Investigation of Hydraulic Performance Based on Response Surface Methodology for an Agricultural Chemigation Proportional Injector
Injectors are key pieces of equipment for chemigation systems, and their hydraulic performance has a significant effect on chemigation systems and crops. In order to investigate the influence of different working parameters on hydraulic performance for a water-powered proportional injector (PI), thr...
Ausführliche Beschreibung
Autor*in: |
Pan Tang [verfasserIn] Chao Chen [verfasserIn] Hong Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Water - MDPI AG, 2010, 12(2020), 11, p 3155 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2020 ; number:11, p 3155 |
Links: |
---|
DOI / URN: |
10.3390/w12113155 |
---|
Katalog-ID: |
DOAJ008464944 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ008464944 | ||
003 | DE-627 | ||
005 | 20240412211103.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/w12113155 |2 doi | |
035 | |a (DE-627)DOAJ008464944 | ||
035 | |a (DE-599)DOAJb4dcea5e8f6149129fdb4aee786c41aa | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TC1-978 | |
050 | 0 | |a TD201-500 | |
100 | 0 | |a Pan Tang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Investigation of Hydraulic Performance Based on Response Surface Methodology for an Agricultural Chemigation Proportional Injector |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Injectors are key pieces of equipment for chemigation systems, and their hydraulic performance has a significant effect on chemigation systems and crops. In order to investigate the influence of different working parameters on hydraulic performance for a water-powered proportional injector (PI), three key parameters of inlet and injection flow rate were researched using a one-factor experimental design method. The regression equations between different factors and response variables were established through a response surface method based on one-factor experimental results. Lastly, a mathematical model of the actual injection ratio was established. Some experiments under different, randomly selected parameter combinations were carried out to verify the prediction precision of the mathematical mode. The results showed that the injection flow rate increased first within the differential pressure of 0.05 to 0.10 MPa and then tended towards stability with increasing differential pressure. The injection flow rate decreased by increasing the viscosity and the change in the injection flow rate was small enough when the viscosity was greater than 500 mPa·s. The impact factors, in order of significance, for inlet flow rate were differential pressure, viscosity of injection liquid and setting injection ratio. The impact factors, in order of significance, for injection flow rate were viscosity of injection liquid, setting injection ratio and differential pressure. The regressive model for predicting the actual injection ratio was validated using an experiment and the relative deviation between calculated value and tested value was less than 5.98%, which indicated that the mathematical model had high credibility. | ||
650 | 4 | |a precision agriculture | |
650 | 4 | |a chemigation | |
650 | 4 | |a proportional injector | |
650 | 4 | |a hydraulic performance | |
650 | 4 | |a mathematical model | |
650 | 4 | |a response surface methodology | |
653 | 0 | |a Hydraulic engineering | |
653 | 0 | |a Water supply for domestic and industrial purposes | |
700 | 0 | |a Chao Chen |e verfasserin |4 aut | |
700 | 0 | |a Hong Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Water |d MDPI AG, 2010 |g 12(2020), 11, p 3155 |w (DE-627)611729008 |w (DE-600)2521238-2 |x 20734441 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2020 |g number:11, p 3155 |
856 | 4 | 0 | |u https://doi.org/10.3390/w12113155 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b4dcea5e8f6149129fdb4aee786c41aa |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4441/12/11/3155 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4441 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2020 |e 11, p 3155 |
author_variant |
p t pt c c cc h l hl |
---|---|
matchkey_str |
article:20734441:2020----::netgtoohdalcefracbsdnepneufcmtoooyoaarcluac |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TC |
publishDate |
2020 |
allfields |
10.3390/w12113155 doi (DE-627)DOAJ008464944 (DE-599)DOAJb4dcea5e8f6149129fdb4aee786c41aa DE-627 ger DE-627 rakwb eng TC1-978 TD201-500 Pan Tang verfasserin aut Investigation of Hydraulic Performance Based on Response Surface Methodology for an Agricultural Chemigation Proportional Injector 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Injectors are key pieces of equipment for chemigation systems, and their hydraulic performance has a significant effect on chemigation systems and crops. In order to investigate the influence of different working parameters on hydraulic performance for a water-powered proportional injector (PI), three key parameters of inlet and injection flow rate were researched using a one-factor experimental design method. The regression equations between different factors and response variables were established through a response surface method based on one-factor experimental results. Lastly, a mathematical model of the actual injection ratio was established. Some experiments under different, randomly selected parameter combinations were carried out to verify the prediction precision of the mathematical mode. The results showed that the injection flow rate increased first within the differential pressure of 0.05 to 0.10 MPa and then tended towards stability with increasing differential pressure. The injection flow rate decreased by increasing the viscosity and the change in the injection flow rate was small enough when the viscosity was greater than 500 mPa·s. The impact factors, in order of significance, for inlet flow rate were differential pressure, viscosity of injection liquid and setting injection ratio. The impact factors, in order of significance, for injection flow rate were viscosity of injection liquid, setting injection ratio and differential pressure. The regressive model for predicting the actual injection ratio was validated using an experiment and the relative deviation between calculated value and tested value was less than 5.98%, which indicated that the mathematical model had high credibility. precision agriculture chemigation proportional injector hydraulic performance mathematical model response surface methodology Hydraulic engineering Water supply for domestic and industrial purposes Chao Chen verfasserin aut Hong Li verfasserin aut In Water MDPI AG, 2010 12(2020), 11, p 3155 (DE-627)611729008 (DE-600)2521238-2 20734441 nnns volume:12 year:2020 number:11, p 3155 https://doi.org/10.3390/w12113155 kostenfrei https://doaj.org/article/b4dcea5e8f6149129fdb4aee786c41aa kostenfrei https://www.mdpi.com/2073-4441/12/11/3155 kostenfrei https://doaj.org/toc/2073-4441 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 11, p 3155 |
spelling |
10.3390/w12113155 doi (DE-627)DOAJ008464944 (DE-599)DOAJb4dcea5e8f6149129fdb4aee786c41aa DE-627 ger DE-627 rakwb eng TC1-978 TD201-500 Pan Tang verfasserin aut Investigation of Hydraulic Performance Based on Response Surface Methodology for an Agricultural Chemigation Proportional Injector 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Injectors are key pieces of equipment for chemigation systems, and their hydraulic performance has a significant effect on chemigation systems and crops. In order to investigate the influence of different working parameters on hydraulic performance for a water-powered proportional injector (PI), three key parameters of inlet and injection flow rate were researched using a one-factor experimental design method. The regression equations between different factors and response variables were established through a response surface method based on one-factor experimental results. Lastly, a mathematical model of the actual injection ratio was established. Some experiments under different, randomly selected parameter combinations were carried out to verify the prediction precision of the mathematical mode. The results showed that the injection flow rate increased first within the differential pressure of 0.05 to 0.10 MPa and then tended towards stability with increasing differential pressure. The injection flow rate decreased by increasing the viscosity and the change in the injection flow rate was small enough when the viscosity was greater than 500 mPa·s. The impact factors, in order of significance, for inlet flow rate were differential pressure, viscosity of injection liquid and setting injection ratio. The impact factors, in order of significance, for injection flow rate were viscosity of injection liquid, setting injection ratio and differential pressure. The regressive model for predicting the actual injection ratio was validated using an experiment and the relative deviation between calculated value and tested value was less than 5.98%, which indicated that the mathematical model had high credibility. precision agriculture chemigation proportional injector hydraulic performance mathematical model response surface methodology Hydraulic engineering Water supply for domestic and industrial purposes Chao Chen verfasserin aut Hong Li verfasserin aut In Water MDPI AG, 2010 12(2020), 11, p 3155 (DE-627)611729008 (DE-600)2521238-2 20734441 nnns volume:12 year:2020 number:11, p 3155 https://doi.org/10.3390/w12113155 kostenfrei https://doaj.org/article/b4dcea5e8f6149129fdb4aee786c41aa kostenfrei https://www.mdpi.com/2073-4441/12/11/3155 kostenfrei https://doaj.org/toc/2073-4441 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 11, p 3155 |
allfields_unstemmed |
10.3390/w12113155 doi (DE-627)DOAJ008464944 (DE-599)DOAJb4dcea5e8f6149129fdb4aee786c41aa DE-627 ger DE-627 rakwb eng TC1-978 TD201-500 Pan Tang verfasserin aut Investigation of Hydraulic Performance Based on Response Surface Methodology for an Agricultural Chemigation Proportional Injector 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Injectors are key pieces of equipment for chemigation systems, and their hydraulic performance has a significant effect on chemigation systems and crops. In order to investigate the influence of different working parameters on hydraulic performance for a water-powered proportional injector (PI), three key parameters of inlet and injection flow rate were researched using a one-factor experimental design method. The regression equations between different factors and response variables were established through a response surface method based on one-factor experimental results. Lastly, a mathematical model of the actual injection ratio was established. Some experiments under different, randomly selected parameter combinations were carried out to verify the prediction precision of the mathematical mode. The results showed that the injection flow rate increased first within the differential pressure of 0.05 to 0.10 MPa and then tended towards stability with increasing differential pressure. The injection flow rate decreased by increasing the viscosity and the change in the injection flow rate was small enough when the viscosity was greater than 500 mPa·s. The impact factors, in order of significance, for inlet flow rate were differential pressure, viscosity of injection liquid and setting injection ratio. The impact factors, in order of significance, for injection flow rate were viscosity of injection liquid, setting injection ratio and differential pressure. The regressive model for predicting the actual injection ratio was validated using an experiment and the relative deviation between calculated value and tested value was less than 5.98%, which indicated that the mathematical model had high credibility. precision agriculture chemigation proportional injector hydraulic performance mathematical model response surface methodology Hydraulic engineering Water supply for domestic and industrial purposes Chao Chen verfasserin aut Hong Li verfasserin aut In Water MDPI AG, 2010 12(2020), 11, p 3155 (DE-627)611729008 (DE-600)2521238-2 20734441 nnns volume:12 year:2020 number:11, p 3155 https://doi.org/10.3390/w12113155 kostenfrei https://doaj.org/article/b4dcea5e8f6149129fdb4aee786c41aa kostenfrei https://www.mdpi.com/2073-4441/12/11/3155 kostenfrei https://doaj.org/toc/2073-4441 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 11, p 3155 |
allfieldsGer |
10.3390/w12113155 doi (DE-627)DOAJ008464944 (DE-599)DOAJb4dcea5e8f6149129fdb4aee786c41aa DE-627 ger DE-627 rakwb eng TC1-978 TD201-500 Pan Tang verfasserin aut Investigation of Hydraulic Performance Based on Response Surface Methodology for an Agricultural Chemigation Proportional Injector 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Injectors are key pieces of equipment for chemigation systems, and their hydraulic performance has a significant effect on chemigation systems and crops. In order to investigate the influence of different working parameters on hydraulic performance for a water-powered proportional injector (PI), three key parameters of inlet and injection flow rate were researched using a one-factor experimental design method. The regression equations between different factors and response variables were established through a response surface method based on one-factor experimental results. Lastly, a mathematical model of the actual injection ratio was established. Some experiments under different, randomly selected parameter combinations were carried out to verify the prediction precision of the mathematical mode. The results showed that the injection flow rate increased first within the differential pressure of 0.05 to 0.10 MPa and then tended towards stability with increasing differential pressure. The injection flow rate decreased by increasing the viscosity and the change in the injection flow rate was small enough when the viscosity was greater than 500 mPa·s. The impact factors, in order of significance, for inlet flow rate were differential pressure, viscosity of injection liquid and setting injection ratio. The impact factors, in order of significance, for injection flow rate were viscosity of injection liquid, setting injection ratio and differential pressure. The regressive model for predicting the actual injection ratio was validated using an experiment and the relative deviation between calculated value and tested value was less than 5.98%, which indicated that the mathematical model had high credibility. precision agriculture chemigation proportional injector hydraulic performance mathematical model response surface methodology Hydraulic engineering Water supply for domestic and industrial purposes Chao Chen verfasserin aut Hong Li verfasserin aut In Water MDPI AG, 2010 12(2020), 11, p 3155 (DE-627)611729008 (DE-600)2521238-2 20734441 nnns volume:12 year:2020 number:11, p 3155 https://doi.org/10.3390/w12113155 kostenfrei https://doaj.org/article/b4dcea5e8f6149129fdb4aee786c41aa kostenfrei https://www.mdpi.com/2073-4441/12/11/3155 kostenfrei https://doaj.org/toc/2073-4441 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 11, p 3155 |
allfieldsSound |
10.3390/w12113155 doi (DE-627)DOAJ008464944 (DE-599)DOAJb4dcea5e8f6149129fdb4aee786c41aa DE-627 ger DE-627 rakwb eng TC1-978 TD201-500 Pan Tang verfasserin aut Investigation of Hydraulic Performance Based on Response Surface Methodology for an Agricultural Chemigation Proportional Injector 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Injectors are key pieces of equipment for chemigation systems, and their hydraulic performance has a significant effect on chemigation systems and crops. In order to investigate the influence of different working parameters on hydraulic performance for a water-powered proportional injector (PI), three key parameters of inlet and injection flow rate were researched using a one-factor experimental design method. The regression equations between different factors and response variables were established through a response surface method based on one-factor experimental results. Lastly, a mathematical model of the actual injection ratio was established. Some experiments under different, randomly selected parameter combinations were carried out to verify the prediction precision of the mathematical mode. The results showed that the injection flow rate increased first within the differential pressure of 0.05 to 0.10 MPa and then tended towards stability with increasing differential pressure. The injection flow rate decreased by increasing the viscosity and the change in the injection flow rate was small enough when the viscosity was greater than 500 mPa·s. The impact factors, in order of significance, for inlet flow rate were differential pressure, viscosity of injection liquid and setting injection ratio. The impact factors, in order of significance, for injection flow rate were viscosity of injection liquid, setting injection ratio and differential pressure. The regressive model for predicting the actual injection ratio was validated using an experiment and the relative deviation between calculated value and tested value was less than 5.98%, which indicated that the mathematical model had high credibility. precision agriculture chemigation proportional injector hydraulic performance mathematical model response surface methodology Hydraulic engineering Water supply for domestic and industrial purposes Chao Chen verfasserin aut Hong Li verfasserin aut In Water MDPI AG, 2010 12(2020), 11, p 3155 (DE-627)611729008 (DE-600)2521238-2 20734441 nnns volume:12 year:2020 number:11, p 3155 https://doi.org/10.3390/w12113155 kostenfrei https://doaj.org/article/b4dcea5e8f6149129fdb4aee786c41aa kostenfrei https://www.mdpi.com/2073-4441/12/11/3155 kostenfrei https://doaj.org/toc/2073-4441 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 11, p 3155 |
language |
English |
source |
In Water 12(2020), 11, p 3155 volume:12 year:2020 number:11, p 3155 |
sourceStr |
In Water 12(2020), 11, p 3155 volume:12 year:2020 number:11, p 3155 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
precision agriculture chemigation proportional injector hydraulic performance mathematical model response surface methodology Hydraulic engineering Water supply for domestic and industrial purposes |
isfreeaccess_bool |
true |
container_title |
Water |
authorswithroles_txt_mv |
Pan Tang @@aut@@ Chao Chen @@aut@@ Hong Li @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
611729008 |
id |
DOAJ008464944 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ008464944</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412211103.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/w12113155</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ008464944</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb4dcea5e8f6149129fdb4aee786c41aa</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TC1-978</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD201-500</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Pan Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Investigation of Hydraulic Performance Based on Response Surface Methodology for an Agricultural Chemigation Proportional Injector</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Injectors are key pieces of equipment for chemigation systems, and their hydraulic performance has a significant effect on chemigation systems and crops. In order to investigate the influence of different working parameters on hydraulic performance for a water-powered proportional injector (PI), three key parameters of inlet and injection flow rate were researched using a one-factor experimental design method. The regression equations between different factors and response variables were established through a response surface method based on one-factor experimental results. Lastly, a mathematical model of the actual injection ratio was established. Some experiments under different, randomly selected parameter combinations were carried out to verify the prediction precision of the mathematical mode. The results showed that the injection flow rate increased first within the differential pressure of 0.05 to 0.10 MPa and then tended towards stability with increasing differential pressure. The injection flow rate decreased by increasing the viscosity and the change in the injection flow rate was small enough when the viscosity was greater than 500 mPa·s. The impact factors, in order of significance, for inlet flow rate were differential pressure, viscosity of injection liquid and setting injection ratio. The impact factors, in order of significance, for injection flow rate were viscosity of injection liquid, setting injection ratio and differential pressure. The regressive model for predicting the actual injection ratio was validated using an experiment and the relative deviation between calculated value and tested value was less than 5.98%, which indicated that the mathematical model had high credibility.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">precision agriculture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chemigation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">proportional injector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydraulic performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mathematical model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">response surface methodology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Hydraulic engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Water supply for domestic and industrial purposes</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chao Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hong Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Water</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">12(2020), 11, p 3155</subfield><subfield code="w">(DE-627)611729008</subfield><subfield code="w">(DE-600)2521238-2</subfield><subfield code="x">20734441</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:11, p 3155</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/w12113155</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b4dcea5e8f6149129fdb4aee786c41aa</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4441/12/11/3155</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4441</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2020</subfield><subfield code="e">11, p 3155</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Pan Tang |
spellingShingle |
Pan Tang misc TC1-978 misc TD201-500 misc precision agriculture misc chemigation misc proportional injector misc hydraulic performance misc mathematical model misc response surface methodology misc Hydraulic engineering misc Water supply for domestic and industrial purposes Investigation of Hydraulic Performance Based on Response Surface Methodology for an Agricultural Chemigation Proportional Injector |
authorStr |
Pan Tang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)611729008 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TC1-978 |
illustrated |
Not Illustrated |
issn |
20734441 |
topic_title |
TC1-978 TD201-500 Investigation of Hydraulic Performance Based on Response Surface Methodology for an Agricultural Chemigation Proportional Injector precision agriculture chemigation proportional injector hydraulic performance mathematical model response surface methodology |
topic |
misc TC1-978 misc TD201-500 misc precision agriculture misc chemigation misc proportional injector misc hydraulic performance misc mathematical model misc response surface methodology misc Hydraulic engineering misc Water supply for domestic and industrial purposes |
topic_unstemmed |
misc TC1-978 misc TD201-500 misc precision agriculture misc chemigation misc proportional injector misc hydraulic performance misc mathematical model misc response surface methodology misc Hydraulic engineering misc Water supply for domestic and industrial purposes |
topic_browse |
misc TC1-978 misc TD201-500 misc precision agriculture misc chemigation misc proportional injector misc hydraulic performance misc mathematical model misc response surface methodology misc Hydraulic engineering misc Water supply for domestic and industrial purposes |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Water |
hierarchy_parent_id |
611729008 |
hierarchy_top_title |
Water |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)611729008 (DE-600)2521238-2 |
title |
Investigation of Hydraulic Performance Based on Response Surface Methodology for an Agricultural Chemigation Proportional Injector |
ctrlnum |
(DE-627)DOAJ008464944 (DE-599)DOAJb4dcea5e8f6149129fdb4aee786c41aa |
title_full |
Investigation of Hydraulic Performance Based on Response Surface Methodology for an Agricultural Chemigation Proportional Injector |
author_sort |
Pan Tang |
journal |
Water |
journalStr |
Water |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Pan Tang Chao Chen Hong Li |
container_volume |
12 |
class |
TC1-978 TD201-500 |
format_se |
Elektronische Aufsätze |
author-letter |
Pan Tang |
doi_str_mv |
10.3390/w12113155 |
author2-role |
verfasserin |
title_sort |
investigation of hydraulic performance based on response surface methodology for an agricultural chemigation proportional injector |
callnumber |
TC1-978 |
title_auth |
Investigation of Hydraulic Performance Based on Response Surface Methodology for an Agricultural Chemigation Proportional Injector |
abstract |
Injectors are key pieces of equipment for chemigation systems, and their hydraulic performance has a significant effect on chemigation systems and crops. In order to investigate the influence of different working parameters on hydraulic performance for a water-powered proportional injector (PI), three key parameters of inlet and injection flow rate were researched using a one-factor experimental design method. The regression equations between different factors and response variables were established through a response surface method based on one-factor experimental results. Lastly, a mathematical model of the actual injection ratio was established. Some experiments under different, randomly selected parameter combinations were carried out to verify the prediction precision of the mathematical mode. The results showed that the injection flow rate increased first within the differential pressure of 0.05 to 0.10 MPa and then tended towards stability with increasing differential pressure. The injection flow rate decreased by increasing the viscosity and the change in the injection flow rate was small enough when the viscosity was greater than 500 mPa·s. The impact factors, in order of significance, for inlet flow rate were differential pressure, viscosity of injection liquid and setting injection ratio. The impact factors, in order of significance, for injection flow rate were viscosity of injection liquid, setting injection ratio and differential pressure. The regressive model for predicting the actual injection ratio was validated using an experiment and the relative deviation between calculated value and tested value was less than 5.98%, which indicated that the mathematical model had high credibility. |
abstractGer |
Injectors are key pieces of equipment for chemigation systems, and their hydraulic performance has a significant effect on chemigation systems and crops. In order to investigate the influence of different working parameters on hydraulic performance for a water-powered proportional injector (PI), three key parameters of inlet and injection flow rate were researched using a one-factor experimental design method. The regression equations between different factors and response variables were established through a response surface method based on one-factor experimental results. Lastly, a mathematical model of the actual injection ratio was established. Some experiments under different, randomly selected parameter combinations were carried out to verify the prediction precision of the mathematical mode. The results showed that the injection flow rate increased first within the differential pressure of 0.05 to 0.10 MPa and then tended towards stability with increasing differential pressure. The injection flow rate decreased by increasing the viscosity and the change in the injection flow rate was small enough when the viscosity was greater than 500 mPa·s. The impact factors, in order of significance, for inlet flow rate were differential pressure, viscosity of injection liquid and setting injection ratio. The impact factors, in order of significance, for injection flow rate were viscosity of injection liquid, setting injection ratio and differential pressure. The regressive model for predicting the actual injection ratio was validated using an experiment and the relative deviation between calculated value and tested value was less than 5.98%, which indicated that the mathematical model had high credibility. |
abstract_unstemmed |
Injectors are key pieces of equipment for chemigation systems, and their hydraulic performance has a significant effect on chemigation systems and crops. In order to investigate the influence of different working parameters on hydraulic performance for a water-powered proportional injector (PI), three key parameters of inlet and injection flow rate were researched using a one-factor experimental design method. The regression equations between different factors and response variables were established through a response surface method based on one-factor experimental results. Lastly, a mathematical model of the actual injection ratio was established. Some experiments under different, randomly selected parameter combinations were carried out to verify the prediction precision of the mathematical mode. The results showed that the injection flow rate increased first within the differential pressure of 0.05 to 0.10 MPa and then tended towards stability with increasing differential pressure. The injection flow rate decreased by increasing the viscosity and the change in the injection flow rate was small enough when the viscosity was greater than 500 mPa·s. The impact factors, in order of significance, for inlet flow rate were differential pressure, viscosity of injection liquid and setting injection ratio. The impact factors, in order of significance, for injection flow rate were viscosity of injection liquid, setting injection ratio and differential pressure. The regressive model for predicting the actual injection ratio was validated using an experiment and the relative deviation between calculated value and tested value was less than 5.98%, which indicated that the mathematical model had high credibility. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11, p 3155 |
title_short |
Investigation of Hydraulic Performance Based on Response Surface Methodology for an Agricultural Chemigation Proportional Injector |
url |
https://doi.org/10.3390/w12113155 https://doaj.org/article/b4dcea5e8f6149129fdb4aee786c41aa https://www.mdpi.com/2073-4441/12/11/3155 https://doaj.org/toc/2073-4441 |
remote_bool |
true |
author2 |
Chao Chen Hong Li |
author2Str |
Chao Chen Hong Li |
ppnlink |
611729008 |
callnumber-subject |
TC - Hydraulic and Ocean Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/w12113155 |
callnumber-a |
TC1-978 |
up_date |
2024-07-03T18:08:21.070Z |
_version_ |
1803582283264819200 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ008464944</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412211103.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/w12113155</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ008464944</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb4dcea5e8f6149129fdb4aee786c41aa</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TC1-978</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD201-500</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Pan Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Investigation of Hydraulic Performance Based on Response Surface Methodology for an Agricultural Chemigation Proportional Injector</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Injectors are key pieces of equipment for chemigation systems, and their hydraulic performance has a significant effect on chemigation systems and crops. In order to investigate the influence of different working parameters on hydraulic performance for a water-powered proportional injector (PI), three key parameters of inlet and injection flow rate were researched using a one-factor experimental design method. The regression equations between different factors and response variables were established through a response surface method based on one-factor experimental results. Lastly, a mathematical model of the actual injection ratio was established. Some experiments under different, randomly selected parameter combinations were carried out to verify the prediction precision of the mathematical mode. The results showed that the injection flow rate increased first within the differential pressure of 0.05 to 0.10 MPa and then tended towards stability with increasing differential pressure. The injection flow rate decreased by increasing the viscosity and the change in the injection flow rate was small enough when the viscosity was greater than 500 mPa·s. The impact factors, in order of significance, for inlet flow rate were differential pressure, viscosity of injection liquid and setting injection ratio. The impact factors, in order of significance, for injection flow rate were viscosity of injection liquid, setting injection ratio and differential pressure. The regressive model for predicting the actual injection ratio was validated using an experiment and the relative deviation between calculated value and tested value was less than 5.98%, which indicated that the mathematical model had high credibility.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">precision agriculture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chemigation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">proportional injector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydraulic performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mathematical model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">response surface methodology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Hydraulic engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Water supply for domestic and industrial purposes</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chao Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hong Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Water</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">12(2020), 11, p 3155</subfield><subfield code="w">(DE-627)611729008</subfield><subfield code="w">(DE-600)2521238-2</subfield><subfield code="x">20734441</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:11, p 3155</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/w12113155</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b4dcea5e8f6149129fdb4aee786c41aa</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4441/12/11/3155</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4441</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2020</subfield><subfield code="e">11, p 3155</subfield></datafield></record></collection>
|
score |
7.401458 |