Gang Niu verfasserin aut Ruobing Wang verfasserin aut Ren Luo verfasserin aut Zuo-Guang Ye verfasserin aut Jinshun Bi verfasserin aut Xi Li verfasserin aut Zhitang Song verfasserin aut Wei Ren verfasserin aut Sannian Song verfasserin aut In Journal of Materiomics Elsevier, 2016 8(2022), 2, Seite 382-391 (DE-627)DOAJ000063401 23528486 nnns volume:8 year:2022 number:2 pages:382-391 https://doi.org/10.1016/j.jmat.2021.08.004 kostenfrei https://doaj.org/article/09ece65b6d5b410982e9c12afd5ec63b kostenfrei http://www.sciencedirect.com/science/article/pii/S2352847821001210 kostenfrei https://doaj.org/toc/2352-8478 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 8 2022 2 382-391 |
language |
English |
source |
In Journal of Materiomics 8(2022), 2, Seite 382-391 volume:8 year:2022 number:2 pages:382-391 |
sourceStr |
In Journal of Materiomics 8(2022), 2, Seite 382-391 volume:8 year:2022 number:2 pages:382-391 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Programmable synapse Synaptic simulation PCRAM C-doped Ge2Sb2Te5 Electronic synapse Materials of engineering and construction. Mechanics of materials |
isfreeaccess_bool |
true |
container_title |
Journal of Materiomics |
authorswithroles_txt_mv |
Qiang Wang @@aut@@ Gang Niu @@aut@@ Ruobing Wang @@aut@@ Ren Luo @@aut@@ Zuo-Guang Ye @@aut@@ Jinshun Bi @@aut@@ Xi Li @@aut@@ Zhitang Song @@aut@@ Wei Ren @@aut@@ Sannian Song @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
DOAJ000063401 |
id |
DOAJ007966679 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007966679</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310002511.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmat.2021.08.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007966679</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ09ece65b6d5b410982e9c12afd5ec63b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qiang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reliable Ge2Sb2Te5 based phase-change electronic synapses using carbon doping and programmed pulses</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hardware electronic synapse and neuro-inspired computing system based on phase change random access memory (PCRAM) have attracted an extensive investigation. However, due to the intrinsic asymmetric reversible phase transition, the defective weight update of PCRAM synapses in aspects of tuning range, linearity and continuity has long required a system-level complexity of circuits and algorithms. The cell-level improvements to a great extent may slim the system thus achieving efficient computing. We report in this work the great enhancement of Ge2Sb2Te5 (GST) based PCRAM synapses by combining materials engineering and pulse programming. It is found that carbon doping in GST retards the rate of phase changing thus increasing the controllability of the conductance, while non-linear programmable pulse excitations can eventually lead to a reliable synaptic potentiation and depression. A set of improved programmable pulse schemes for spike-timing dependent plasticity was then demonstrated, suggesting its potential superiority in flexible programming and reliable data collection. Our methods and results are of great significance for implementing PCRAM electronic synapses and high-performance neuro-inspired computing.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Programmable synapse</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synaptic simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PCRAM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">C-doped Ge2Sb2Te5</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic synapse</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gang Niu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ruobing Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ren Luo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zuo-Guang Ye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinshun Bi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xi Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhitang Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Ren</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sannian Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Materiomics</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">8(2022), 2, Seite 382-391</subfield><subfield code="w">(DE-627)DOAJ000063401</subfield><subfield code="x">23528486</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:382-391</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmat.2021.08.004</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/09ece65b6d5b410982e9c12afd5ec63b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2352847821001210</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2352-8478</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="h">382-391</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Qiang Wang |
spellingShingle |
Qiang Wang misc TA401-492 misc Programmable synapse misc Synaptic simulation misc PCRAM misc C-doped Ge2Sb2Te5 misc Electronic synapse misc Materials of engineering and construction. Mechanics of materials Reliable Ge2Sb2Te5 based phase-change electronic synapses using carbon doping and programmed pulses |
authorStr |
Qiang Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)DOAJ000063401 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA401-492 |
illustrated |
Not Illustrated |
issn |
23528486 |
topic_title |
TA401-492 Reliable Ge2Sb2Te5 based phase-change electronic synapses using carbon doping and programmed pulses Programmable synapse Synaptic simulation PCRAM C-doped Ge2Sb2Te5 Electronic synapse |
topic |
misc TA401-492 misc Programmable synapse misc Synaptic simulation misc PCRAM misc C-doped Ge2Sb2Te5 misc Electronic synapse misc Materials of engineering and construction. Mechanics of materials |
topic_unstemmed |
misc TA401-492 misc Programmable synapse misc Synaptic simulation misc PCRAM misc C-doped Ge2Sb2Te5 misc Electronic synapse misc Materials of engineering and construction. Mechanics of materials |
topic_browse |
misc TA401-492 misc Programmable synapse misc Synaptic simulation misc PCRAM misc C-doped Ge2Sb2Te5 misc Electronic synapse misc Materials of engineering and construction. Mechanics of materials |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Materiomics |
hierarchy_parent_id |
DOAJ000063401 |
hierarchy_top_title |
Journal of Materiomics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)DOAJ000063401 |
title |
Reliable Ge2Sb2Te5 based phase-change electronic synapses using carbon doping and programmed pulses |
ctrlnum |
(DE-627)DOAJ007966679 (DE-599)DOAJ09ece65b6d5b410982e9c12afd5ec63b |
title_full |
Reliable Ge2Sb2Te5 based phase-change electronic synapses using carbon doping and programmed pulses |
author_sort |
Qiang Wang |
journal |
Journal of Materiomics |
journalStr |
Journal of Materiomics |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
382 |
author_browse |
Qiang Wang Gang Niu Ruobing Wang Ren Luo Zuo-Guang Ye Jinshun Bi Xi Li Zhitang Song Wei Ren Sannian Song |
container_volume |
8 |
class |
TA401-492 |
format_se |
Elektronische Aufsätze |
author-letter |
Qiang Wang |
doi_str_mv |
10.1016/j.jmat.2021.08.004 |
author2-role |
verfasserin |
title_sort |
reliable ge2sb2te5 based phase-change electronic synapses using carbon doping and programmed pulses |
callnumber |
TA401-492 |
title_auth |
Reliable Ge2Sb2Te5 based phase-change electronic synapses using carbon doping and programmed pulses |
abstract |
Hardware electronic synapse and neuro-inspired computing system based on phase change random access memory (PCRAM) have attracted an extensive investigation. However, due to the intrinsic asymmetric reversible phase transition, the defective weight update of PCRAM synapses in aspects of tuning range, linearity and continuity has long required a system-level complexity of circuits and algorithms. The cell-level improvements to a great extent may slim the system thus achieving efficient computing. We report in this work the great enhancement of Ge2Sb2Te5 (GST) based PCRAM synapses by combining materials engineering and pulse programming. It is found that carbon doping in GST retards the rate of phase changing thus increasing the controllability of the conductance, while non-linear programmable pulse excitations can eventually lead to a reliable synaptic potentiation and depression. A set of improved programmable pulse schemes for spike-timing dependent plasticity was then demonstrated, suggesting its potential superiority in flexible programming and reliable data collection. Our methods and results are of great significance for implementing PCRAM electronic synapses and high-performance neuro-inspired computing. |
abstractGer |
Hardware electronic synapse and neuro-inspired computing system based on phase change random access memory (PCRAM) have attracted an extensive investigation. However, due to the intrinsic asymmetric reversible phase transition, the defective weight update of PCRAM synapses in aspects of tuning range, linearity and continuity has long required a system-level complexity of circuits and algorithms. The cell-level improvements to a great extent may slim the system thus achieving efficient computing. We report in this work the great enhancement of Ge2Sb2Te5 (GST) based PCRAM synapses by combining materials engineering and pulse programming. It is found that carbon doping in GST retards the rate of phase changing thus increasing the controllability of the conductance, while non-linear programmable pulse excitations can eventually lead to a reliable synaptic potentiation and depression. A set of improved programmable pulse schemes for spike-timing dependent plasticity was then demonstrated, suggesting its potential superiority in flexible programming and reliable data collection. Our methods and results are of great significance for implementing PCRAM electronic synapses and high-performance neuro-inspired computing. |
abstract_unstemmed |
Hardware electronic synapse and neuro-inspired computing system based on phase change random access memory (PCRAM) have attracted an extensive investigation. However, due to the intrinsic asymmetric reversible phase transition, the defective weight update of PCRAM synapses in aspects of tuning range, linearity and continuity has long required a system-level complexity of circuits and algorithms. The cell-level improvements to a great extent may slim the system thus achieving efficient computing. We report in this work the great enhancement of Ge2Sb2Te5 (GST) based PCRAM synapses by combining materials engineering and pulse programming. It is found that carbon doping in GST retards the rate of phase changing thus increasing the controllability of the conductance, while non-linear programmable pulse excitations can eventually lead to a reliable synaptic potentiation and depression. A set of improved programmable pulse schemes for spike-timing dependent plasticity was then demonstrated, suggesting its potential superiority in flexible programming and reliable data collection. Our methods and results are of great significance for implementing PCRAM electronic synapses and high-performance neuro-inspired computing. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ |
container_issue |
2 |
title_short |
Reliable Ge2Sb2Te5 based phase-change electronic synapses using carbon doping and programmed pulses |
url |
https://doi.org/10.1016/j.jmat.2021.08.004 https://doaj.org/article/09ece65b6d5b410982e9c12afd5ec63b http://www.sciencedirect.com/science/article/pii/S2352847821001210 https://doaj.org/toc/2352-8478 |
remote_bool |
true |
author2 |
Gang Niu Ruobing Wang Ren Luo Zuo-Guang Ye Jinshun Bi Xi Li Zhitang Song Wei Ren Sannian Song |
author2Str |
Gang Niu Ruobing Wang Ren Luo Zuo-Guang Ye Jinshun Bi Xi Li Zhitang Song Wei Ren Sannian Song |
ppnlink |
DOAJ000063401 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jmat.2021.08.004 |
callnumber-a |
TA401-492 |
up_date |
2024-07-03T15:11:44.140Z |
_version_ |
1803571171582541824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ007966679</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310002511.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmat.2021.08.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ007966679</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ09ece65b6d5b410982e9c12afd5ec63b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qiang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reliable Ge2Sb2Te5 based phase-change electronic synapses using carbon doping and programmed pulses</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hardware electronic synapse and neuro-inspired computing system based on phase change random access memory (PCRAM) have attracted an extensive investigation. However, due to the intrinsic asymmetric reversible phase transition, the defective weight update of PCRAM synapses in aspects of tuning range, linearity and continuity has long required a system-level complexity of circuits and algorithms. The cell-level improvements to a great extent may slim the system thus achieving efficient computing. We report in this work the great enhancement of Ge2Sb2Te5 (GST) based PCRAM synapses by combining materials engineering and pulse programming. It is found that carbon doping in GST retards the rate of phase changing thus increasing the controllability of the conductance, while non-linear programmable pulse excitations can eventually lead to a reliable synaptic potentiation and depression. A set of improved programmable pulse schemes for spike-timing dependent plasticity was then demonstrated, suggesting its potential superiority in flexible programming and reliable data collection. Our methods and results are of great significance for implementing PCRAM electronic synapses and high-performance neuro-inspired computing.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Programmable synapse</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synaptic simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PCRAM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">C-doped Ge2Sb2Te5</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic synapse</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gang Niu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ruobing Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ren Luo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zuo-Guang Ye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinshun Bi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xi Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhitang Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Ren</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sannian Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Materiomics</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">8(2022), 2, Seite 382-391</subfield><subfield code="w">(DE-627)DOAJ000063401</subfield><subfield code="x">23528486</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:382-391</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmat.2021.08.004</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/09ece65b6d5b410982e9c12afd5ec63b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2352847821001210</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2352-8478</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="h">382-391</subfield></datafield></record></collection>
|
score |
7.401187 |