Construction and Comprehensive Analysis of a Stratification System Based on AGTRAP in Patients with Hepatocellular Carcinoma
Background. With the development of sequencing technology, several signatures have been reported for the prediction of prognosis in patients with hepatocellular carcinoma (HCC). However, the above signatures are characterized by cumbersome application. Therefore, the study is aimed at screening out...
Ausführliche Beschreibung
Autor*in: |
Li Wang [verfasserIn] Wenjun Zhang [verfasserIn] Tao Yang [verfasserIn] Le He [verfasserIn] Yunmei Liao [verfasserIn] Jiaxi Lu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Übergeordnetes Werk: |
In: Disease Markers - Hindawi Limited, 2013, (2021) |
---|---|
Übergeordnetes Werk: |
year:2021 |
Links: |
---|
DOI / URN: |
10.1155/2021/6144476 |
---|
Katalog-ID: |
DOAJ008453624 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ008453624 | ||
003 | DE-627 | ||
005 | 20230225181012.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1155/2021/6144476 |2 doi | |
035 | |a (DE-627)DOAJ008453624 | ||
035 | |a (DE-599)DOAJded29142f81d4bc399ec25c23c79a141 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a R5-920 | |
100 | 0 | |a Li Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Construction and Comprehensive Analysis of a Stratification System Based on AGTRAP in Patients with Hepatocellular Carcinoma |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background. With the development of sequencing technology, several signatures have been reported for the prediction of prognosis in patients with hepatocellular carcinoma (HCC). However, the above signatures are characterized by cumbersome application. Therefore, the study is aimed at screening out a robust stratification system based on only one gene to guide treatment. Methods. Firstly, we used the limma package for performing differential expression analysis on 374 HCC samples, followed by Cox regression analysis on overall survival (OS) and disease-free interval (PFI). Subsequently, hub prognostic genes were found at the intersection of the above three groups. In addition, the topological degree inside the PPI network was used to screen for a unique hub gene. The rms package was used to construct two visual stratification systems for OS and PFI, and Kaplan-Meier analysis was utilized to investigate survival differences in clinical subgroups. The ssGSEA algorithm was then used to reveal the relationship between the hub gene and immune cells, immunological function, and checkpoints. In addition, we also used function annotation to explore into putative biological functions. Finally, for preliminary validation, the hub gene was knocked down in the HCC cell line. Results. We discovered 6 prognostic genes (SKA1, CDC20, AGTRAP, BIRC5, NEIL3, and CDC25C) for constructing a PPI network after investigating survival and differential expression genes. According to the topological degree, AGTRAP was chosen as the basis for the stratification system, and it was revealed to be a risk factor with an independent prognostic value in Kaplan-Meier analysis and Cox regression analysis (P<0.05). In addition, we constructed two visualized nomograms based on AGTRAP. The novel stratification system had a robust predictive value for PFI and OS in ROC analysis and calibration curve (P<0.05). Meanwhile, AGTRAP upregulation was associated with T staging, N staging, M staging, pathological stage, grade, and vascular invasion (P<0.05). Notably, AGTRAP was overexpressed in tumor tissues in all pancancers with paired samples (P<0.05). Furthermore, AGTRAP was associated with immune response and may change immune microenvironment in HCC (P<0.05). Next, gene enrichment analysis suggested that AGTRAP may be involved in the biological process, such as cotranslational protein targeting to the membrane. Finally, we identified the oncogenic effect of AGTRAP by qRT-PCR, colony formation, western blot, and CCK-8 assay (P<0.05). Conclusion. We provided robust evidences that a stratification system based on AGTRAP can guide survival prediction for HCC patients. | ||
653 | 0 | |a Medicine (General) | |
700 | 0 | |a Wenjun Zhang |e verfasserin |4 aut | |
700 | 0 | |a Tao Yang |e verfasserin |4 aut | |
700 | 0 | |a Le He |e verfasserin |4 aut | |
700 | 0 | |a Yunmei Liao |e verfasserin |4 aut | |
700 | 0 | |a Jiaxi Lu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Disease Markers |d Hindawi Limited, 2013 |g (2021) |w (DE-627)324960247 |w (DE-600)2033253-1 |x 18758630 |7 nnns |
773 | 1 | 8 | |g year:2021 |
856 | 4 | 0 | |u https://doi.org/10.1155/2021/6144476 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ded29142f81d4bc399ec25c23c79a141 |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1155/2021/6144476 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1875-8630 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2021 |
author_variant |
l w lw w z wz t y ty l h lh y l yl j l jl |
---|---|
matchkey_str |
article:18758630:2021----::osrcinncmrhnienlssfsrtfctossebsdngrpnain |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
R |
publishDate |
2021 |
allfields |
10.1155/2021/6144476 doi (DE-627)DOAJ008453624 (DE-599)DOAJded29142f81d4bc399ec25c23c79a141 DE-627 ger DE-627 rakwb eng R5-920 Li Wang verfasserin aut Construction and Comprehensive Analysis of a Stratification System Based on AGTRAP in Patients with Hepatocellular Carcinoma 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background. With the development of sequencing technology, several signatures have been reported for the prediction of prognosis in patients with hepatocellular carcinoma (HCC). However, the above signatures are characterized by cumbersome application. Therefore, the study is aimed at screening out a robust stratification system based on only one gene to guide treatment. Methods. Firstly, we used the limma package for performing differential expression analysis on 374 HCC samples, followed by Cox regression analysis on overall survival (OS) and disease-free interval (PFI). Subsequently, hub prognostic genes were found at the intersection of the above three groups. In addition, the topological degree inside the PPI network was used to screen for a unique hub gene. The rms package was used to construct two visual stratification systems for OS and PFI, and Kaplan-Meier analysis was utilized to investigate survival differences in clinical subgroups. The ssGSEA algorithm was then used to reveal the relationship between the hub gene and immune cells, immunological function, and checkpoints. In addition, we also used function annotation to explore into putative biological functions. Finally, for preliminary validation, the hub gene was knocked down in the HCC cell line. Results. We discovered 6 prognostic genes (SKA1, CDC20, AGTRAP, BIRC5, NEIL3, and CDC25C) for constructing a PPI network after investigating survival and differential expression genes. According to the topological degree, AGTRAP was chosen as the basis for the stratification system, and it was revealed to be a risk factor with an independent prognostic value in Kaplan-Meier analysis and Cox regression analysis (P<0.05). In addition, we constructed two visualized nomograms based on AGTRAP. The novel stratification system had a robust predictive value for PFI and OS in ROC analysis and calibration curve (P<0.05). Meanwhile, AGTRAP upregulation was associated with T staging, N staging, M staging, pathological stage, grade, and vascular invasion (P<0.05). Notably, AGTRAP was overexpressed in tumor tissues in all pancancers with paired samples (P<0.05). Furthermore, AGTRAP was associated with immune response and may change immune microenvironment in HCC (P<0.05). Next, gene enrichment analysis suggested that AGTRAP may be involved in the biological process, such as cotranslational protein targeting to the membrane. Finally, we identified the oncogenic effect of AGTRAP by qRT-PCR, colony formation, western blot, and CCK-8 assay (P<0.05). Conclusion. We provided robust evidences that a stratification system based on AGTRAP can guide survival prediction for HCC patients. Medicine (General) Wenjun Zhang verfasserin aut Tao Yang verfasserin aut Le He verfasserin aut Yunmei Liao verfasserin aut Jiaxi Lu verfasserin aut In Disease Markers Hindawi Limited, 2013 (2021) (DE-627)324960247 (DE-600)2033253-1 18758630 nnns year:2021 https://doi.org/10.1155/2021/6144476 kostenfrei https://doaj.org/article/ded29142f81d4bc399ec25c23c79a141 kostenfrei http://dx.doi.org/10.1155/2021/6144476 kostenfrei https://doaj.org/toc/1875-8630 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 |
spelling |
10.1155/2021/6144476 doi (DE-627)DOAJ008453624 (DE-599)DOAJded29142f81d4bc399ec25c23c79a141 DE-627 ger DE-627 rakwb eng R5-920 Li Wang verfasserin aut Construction and Comprehensive Analysis of a Stratification System Based on AGTRAP in Patients with Hepatocellular Carcinoma 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background. With the development of sequencing technology, several signatures have been reported for the prediction of prognosis in patients with hepatocellular carcinoma (HCC). However, the above signatures are characterized by cumbersome application. Therefore, the study is aimed at screening out a robust stratification system based on only one gene to guide treatment. Methods. Firstly, we used the limma package for performing differential expression analysis on 374 HCC samples, followed by Cox regression analysis on overall survival (OS) and disease-free interval (PFI). Subsequently, hub prognostic genes were found at the intersection of the above three groups. In addition, the topological degree inside the PPI network was used to screen for a unique hub gene. The rms package was used to construct two visual stratification systems for OS and PFI, and Kaplan-Meier analysis was utilized to investigate survival differences in clinical subgroups. The ssGSEA algorithm was then used to reveal the relationship between the hub gene and immune cells, immunological function, and checkpoints. In addition, we also used function annotation to explore into putative biological functions. Finally, for preliminary validation, the hub gene was knocked down in the HCC cell line. Results. We discovered 6 prognostic genes (SKA1, CDC20, AGTRAP, BIRC5, NEIL3, and CDC25C) for constructing a PPI network after investigating survival and differential expression genes. According to the topological degree, AGTRAP was chosen as the basis for the stratification system, and it was revealed to be a risk factor with an independent prognostic value in Kaplan-Meier analysis and Cox regression analysis (P<0.05). In addition, we constructed two visualized nomograms based on AGTRAP. The novel stratification system had a robust predictive value for PFI and OS in ROC analysis and calibration curve (P<0.05). Meanwhile, AGTRAP upregulation was associated with T staging, N staging, M staging, pathological stage, grade, and vascular invasion (P<0.05). Notably, AGTRAP was overexpressed in tumor tissues in all pancancers with paired samples (P<0.05). Furthermore, AGTRAP was associated with immune response and may change immune microenvironment in HCC (P<0.05). Next, gene enrichment analysis suggested that AGTRAP may be involved in the biological process, such as cotranslational protein targeting to the membrane. Finally, we identified the oncogenic effect of AGTRAP by qRT-PCR, colony formation, western blot, and CCK-8 assay (P<0.05). Conclusion. We provided robust evidences that a stratification system based on AGTRAP can guide survival prediction for HCC patients. Medicine (General) Wenjun Zhang verfasserin aut Tao Yang verfasserin aut Le He verfasserin aut Yunmei Liao verfasserin aut Jiaxi Lu verfasserin aut In Disease Markers Hindawi Limited, 2013 (2021) (DE-627)324960247 (DE-600)2033253-1 18758630 nnns year:2021 https://doi.org/10.1155/2021/6144476 kostenfrei https://doaj.org/article/ded29142f81d4bc399ec25c23c79a141 kostenfrei http://dx.doi.org/10.1155/2021/6144476 kostenfrei https://doaj.org/toc/1875-8630 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 |
allfields_unstemmed |
10.1155/2021/6144476 doi (DE-627)DOAJ008453624 (DE-599)DOAJded29142f81d4bc399ec25c23c79a141 DE-627 ger DE-627 rakwb eng R5-920 Li Wang verfasserin aut Construction and Comprehensive Analysis of a Stratification System Based on AGTRAP in Patients with Hepatocellular Carcinoma 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background. With the development of sequencing technology, several signatures have been reported for the prediction of prognosis in patients with hepatocellular carcinoma (HCC). However, the above signatures are characterized by cumbersome application. Therefore, the study is aimed at screening out a robust stratification system based on only one gene to guide treatment. Methods. Firstly, we used the limma package for performing differential expression analysis on 374 HCC samples, followed by Cox regression analysis on overall survival (OS) and disease-free interval (PFI). Subsequently, hub prognostic genes were found at the intersection of the above three groups. In addition, the topological degree inside the PPI network was used to screen for a unique hub gene. The rms package was used to construct two visual stratification systems for OS and PFI, and Kaplan-Meier analysis was utilized to investigate survival differences in clinical subgroups. The ssGSEA algorithm was then used to reveal the relationship between the hub gene and immune cells, immunological function, and checkpoints. In addition, we also used function annotation to explore into putative biological functions. Finally, for preliminary validation, the hub gene was knocked down in the HCC cell line. Results. We discovered 6 prognostic genes (SKA1, CDC20, AGTRAP, BIRC5, NEIL3, and CDC25C) for constructing a PPI network after investigating survival and differential expression genes. According to the topological degree, AGTRAP was chosen as the basis for the stratification system, and it was revealed to be a risk factor with an independent prognostic value in Kaplan-Meier analysis and Cox regression analysis (P<0.05). In addition, we constructed two visualized nomograms based on AGTRAP. The novel stratification system had a robust predictive value for PFI and OS in ROC analysis and calibration curve (P<0.05). Meanwhile, AGTRAP upregulation was associated with T staging, N staging, M staging, pathological stage, grade, and vascular invasion (P<0.05). Notably, AGTRAP was overexpressed in tumor tissues in all pancancers with paired samples (P<0.05). Furthermore, AGTRAP was associated with immune response and may change immune microenvironment in HCC (P<0.05). Next, gene enrichment analysis suggested that AGTRAP may be involved in the biological process, such as cotranslational protein targeting to the membrane. Finally, we identified the oncogenic effect of AGTRAP by qRT-PCR, colony formation, western blot, and CCK-8 assay (P<0.05). Conclusion. We provided robust evidences that a stratification system based on AGTRAP can guide survival prediction for HCC patients. Medicine (General) Wenjun Zhang verfasserin aut Tao Yang verfasserin aut Le He verfasserin aut Yunmei Liao verfasserin aut Jiaxi Lu verfasserin aut In Disease Markers Hindawi Limited, 2013 (2021) (DE-627)324960247 (DE-600)2033253-1 18758630 nnns year:2021 https://doi.org/10.1155/2021/6144476 kostenfrei https://doaj.org/article/ded29142f81d4bc399ec25c23c79a141 kostenfrei http://dx.doi.org/10.1155/2021/6144476 kostenfrei https://doaj.org/toc/1875-8630 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 |
allfieldsGer |
10.1155/2021/6144476 doi (DE-627)DOAJ008453624 (DE-599)DOAJded29142f81d4bc399ec25c23c79a141 DE-627 ger DE-627 rakwb eng R5-920 Li Wang verfasserin aut Construction and Comprehensive Analysis of a Stratification System Based on AGTRAP in Patients with Hepatocellular Carcinoma 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background. With the development of sequencing technology, several signatures have been reported for the prediction of prognosis in patients with hepatocellular carcinoma (HCC). However, the above signatures are characterized by cumbersome application. Therefore, the study is aimed at screening out a robust stratification system based on only one gene to guide treatment. Methods. Firstly, we used the limma package for performing differential expression analysis on 374 HCC samples, followed by Cox regression analysis on overall survival (OS) and disease-free interval (PFI). Subsequently, hub prognostic genes were found at the intersection of the above three groups. In addition, the topological degree inside the PPI network was used to screen for a unique hub gene. The rms package was used to construct two visual stratification systems for OS and PFI, and Kaplan-Meier analysis was utilized to investigate survival differences in clinical subgroups. The ssGSEA algorithm was then used to reveal the relationship between the hub gene and immune cells, immunological function, and checkpoints. In addition, we also used function annotation to explore into putative biological functions. Finally, for preliminary validation, the hub gene was knocked down in the HCC cell line. Results. We discovered 6 prognostic genes (SKA1, CDC20, AGTRAP, BIRC5, NEIL3, and CDC25C) for constructing a PPI network after investigating survival and differential expression genes. According to the topological degree, AGTRAP was chosen as the basis for the stratification system, and it was revealed to be a risk factor with an independent prognostic value in Kaplan-Meier analysis and Cox regression analysis (P<0.05). In addition, we constructed two visualized nomograms based on AGTRAP. The novel stratification system had a robust predictive value for PFI and OS in ROC analysis and calibration curve (P<0.05). Meanwhile, AGTRAP upregulation was associated with T staging, N staging, M staging, pathological stage, grade, and vascular invasion (P<0.05). Notably, AGTRAP was overexpressed in tumor tissues in all pancancers with paired samples (P<0.05). Furthermore, AGTRAP was associated with immune response and may change immune microenvironment in HCC (P<0.05). Next, gene enrichment analysis suggested that AGTRAP may be involved in the biological process, such as cotranslational protein targeting to the membrane. Finally, we identified the oncogenic effect of AGTRAP by qRT-PCR, colony formation, western blot, and CCK-8 assay (P<0.05). Conclusion. We provided robust evidences that a stratification system based on AGTRAP can guide survival prediction for HCC patients. Medicine (General) Wenjun Zhang verfasserin aut Tao Yang verfasserin aut Le He verfasserin aut Yunmei Liao verfasserin aut Jiaxi Lu verfasserin aut In Disease Markers Hindawi Limited, 2013 (2021) (DE-627)324960247 (DE-600)2033253-1 18758630 nnns year:2021 https://doi.org/10.1155/2021/6144476 kostenfrei https://doaj.org/article/ded29142f81d4bc399ec25c23c79a141 kostenfrei http://dx.doi.org/10.1155/2021/6144476 kostenfrei https://doaj.org/toc/1875-8630 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 |
allfieldsSound |
10.1155/2021/6144476 doi (DE-627)DOAJ008453624 (DE-599)DOAJded29142f81d4bc399ec25c23c79a141 DE-627 ger DE-627 rakwb eng R5-920 Li Wang verfasserin aut Construction and Comprehensive Analysis of a Stratification System Based on AGTRAP in Patients with Hepatocellular Carcinoma 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background. With the development of sequencing technology, several signatures have been reported for the prediction of prognosis in patients with hepatocellular carcinoma (HCC). However, the above signatures are characterized by cumbersome application. Therefore, the study is aimed at screening out a robust stratification system based on only one gene to guide treatment. Methods. Firstly, we used the limma package for performing differential expression analysis on 374 HCC samples, followed by Cox regression analysis on overall survival (OS) and disease-free interval (PFI). Subsequently, hub prognostic genes were found at the intersection of the above three groups. In addition, the topological degree inside the PPI network was used to screen for a unique hub gene. The rms package was used to construct two visual stratification systems for OS and PFI, and Kaplan-Meier analysis was utilized to investigate survival differences in clinical subgroups. The ssGSEA algorithm was then used to reveal the relationship between the hub gene and immune cells, immunological function, and checkpoints. In addition, we also used function annotation to explore into putative biological functions. Finally, for preliminary validation, the hub gene was knocked down in the HCC cell line. Results. We discovered 6 prognostic genes (SKA1, CDC20, AGTRAP, BIRC5, NEIL3, and CDC25C) for constructing a PPI network after investigating survival and differential expression genes. According to the topological degree, AGTRAP was chosen as the basis for the stratification system, and it was revealed to be a risk factor with an independent prognostic value in Kaplan-Meier analysis and Cox regression analysis (P<0.05). In addition, we constructed two visualized nomograms based on AGTRAP. The novel stratification system had a robust predictive value for PFI and OS in ROC analysis and calibration curve (P<0.05). Meanwhile, AGTRAP upregulation was associated with T staging, N staging, M staging, pathological stage, grade, and vascular invasion (P<0.05). Notably, AGTRAP was overexpressed in tumor tissues in all pancancers with paired samples (P<0.05). Furthermore, AGTRAP was associated with immune response and may change immune microenvironment in HCC (P<0.05). Next, gene enrichment analysis suggested that AGTRAP may be involved in the biological process, such as cotranslational protein targeting to the membrane. Finally, we identified the oncogenic effect of AGTRAP by qRT-PCR, colony formation, western blot, and CCK-8 assay (P<0.05). Conclusion. We provided robust evidences that a stratification system based on AGTRAP can guide survival prediction for HCC patients. Medicine (General) Wenjun Zhang verfasserin aut Tao Yang verfasserin aut Le He verfasserin aut Yunmei Liao verfasserin aut Jiaxi Lu verfasserin aut In Disease Markers Hindawi Limited, 2013 (2021) (DE-627)324960247 (DE-600)2033253-1 18758630 nnns year:2021 https://doi.org/10.1155/2021/6144476 kostenfrei https://doaj.org/article/ded29142f81d4bc399ec25c23c79a141 kostenfrei http://dx.doi.org/10.1155/2021/6144476 kostenfrei https://doaj.org/toc/1875-8630 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 |
language |
English |
source |
In Disease Markers (2021) year:2021 |
sourceStr |
In Disease Markers (2021) year:2021 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Medicine (General) |
isfreeaccess_bool |
true |
container_title |
Disease Markers |
authorswithroles_txt_mv |
Li Wang @@aut@@ Wenjun Zhang @@aut@@ Tao Yang @@aut@@ Le He @@aut@@ Yunmei Liao @@aut@@ Jiaxi Lu @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
324960247 |
id |
DOAJ008453624 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ008453624</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230225181012.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2021/6144476</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ008453624</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJded29142f81d4bc399ec25c23c79a141</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R5-920</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Li Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Construction and Comprehensive Analysis of a Stratification System Based on AGTRAP in Patients with Hepatocellular Carcinoma</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background. With the development of sequencing technology, several signatures have been reported for the prediction of prognosis in patients with hepatocellular carcinoma (HCC). However, the above signatures are characterized by cumbersome application. Therefore, the study is aimed at screening out a robust stratification system based on only one gene to guide treatment. Methods. Firstly, we used the limma package for performing differential expression analysis on 374 HCC samples, followed by Cox regression analysis on overall survival (OS) and disease-free interval (PFI). Subsequently, hub prognostic genes were found at the intersection of the above three groups. In addition, the topological degree inside the PPI network was used to screen for a unique hub gene. The rms package was used to construct two visual stratification systems for OS and PFI, and Kaplan-Meier analysis was utilized to investigate survival differences in clinical subgroups. The ssGSEA algorithm was then used to reveal the relationship between the hub gene and immune cells, immunological function, and checkpoints. In addition, we also used function annotation to explore into putative biological functions. Finally, for preliminary validation, the hub gene was knocked down in the HCC cell line. Results. We discovered 6 prognostic genes (SKA1, CDC20, AGTRAP, BIRC5, NEIL3, and CDC25C) for constructing a PPI network after investigating survival and differential expression genes. According to the topological degree, AGTRAP was chosen as the basis for the stratification system, and it was revealed to be a risk factor with an independent prognostic value in Kaplan-Meier analysis and Cox regression analysis (P<0.05). In addition, we constructed two visualized nomograms based on AGTRAP. The novel stratification system had a robust predictive value for PFI and OS in ROC analysis and calibration curve (P<0.05). Meanwhile, AGTRAP upregulation was associated with T staging, N staging, M staging, pathological stage, grade, and vascular invasion (P<0.05). Notably, AGTRAP was overexpressed in tumor tissues in all pancancers with paired samples (P<0.05). Furthermore, AGTRAP was associated with immune response and may change immune microenvironment in HCC (P<0.05). Next, gene enrichment analysis suggested that AGTRAP may be involved in the biological process, such as cotranslational protein targeting to the membrane. Finally, we identified the oncogenic effect of AGTRAP by qRT-PCR, colony formation, western blot, and CCK-8 assay (P<0.05). Conclusion. We provided robust evidences that a stratification system based on AGTRAP can guide survival prediction for HCC patients.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenjun Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tao Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Le He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yunmei Liao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiaxi Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Disease Markers</subfield><subfield code="d">Hindawi Limited, 2013</subfield><subfield code="g">(2021)</subfield><subfield code="w">(DE-627)324960247</subfield><subfield code="w">(DE-600)2033253-1</subfield><subfield code="x">18758630</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2021/6144476</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ded29142f81d4bc399ec25c23c79a141</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2021/6144476</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1875-8630</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2021</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Li Wang |
spellingShingle |
Li Wang misc R5-920 misc Medicine (General) Construction and Comprehensive Analysis of a Stratification System Based on AGTRAP in Patients with Hepatocellular Carcinoma |
authorStr |
Li Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)324960247 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
R5-920 |
illustrated |
Not Illustrated |
issn |
18758630 |
topic_title |
R5-920 Construction and Comprehensive Analysis of a Stratification System Based on AGTRAP in Patients with Hepatocellular Carcinoma |
topic |
misc R5-920 misc Medicine (General) |
topic_unstemmed |
misc R5-920 misc Medicine (General) |
topic_browse |
misc R5-920 misc Medicine (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Disease Markers |
hierarchy_parent_id |
324960247 |
hierarchy_top_title |
Disease Markers |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)324960247 (DE-600)2033253-1 |
title |
Construction and Comprehensive Analysis of a Stratification System Based on AGTRAP in Patients with Hepatocellular Carcinoma |
ctrlnum |
(DE-627)DOAJ008453624 (DE-599)DOAJded29142f81d4bc399ec25c23c79a141 |
title_full |
Construction and Comprehensive Analysis of a Stratification System Based on AGTRAP in Patients with Hepatocellular Carcinoma |
author_sort |
Li Wang |
journal |
Disease Markers |
journalStr |
Disease Markers |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Li Wang Wenjun Zhang Tao Yang Le He Yunmei Liao Jiaxi Lu |
class |
R5-920 |
format_se |
Elektronische Aufsätze |
author-letter |
Li Wang |
doi_str_mv |
10.1155/2021/6144476 |
author2-role |
verfasserin |
title_sort |
construction and comprehensive analysis of a stratification system based on agtrap in patients with hepatocellular carcinoma |
callnumber |
R5-920 |
title_auth |
Construction and Comprehensive Analysis of a Stratification System Based on AGTRAP in Patients with Hepatocellular Carcinoma |
abstract |
Background. With the development of sequencing technology, several signatures have been reported for the prediction of prognosis in patients with hepatocellular carcinoma (HCC). However, the above signatures are characterized by cumbersome application. Therefore, the study is aimed at screening out a robust stratification system based on only one gene to guide treatment. Methods. Firstly, we used the limma package for performing differential expression analysis on 374 HCC samples, followed by Cox regression analysis on overall survival (OS) and disease-free interval (PFI). Subsequently, hub prognostic genes were found at the intersection of the above three groups. In addition, the topological degree inside the PPI network was used to screen for a unique hub gene. The rms package was used to construct two visual stratification systems for OS and PFI, and Kaplan-Meier analysis was utilized to investigate survival differences in clinical subgroups. The ssGSEA algorithm was then used to reveal the relationship between the hub gene and immune cells, immunological function, and checkpoints. In addition, we also used function annotation to explore into putative biological functions. Finally, for preliminary validation, the hub gene was knocked down in the HCC cell line. Results. We discovered 6 prognostic genes (SKA1, CDC20, AGTRAP, BIRC5, NEIL3, and CDC25C) for constructing a PPI network after investigating survival and differential expression genes. According to the topological degree, AGTRAP was chosen as the basis for the stratification system, and it was revealed to be a risk factor with an independent prognostic value in Kaplan-Meier analysis and Cox regression analysis (P<0.05). In addition, we constructed two visualized nomograms based on AGTRAP. The novel stratification system had a robust predictive value for PFI and OS in ROC analysis and calibration curve (P<0.05). Meanwhile, AGTRAP upregulation was associated with T staging, N staging, M staging, pathological stage, grade, and vascular invasion (P<0.05). Notably, AGTRAP was overexpressed in tumor tissues in all pancancers with paired samples (P<0.05). Furthermore, AGTRAP was associated with immune response and may change immune microenvironment in HCC (P<0.05). Next, gene enrichment analysis suggested that AGTRAP may be involved in the biological process, such as cotranslational protein targeting to the membrane. Finally, we identified the oncogenic effect of AGTRAP by qRT-PCR, colony formation, western blot, and CCK-8 assay (P<0.05). Conclusion. We provided robust evidences that a stratification system based on AGTRAP can guide survival prediction for HCC patients. |
abstractGer |
Background. With the development of sequencing technology, several signatures have been reported for the prediction of prognosis in patients with hepatocellular carcinoma (HCC). However, the above signatures are characterized by cumbersome application. Therefore, the study is aimed at screening out a robust stratification system based on only one gene to guide treatment. Methods. Firstly, we used the limma package for performing differential expression analysis on 374 HCC samples, followed by Cox regression analysis on overall survival (OS) and disease-free interval (PFI). Subsequently, hub prognostic genes were found at the intersection of the above three groups. In addition, the topological degree inside the PPI network was used to screen for a unique hub gene. The rms package was used to construct two visual stratification systems for OS and PFI, and Kaplan-Meier analysis was utilized to investigate survival differences in clinical subgroups. The ssGSEA algorithm was then used to reveal the relationship between the hub gene and immune cells, immunological function, and checkpoints. In addition, we also used function annotation to explore into putative biological functions. Finally, for preliminary validation, the hub gene was knocked down in the HCC cell line. Results. We discovered 6 prognostic genes (SKA1, CDC20, AGTRAP, BIRC5, NEIL3, and CDC25C) for constructing a PPI network after investigating survival and differential expression genes. According to the topological degree, AGTRAP was chosen as the basis for the stratification system, and it was revealed to be a risk factor with an independent prognostic value in Kaplan-Meier analysis and Cox regression analysis (P<0.05). In addition, we constructed two visualized nomograms based on AGTRAP. The novel stratification system had a robust predictive value for PFI and OS in ROC analysis and calibration curve (P<0.05). Meanwhile, AGTRAP upregulation was associated with T staging, N staging, M staging, pathological stage, grade, and vascular invasion (P<0.05). Notably, AGTRAP was overexpressed in tumor tissues in all pancancers with paired samples (P<0.05). Furthermore, AGTRAP was associated with immune response and may change immune microenvironment in HCC (P<0.05). Next, gene enrichment analysis suggested that AGTRAP may be involved in the biological process, such as cotranslational protein targeting to the membrane. Finally, we identified the oncogenic effect of AGTRAP by qRT-PCR, colony formation, western blot, and CCK-8 assay (P<0.05). Conclusion. We provided robust evidences that a stratification system based on AGTRAP can guide survival prediction for HCC patients. |
abstract_unstemmed |
Background. With the development of sequencing technology, several signatures have been reported for the prediction of prognosis in patients with hepatocellular carcinoma (HCC). However, the above signatures are characterized by cumbersome application. Therefore, the study is aimed at screening out a robust stratification system based on only one gene to guide treatment. Methods. Firstly, we used the limma package for performing differential expression analysis on 374 HCC samples, followed by Cox regression analysis on overall survival (OS) and disease-free interval (PFI). Subsequently, hub prognostic genes were found at the intersection of the above three groups. In addition, the topological degree inside the PPI network was used to screen for a unique hub gene. The rms package was used to construct two visual stratification systems for OS and PFI, and Kaplan-Meier analysis was utilized to investigate survival differences in clinical subgroups. The ssGSEA algorithm was then used to reveal the relationship between the hub gene and immune cells, immunological function, and checkpoints. In addition, we also used function annotation to explore into putative biological functions. Finally, for preliminary validation, the hub gene was knocked down in the HCC cell line. Results. We discovered 6 prognostic genes (SKA1, CDC20, AGTRAP, BIRC5, NEIL3, and CDC25C) for constructing a PPI network after investigating survival and differential expression genes. According to the topological degree, AGTRAP was chosen as the basis for the stratification system, and it was revealed to be a risk factor with an independent prognostic value in Kaplan-Meier analysis and Cox regression analysis (P<0.05). In addition, we constructed two visualized nomograms based on AGTRAP. The novel stratification system had a robust predictive value for PFI and OS in ROC analysis and calibration curve (P<0.05). Meanwhile, AGTRAP upregulation was associated with T staging, N staging, M staging, pathological stage, grade, and vascular invasion (P<0.05). Notably, AGTRAP was overexpressed in tumor tissues in all pancancers with paired samples (P<0.05). Furthermore, AGTRAP was associated with immune response and may change immune microenvironment in HCC (P<0.05). Next, gene enrichment analysis suggested that AGTRAP may be involved in the biological process, such as cotranslational protein targeting to the membrane. Finally, we identified the oncogenic effect of AGTRAP by qRT-PCR, colony formation, western blot, and CCK-8 assay (P<0.05). Conclusion. We provided robust evidences that a stratification system based on AGTRAP can guide survival prediction for HCC patients. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Construction and Comprehensive Analysis of a Stratification System Based on AGTRAP in Patients with Hepatocellular Carcinoma |
url |
https://doi.org/10.1155/2021/6144476 https://doaj.org/article/ded29142f81d4bc399ec25c23c79a141 http://dx.doi.org/10.1155/2021/6144476 https://doaj.org/toc/1875-8630 |
remote_bool |
true |
author2 |
Wenjun Zhang Tao Yang Le He Yunmei Liao Jiaxi Lu |
author2Str |
Wenjun Zhang Tao Yang Le He Yunmei Liao Jiaxi Lu |
ppnlink |
324960247 |
callnumber-subject |
R - General Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1155/2021/6144476 |
callnumber-a |
R5-920 |
up_date |
2024-07-03T18:04:19.335Z |
_version_ |
1803582029784154112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ008453624</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230225181012.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2021/6144476</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ008453624</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJded29142f81d4bc399ec25c23c79a141</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R5-920</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Li Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Construction and Comprehensive Analysis of a Stratification System Based on AGTRAP in Patients with Hepatocellular Carcinoma</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background. With the development of sequencing technology, several signatures have been reported for the prediction of prognosis in patients with hepatocellular carcinoma (HCC). However, the above signatures are characterized by cumbersome application. Therefore, the study is aimed at screening out a robust stratification system based on only one gene to guide treatment. Methods. Firstly, we used the limma package for performing differential expression analysis on 374 HCC samples, followed by Cox regression analysis on overall survival (OS) and disease-free interval (PFI). Subsequently, hub prognostic genes were found at the intersection of the above three groups. In addition, the topological degree inside the PPI network was used to screen for a unique hub gene. The rms package was used to construct two visual stratification systems for OS and PFI, and Kaplan-Meier analysis was utilized to investigate survival differences in clinical subgroups. The ssGSEA algorithm was then used to reveal the relationship between the hub gene and immune cells, immunological function, and checkpoints. In addition, we also used function annotation to explore into putative biological functions. Finally, for preliminary validation, the hub gene was knocked down in the HCC cell line. Results. We discovered 6 prognostic genes (SKA1, CDC20, AGTRAP, BIRC5, NEIL3, and CDC25C) for constructing a PPI network after investigating survival and differential expression genes. According to the topological degree, AGTRAP was chosen as the basis for the stratification system, and it was revealed to be a risk factor with an independent prognostic value in Kaplan-Meier analysis and Cox regression analysis (P<0.05). In addition, we constructed two visualized nomograms based on AGTRAP. The novel stratification system had a robust predictive value for PFI and OS in ROC analysis and calibration curve (P<0.05). Meanwhile, AGTRAP upregulation was associated with T staging, N staging, M staging, pathological stage, grade, and vascular invasion (P<0.05). Notably, AGTRAP was overexpressed in tumor tissues in all pancancers with paired samples (P<0.05). Furthermore, AGTRAP was associated with immune response and may change immune microenvironment in HCC (P<0.05). Next, gene enrichment analysis suggested that AGTRAP may be involved in the biological process, such as cotranslational protein targeting to the membrane. Finally, we identified the oncogenic effect of AGTRAP by qRT-PCR, colony formation, western blot, and CCK-8 assay (P<0.05). Conclusion. We provided robust evidences that a stratification system based on AGTRAP can guide survival prediction for HCC patients.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenjun Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tao Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Le He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yunmei Liao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiaxi Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Disease Markers</subfield><subfield code="d">Hindawi Limited, 2013</subfield><subfield code="g">(2021)</subfield><subfield code="w">(DE-627)324960247</subfield><subfield code="w">(DE-600)2033253-1</subfield><subfield code="x">18758630</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2021/6144476</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ded29142f81d4bc399ec25c23c79a141</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2021/6144476</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1875-8630</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2021</subfield></datafield></record></collection>
|
score |
7.4004345 |