Valorization of Brewery Wastes for the Synthesis of Silver Nanocomposites Containing Orthophosphate
Brewery wastes from stage 5 (Wort precipitate: BW5) and stage 7 (Brewer’s spent yeast: BW7) were valorized for the synthesis of silver phosphate nanocomposites. Nanoparticles were synthesized by converting silver salt in the presence of brewery wastes at different temperatures (25, 50, and 80 °C) an...
Ausführliche Beschreibung
Autor*in: |
Alcina Johnson Sudagar [verfasserIn] Neha Venkatesh Rangam [verfasserIn] Artur Ruszczak [verfasserIn] Paweł Borowicz [verfasserIn] József Tóth [verfasserIn] László Kövér [verfasserIn] Dorota Michałowska [verfasserIn] Marek Ł. Roszko [verfasserIn] Krzysztof R. Noworyta [verfasserIn] Beata Lesiak [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Nanomaterials - MDPI AG, 2012, 11(2021), 10, p 2659 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2021 ; number:10, p 2659 |
Links: |
---|
DOI / URN: |
10.3390/nano11102659 |
---|
Katalog-ID: |
DOAJ008614296 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ008614296 | ||
003 | DE-627 | ||
005 | 20240412134807.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/nano11102659 |2 doi | |
035 | |a (DE-627)DOAJ008614296 | ||
035 | |a (DE-599)DOAJ3199d41c626a4837a380592166d3953c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD1-999 | |
100 | 0 | |a Alcina Johnson Sudagar |e verfasserin |4 aut | |
245 | 1 | 0 | |a Valorization of Brewery Wastes for the Synthesis of Silver Nanocomposites Containing Orthophosphate |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Brewery wastes from stage 5 (Wort precipitate: BW5) and stage 7 (Brewer’s spent yeast: BW7) were valorized for the synthesis of silver phosphate nanocomposites. Nanoparticles were synthesized by converting silver salt in the presence of brewery wastes at different temperatures (25, 50, and 80 °C) and times (10, 30, and 120 min). Unexpectedly, BW7 yielded Ag<sub<3</sub<PO<sub<4</sub< nanoparticles with minor contents of AgCl and Ag metal (Ag<sub<met</sub<). Contrastingly, BW5 produced AgCl nanoparticles with minor amounts of Ag<sub<3</sub<PO<sub<4</sub< and Ag<sub<met</sub<. Nanocomposites with different component ratios were obtained by simply varying the synthesis temperature and time. The morphology of the nanocomposites contained ball-like structures representative of Ag<sub<3</sub<PO<sub<4</sub< and stacked layers and fused particles representing AgCl and Ag<sub<met</sub<. The capping on the nanoparticles contained organic groups from the brewery by-products, and the surface overlayer had a rich chemical composition. The organic overlayers on BW7 nanocomposites were thinner than those on BW5 nanocomposites. Notably, the nanocomposites exhibited high antibacterial activity against <i<Escherichia coli</i< ATCC 25922. The antibacterial activity was higher for BW7 nanocomposites due to a larger silver phosphate content in the composition and a thin organic overlayer. The growth of Ag<sub<met</sub< in the structure adversely affected the antimicrobial property of the nanocomposites. | ||
650 | 4 | |a green chemistry | |
650 | 4 | |a nanoparticles | |
650 | 4 | |a waste valorization | |
650 | 4 | |a antibacterial | |
650 | 4 | |a silver phosphate | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Neha Venkatesh Rangam |e verfasserin |4 aut | |
700 | 0 | |a Artur Ruszczak |e verfasserin |4 aut | |
700 | 0 | |a Paweł Borowicz |e verfasserin |4 aut | |
700 | 0 | |a József Tóth |e verfasserin |4 aut | |
700 | 0 | |a László Kövér |e verfasserin |4 aut | |
700 | 0 | |a Dorota Michałowska |e verfasserin |4 aut | |
700 | 0 | |a Marek Ł. Roszko |e verfasserin |4 aut | |
700 | 0 | |a Krzysztof R. Noworyta |e verfasserin |4 aut | |
700 | 0 | |a Beata Lesiak |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Nanomaterials |d MDPI AG, 2012 |g 11(2021), 10, p 2659 |w (DE-627)718627199 |w (DE-600)2662255-5 |x 20794991 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2021 |g number:10, p 2659 |
856 | 4 | 0 | |u https://doi.org/10.3390/nano11102659 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3199d41c626a4837a380592166d3953c |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-4991/11/10/2659 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-4991 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2021 |e 10, p 2659 |
author_variant |
a j s ajs n v r nvr a r ar p b pb j t jt l k lk d m dm m ł r młr k r n krn b l bl |
---|---|
matchkey_str |
article:20794991:2021----::aoiainfrwrwsefrhsnhssfivraoopstso |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QD |
publishDate |
2021 |
allfields |
10.3390/nano11102659 doi (DE-627)DOAJ008614296 (DE-599)DOAJ3199d41c626a4837a380592166d3953c DE-627 ger DE-627 rakwb eng QD1-999 Alcina Johnson Sudagar verfasserin aut Valorization of Brewery Wastes for the Synthesis of Silver Nanocomposites Containing Orthophosphate 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Brewery wastes from stage 5 (Wort precipitate: BW5) and stage 7 (Brewer’s spent yeast: BW7) were valorized for the synthesis of silver phosphate nanocomposites. Nanoparticles were synthesized by converting silver salt in the presence of brewery wastes at different temperatures (25, 50, and 80 °C) and times (10, 30, and 120 min). Unexpectedly, BW7 yielded Ag<sub<3</sub<PO<sub<4</sub< nanoparticles with minor contents of AgCl and Ag metal (Ag<sub<met</sub<). Contrastingly, BW5 produced AgCl nanoparticles with minor amounts of Ag<sub<3</sub<PO<sub<4</sub< and Ag<sub<met</sub<. Nanocomposites with different component ratios were obtained by simply varying the synthesis temperature and time. The morphology of the nanocomposites contained ball-like structures representative of Ag<sub<3</sub<PO<sub<4</sub< and stacked layers and fused particles representing AgCl and Ag<sub<met</sub<. The capping on the nanoparticles contained organic groups from the brewery by-products, and the surface overlayer had a rich chemical composition. The organic overlayers on BW7 nanocomposites were thinner than those on BW5 nanocomposites. Notably, the nanocomposites exhibited high antibacterial activity against <i<Escherichia coli</i< ATCC 25922. The antibacterial activity was higher for BW7 nanocomposites due to a larger silver phosphate content in the composition and a thin organic overlayer. The growth of Ag<sub<met</sub< in the structure adversely affected the antimicrobial property of the nanocomposites. green chemistry nanoparticles waste valorization antibacterial silver phosphate Chemistry Neha Venkatesh Rangam verfasserin aut Artur Ruszczak verfasserin aut Paweł Borowicz verfasserin aut József Tóth verfasserin aut László Kövér verfasserin aut Dorota Michałowska verfasserin aut Marek Ł. Roszko verfasserin aut Krzysztof R. Noworyta verfasserin aut Beata Lesiak verfasserin aut In Nanomaterials MDPI AG, 2012 11(2021), 10, p 2659 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:11 year:2021 number:10, p 2659 https://doi.org/10.3390/nano11102659 kostenfrei https://doaj.org/article/3199d41c626a4837a380592166d3953c kostenfrei https://www.mdpi.com/2079-4991/11/10/2659 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 10, p 2659 |
spelling |
10.3390/nano11102659 doi (DE-627)DOAJ008614296 (DE-599)DOAJ3199d41c626a4837a380592166d3953c DE-627 ger DE-627 rakwb eng QD1-999 Alcina Johnson Sudagar verfasserin aut Valorization of Brewery Wastes for the Synthesis of Silver Nanocomposites Containing Orthophosphate 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Brewery wastes from stage 5 (Wort precipitate: BW5) and stage 7 (Brewer’s spent yeast: BW7) were valorized for the synthesis of silver phosphate nanocomposites. Nanoparticles were synthesized by converting silver salt in the presence of brewery wastes at different temperatures (25, 50, and 80 °C) and times (10, 30, and 120 min). Unexpectedly, BW7 yielded Ag<sub<3</sub<PO<sub<4</sub< nanoparticles with minor contents of AgCl and Ag metal (Ag<sub<met</sub<). Contrastingly, BW5 produced AgCl nanoparticles with minor amounts of Ag<sub<3</sub<PO<sub<4</sub< and Ag<sub<met</sub<. Nanocomposites with different component ratios were obtained by simply varying the synthesis temperature and time. The morphology of the nanocomposites contained ball-like structures representative of Ag<sub<3</sub<PO<sub<4</sub< and stacked layers and fused particles representing AgCl and Ag<sub<met</sub<. The capping on the nanoparticles contained organic groups from the brewery by-products, and the surface overlayer had a rich chemical composition. The organic overlayers on BW7 nanocomposites were thinner than those on BW5 nanocomposites. Notably, the nanocomposites exhibited high antibacterial activity against <i<Escherichia coli</i< ATCC 25922. The antibacterial activity was higher for BW7 nanocomposites due to a larger silver phosphate content in the composition and a thin organic overlayer. The growth of Ag<sub<met</sub< in the structure adversely affected the antimicrobial property of the nanocomposites. green chemistry nanoparticles waste valorization antibacterial silver phosphate Chemistry Neha Venkatesh Rangam verfasserin aut Artur Ruszczak verfasserin aut Paweł Borowicz verfasserin aut József Tóth verfasserin aut László Kövér verfasserin aut Dorota Michałowska verfasserin aut Marek Ł. Roszko verfasserin aut Krzysztof R. Noworyta verfasserin aut Beata Lesiak verfasserin aut In Nanomaterials MDPI AG, 2012 11(2021), 10, p 2659 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:11 year:2021 number:10, p 2659 https://doi.org/10.3390/nano11102659 kostenfrei https://doaj.org/article/3199d41c626a4837a380592166d3953c kostenfrei https://www.mdpi.com/2079-4991/11/10/2659 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 10, p 2659 |
allfields_unstemmed |
10.3390/nano11102659 doi (DE-627)DOAJ008614296 (DE-599)DOAJ3199d41c626a4837a380592166d3953c DE-627 ger DE-627 rakwb eng QD1-999 Alcina Johnson Sudagar verfasserin aut Valorization of Brewery Wastes for the Synthesis of Silver Nanocomposites Containing Orthophosphate 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Brewery wastes from stage 5 (Wort precipitate: BW5) and stage 7 (Brewer’s spent yeast: BW7) were valorized for the synthesis of silver phosphate nanocomposites. Nanoparticles were synthesized by converting silver salt in the presence of brewery wastes at different temperatures (25, 50, and 80 °C) and times (10, 30, and 120 min). Unexpectedly, BW7 yielded Ag<sub<3</sub<PO<sub<4</sub< nanoparticles with minor contents of AgCl and Ag metal (Ag<sub<met</sub<). Contrastingly, BW5 produced AgCl nanoparticles with minor amounts of Ag<sub<3</sub<PO<sub<4</sub< and Ag<sub<met</sub<. Nanocomposites with different component ratios were obtained by simply varying the synthesis temperature and time. The morphology of the nanocomposites contained ball-like structures representative of Ag<sub<3</sub<PO<sub<4</sub< and stacked layers and fused particles representing AgCl and Ag<sub<met</sub<. The capping on the nanoparticles contained organic groups from the brewery by-products, and the surface overlayer had a rich chemical composition. The organic overlayers on BW7 nanocomposites were thinner than those on BW5 nanocomposites. Notably, the nanocomposites exhibited high antibacterial activity against <i<Escherichia coli</i< ATCC 25922. The antibacterial activity was higher for BW7 nanocomposites due to a larger silver phosphate content in the composition and a thin organic overlayer. The growth of Ag<sub<met</sub< in the structure adversely affected the antimicrobial property of the nanocomposites. green chemistry nanoparticles waste valorization antibacterial silver phosphate Chemistry Neha Venkatesh Rangam verfasserin aut Artur Ruszczak verfasserin aut Paweł Borowicz verfasserin aut József Tóth verfasserin aut László Kövér verfasserin aut Dorota Michałowska verfasserin aut Marek Ł. Roszko verfasserin aut Krzysztof R. Noworyta verfasserin aut Beata Lesiak verfasserin aut In Nanomaterials MDPI AG, 2012 11(2021), 10, p 2659 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:11 year:2021 number:10, p 2659 https://doi.org/10.3390/nano11102659 kostenfrei https://doaj.org/article/3199d41c626a4837a380592166d3953c kostenfrei https://www.mdpi.com/2079-4991/11/10/2659 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 10, p 2659 |
allfieldsGer |
10.3390/nano11102659 doi (DE-627)DOAJ008614296 (DE-599)DOAJ3199d41c626a4837a380592166d3953c DE-627 ger DE-627 rakwb eng QD1-999 Alcina Johnson Sudagar verfasserin aut Valorization of Brewery Wastes for the Synthesis of Silver Nanocomposites Containing Orthophosphate 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Brewery wastes from stage 5 (Wort precipitate: BW5) and stage 7 (Brewer’s spent yeast: BW7) were valorized for the synthesis of silver phosphate nanocomposites. Nanoparticles were synthesized by converting silver salt in the presence of brewery wastes at different temperatures (25, 50, and 80 °C) and times (10, 30, and 120 min). Unexpectedly, BW7 yielded Ag<sub<3</sub<PO<sub<4</sub< nanoparticles with minor contents of AgCl and Ag metal (Ag<sub<met</sub<). Contrastingly, BW5 produced AgCl nanoparticles with minor amounts of Ag<sub<3</sub<PO<sub<4</sub< and Ag<sub<met</sub<. Nanocomposites with different component ratios were obtained by simply varying the synthesis temperature and time. The morphology of the nanocomposites contained ball-like structures representative of Ag<sub<3</sub<PO<sub<4</sub< and stacked layers and fused particles representing AgCl and Ag<sub<met</sub<. The capping on the nanoparticles contained organic groups from the brewery by-products, and the surface overlayer had a rich chemical composition. The organic overlayers on BW7 nanocomposites were thinner than those on BW5 nanocomposites. Notably, the nanocomposites exhibited high antibacterial activity against <i<Escherichia coli</i< ATCC 25922. The antibacterial activity was higher for BW7 nanocomposites due to a larger silver phosphate content in the composition and a thin organic overlayer. The growth of Ag<sub<met</sub< in the structure adversely affected the antimicrobial property of the nanocomposites. green chemistry nanoparticles waste valorization antibacterial silver phosphate Chemistry Neha Venkatesh Rangam verfasserin aut Artur Ruszczak verfasserin aut Paweł Borowicz verfasserin aut József Tóth verfasserin aut László Kövér verfasserin aut Dorota Michałowska verfasserin aut Marek Ł. Roszko verfasserin aut Krzysztof R. Noworyta verfasserin aut Beata Lesiak verfasserin aut In Nanomaterials MDPI AG, 2012 11(2021), 10, p 2659 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:11 year:2021 number:10, p 2659 https://doi.org/10.3390/nano11102659 kostenfrei https://doaj.org/article/3199d41c626a4837a380592166d3953c kostenfrei https://www.mdpi.com/2079-4991/11/10/2659 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 10, p 2659 |
allfieldsSound |
10.3390/nano11102659 doi (DE-627)DOAJ008614296 (DE-599)DOAJ3199d41c626a4837a380592166d3953c DE-627 ger DE-627 rakwb eng QD1-999 Alcina Johnson Sudagar verfasserin aut Valorization of Brewery Wastes for the Synthesis of Silver Nanocomposites Containing Orthophosphate 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Brewery wastes from stage 5 (Wort precipitate: BW5) and stage 7 (Brewer’s spent yeast: BW7) were valorized for the synthesis of silver phosphate nanocomposites. Nanoparticles were synthesized by converting silver salt in the presence of brewery wastes at different temperatures (25, 50, and 80 °C) and times (10, 30, and 120 min). Unexpectedly, BW7 yielded Ag<sub<3</sub<PO<sub<4</sub< nanoparticles with minor contents of AgCl and Ag metal (Ag<sub<met</sub<). Contrastingly, BW5 produced AgCl nanoparticles with minor amounts of Ag<sub<3</sub<PO<sub<4</sub< and Ag<sub<met</sub<. Nanocomposites with different component ratios were obtained by simply varying the synthesis temperature and time. The morphology of the nanocomposites contained ball-like structures representative of Ag<sub<3</sub<PO<sub<4</sub< and stacked layers and fused particles representing AgCl and Ag<sub<met</sub<. The capping on the nanoparticles contained organic groups from the brewery by-products, and the surface overlayer had a rich chemical composition. The organic overlayers on BW7 nanocomposites were thinner than those on BW5 nanocomposites. Notably, the nanocomposites exhibited high antibacterial activity against <i<Escherichia coli</i< ATCC 25922. The antibacterial activity was higher for BW7 nanocomposites due to a larger silver phosphate content in the composition and a thin organic overlayer. The growth of Ag<sub<met</sub< in the structure adversely affected the antimicrobial property of the nanocomposites. green chemistry nanoparticles waste valorization antibacterial silver phosphate Chemistry Neha Venkatesh Rangam verfasserin aut Artur Ruszczak verfasserin aut Paweł Borowicz verfasserin aut József Tóth verfasserin aut László Kövér verfasserin aut Dorota Michałowska verfasserin aut Marek Ł. Roszko verfasserin aut Krzysztof R. Noworyta verfasserin aut Beata Lesiak verfasserin aut In Nanomaterials MDPI AG, 2012 11(2021), 10, p 2659 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:11 year:2021 number:10, p 2659 https://doi.org/10.3390/nano11102659 kostenfrei https://doaj.org/article/3199d41c626a4837a380592166d3953c kostenfrei https://www.mdpi.com/2079-4991/11/10/2659 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 10, p 2659 |
language |
English |
source |
In Nanomaterials 11(2021), 10, p 2659 volume:11 year:2021 number:10, p 2659 |
sourceStr |
In Nanomaterials 11(2021), 10, p 2659 volume:11 year:2021 number:10, p 2659 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
green chemistry nanoparticles waste valorization antibacterial silver phosphate Chemistry |
isfreeaccess_bool |
true |
container_title |
Nanomaterials |
authorswithroles_txt_mv |
Alcina Johnson Sudagar @@aut@@ Neha Venkatesh Rangam @@aut@@ Artur Ruszczak @@aut@@ Paweł Borowicz @@aut@@ József Tóth @@aut@@ László Kövér @@aut@@ Dorota Michałowska @@aut@@ Marek Ł. Roszko @@aut@@ Krzysztof R. Noworyta @@aut@@ Beata Lesiak @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
718627199 |
id |
DOAJ008614296 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ008614296</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412134807.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/nano11102659</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ008614296</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3199d41c626a4837a380592166d3953c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Alcina Johnson Sudagar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Valorization of Brewery Wastes for the Synthesis of Silver Nanocomposites Containing Orthophosphate</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Brewery wastes from stage 5 (Wort precipitate: BW5) and stage 7 (Brewer’s spent yeast: BW7) were valorized for the synthesis of silver phosphate nanocomposites. Nanoparticles were synthesized by converting silver salt in the presence of brewery wastes at different temperatures (25, 50, and 80 °C) and times (10, 30, and 120 min). Unexpectedly, BW7 yielded Ag<sub<3</sub<PO<sub<4</sub< nanoparticles with minor contents of AgCl and Ag metal (Ag<sub<met</sub<). Contrastingly, BW5 produced AgCl nanoparticles with minor amounts of Ag<sub<3</sub<PO<sub<4</sub< and Ag<sub<met</sub<. Nanocomposites with different component ratios were obtained by simply varying the synthesis temperature and time. The morphology of the nanocomposites contained ball-like structures representative of Ag<sub<3</sub<PO<sub<4</sub< and stacked layers and fused particles representing AgCl and Ag<sub<met</sub<. The capping on the nanoparticles contained organic groups from the brewery by-products, and the surface overlayer had a rich chemical composition. The organic overlayers on BW7 nanocomposites were thinner than those on BW5 nanocomposites. Notably, the nanocomposites exhibited high antibacterial activity against <i<Escherichia coli</i< ATCC 25922. The antibacterial activity was higher for BW7 nanocomposites due to a larger silver phosphate content in the composition and a thin organic overlayer. The growth of Ag<sub<met</sub< in the structure adversely affected the antimicrobial property of the nanocomposites.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">green chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">waste valorization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">antibacterial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">silver phosphate</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Neha Venkatesh Rangam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Artur Ruszczak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paweł Borowicz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">József Tóth</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">László Kövér</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dorota Michałowska</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marek Ł. Roszko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Krzysztof R. Noworyta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Beata Lesiak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanomaterials</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 10, p 2659</subfield><subfield code="w">(DE-627)718627199</subfield><subfield code="w">(DE-600)2662255-5</subfield><subfield code="x">20794991</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:10, p 2659</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/nano11102659</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3199d41c626a4837a380592166d3953c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-4991/11/10/2659</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-4991</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">10, p 2659</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Alcina Johnson Sudagar |
spellingShingle |
Alcina Johnson Sudagar misc QD1-999 misc green chemistry misc nanoparticles misc waste valorization misc antibacterial misc silver phosphate misc Chemistry Valorization of Brewery Wastes for the Synthesis of Silver Nanocomposites Containing Orthophosphate |
authorStr |
Alcina Johnson Sudagar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627199 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD1-999 |
illustrated |
Not Illustrated |
issn |
20794991 |
topic_title |
QD1-999 Valorization of Brewery Wastes for the Synthesis of Silver Nanocomposites Containing Orthophosphate green chemistry nanoparticles waste valorization antibacterial silver phosphate |
topic |
misc QD1-999 misc green chemistry misc nanoparticles misc waste valorization misc antibacterial misc silver phosphate misc Chemistry |
topic_unstemmed |
misc QD1-999 misc green chemistry misc nanoparticles misc waste valorization misc antibacterial misc silver phosphate misc Chemistry |
topic_browse |
misc QD1-999 misc green chemistry misc nanoparticles misc waste valorization misc antibacterial misc silver phosphate misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nanomaterials |
hierarchy_parent_id |
718627199 |
hierarchy_top_title |
Nanomaterials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627199 (DE-600)2662255-5 |
title |
Valorization of Brewery Wastes for the Synthesis of Silver Nanocomposites Containing Orthophosphate |
ctrlnum |
(DE-627)DOAJ008614296 (DE-599)DOAJ3199d41c626a4837a380592166d3953c |
title_full |
Valorization of Brewery Wastes for the Synthesis of Silver Nanocomposites Containing Orthophosphate |
author_sort |
Alcina Johnson Sudagar |
journal |
Nanomaterials |
journalStr |
Nanomaterials |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Alcina Johnson Sudagar Neha Venkatesh Rangam Artur Ruszczak Paweł Borowicz József Tóth László Kövér Dorota Michałowska Marek Ł. Roszko Krzysztof R. Noworyta Beata Lesiak |
container_volume |
11 |
class |
QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Alcina Johnson Sudagar |
doi_str_mv |
10.3390/nano11102659 |
author2-role |
verfasserin |
title_sort |
valorization of brewery wastes for the synthesis of silver nanocomposites containing orthophosphate |
callnumber |
QD1-999 |
title_auth |
Valorization of Brewery Wastes for the Synthesis of Silver Nanocomposites Containing Orthophosphate |
abstract |
Brewery wastes from stage 5 (Wort precipitate: BW5) and stage 7 (Brewer’s spent yeast: BW7) were valorized for the synthesis of silver phosphate nanocomposites. Nanoparticles were synthesized by converting silver salt in the presence of brewery wastes at different temperatures (25, 50, and 80 °C) and times (10, 30, and 120 min). Unexpectedly, BW7 yielded Ag<sub<3</sub<PO<sub<4</sub< nanoparticles with minor contents of AgCl and Ag metal (Ag<sub<met</sub<). Contrastingly, BW5 produced AgCl nanoparticles with minor amounts of Ag<sub<3</sub<PO<sub<4</sub< and Ag<sub<met</sub<. Nanocomposites with different component ratios were obtained by simply varying the synthesis temperature and time. The morphology of the nanocomposites contained ball-like structures representative of Ag<sub<3</sub<PO<sub<4</sub< and stacked layers and fused particles representing AgCl and Ag<sub<met</sub<. The capping on the nanoparticles contained organic groups from the brewery by-products, and the surface overlayer had a rich chemical composition. The organic overlayers on BW7 nanocomposites were thinner than those on BW5 nanocomposites. Notably, the nanocomposites exhibited high antibacterial activity against <i<Escherichia coli</i< ATCC 25922. The antibacterial activity was higher for BW7 nanocomposites due to a larger silver phosphate content in the composition and a thin organic overlayer. The growth of Ag<sub<met</sub< in the structure adversely affected the antimicrobial property of the nanocomposites. |
abstractGer |
Brewery wastes from stage 5 (Wort precipitate: BW5) and stage 7 (Brewer’s spent yeast: BW7) were valorized for the synthesis of silver phosphate nanocomposites. Nanoparticles were synthesized by converting silver salt in the presence of brewery wastes at different temperatures (25, 50, and 80 °C) and times (10, 30, and 120 min). Unexpectedly, BW7 yielded Ag<sub<3</sub<PO<sub<4</sub< nanoparticles with minor contents of AgCl and Ag metal (Ag<sub<met</sub<). Contrastingly, BW5 produced AgCl nanoparticles with minor amounts of Ag<sub<3</sub<PO<sub<4</sub< and Ag<sub<met</sub<. Nanocomposites with different component ratios were obtained by simply varying the synthesis temperature and time. The morphology of the nanocomposites contained ball-like structures representative of Ag<sub<3</sub<PO<sub<4</sub< and stacked layers and fused particles representing AgCl and Ag<sub<met</sub<. The capping on the nanoparticles contained organic groups from the brewery by-products, and the surface overlayer had a rich chemical composition. The organic overlayers on BW7 nanocomposites were thinner than those on BW5 nanocomposites. Notably, the nanocomposites exhibited high antibacterial activity against <i<Escherichia coli</i< ATCC 25922. The antibacterial activity was higher for BW7 nanocomposites due to a larger silver phosphate content in the composition and a thin organic overlayer. The growth of Ag<sub<met</sub< in the structure adversely affected the antimicrobial property of the nanocomposites. |
abstract_unstemmed |
Brewery wastes from stage 5 (Wort precipitate: BW5) and stage 7 (Brewer’s spent yeast: BW7) were valorized for the synthesis of silver phosphate nanocomposites. Nanoparticles were synthesized by converting silver salt in the presence of brewery wastes at different temperatures (25, 50, and 80 °C) and times (10, 30, and 120 min). Unexpectedly, BW7 yielded Ag<sub<3</sub<PO<sub<4</sub< nanoparticles with minor contents of AgCl and Ag metal (Ag<sub<met</sub<). Contrastingly, BW5 produced AgCl nanoparticles with minor amounts of Ag<sub<3</sub<PO<sub<4</sub< and Ag<sub<met</sub<. Nanocomposites with different component ratios were obtained by simply varying the synthesis temperature and time. The morphology of the nanocomposites contained ball-like structures representative of Ag<sub<3</sub<PO<sub<4</sub< and stacked layers and fused particles representing AgCl and Ag<sub<met</sub<. The capping on the nanoparticles contained organic groups from the brewery by-products, and the surface overlayer had a rich chemical composition. The organic overlayers on BW7 nanocomposites were thinner than those on BW5 nanocomposites. Notably, the nanocomposites exhibited high antibacterial activity against <i<Escherichia coli</i< ATCC 25922. The antibacterial activity was higher for BW7 nanocomposites due to a larger silver phosphate content in the composition and a thin organic overlayer. The growth of Ag<sub<met</sub< in the structure adversely affected the antimicrobial property of the nanocomposites. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10, p 2659 |
title_short |
Valorization of Brewery Wastes for the Synthesis of Silver Nanocomposites Containing Orthophosphate |
url |
https://doi.org/10.3390/nano11102659 https://doaj.org/article/3199d41c626a4837a380592166d3953c https://www.mdpi.com/2079-4991/11/10/2659 https://doaj.org/toc/2079-4991 |
remote_bool |
true |
author2 |
Neha Venkatesh Rangam Artur Ruszczak Paweł Borowicz József Tóth László Kövér Dorota Michałowska Marek Ł. Roszko Krzysztof R. Noworyta Beata Lesiak |
author2Str |
Neha Venkatesh Rangam Artur Ruszczak Paweł Borowicz József Tóth László Kövér Dorota Michałowska Marek Ł. Roszko Krzysztof R. Noworyta Beata Lesiak |
ppnlink |
718627199 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/nano11102659 |
callnumber-a |
QD1-999 |
up_date |
2024-07-03T19:03:12.191Z |
_version_ |
1803585734251118592 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ008614296</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412134807.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/nano11102659</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ008614296</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3199d41c626a4837a380592166d3953c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Alcina Johnson Sudagar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Valorization of Brewery Wastes for the Synthesis of Silver Nanocomposites Containing Orthophosphate</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Brewery wastes from stage 5 (Wort precipitate: BW5) and stage 7 (Brewer’s spent yeast: BW7) were valorized for the synthesis of silver phosphate nanocomposites. Nanoparticles were synthesized by converting silver salt in the presence of brewery wastes at different temperatures (25, 50, and 80 °C) and times (10, 30, and 120 min). Unexpectedly, BW7 yielded Ag<sub<3</sub<PO<sub<4</sub< nanoparticles with minor contents of AgCl and Ag metal (Ag<sub<met</sub<). Contrastingly, BW5 produced AgCl nanoparticles with minor amounts of Ag<sub<3</sub<PO<sub<4</sub< and Ag<sub<met</sub<. Nanocomposites with different component ratios were obtained by simply varying the synthesis temperature and time. The morphology of the nanocomposites contained ball-like structures representative of Ag<sub<3</sub<PO<sub<4</sub< and stacked layers and fused particles representing AgCl and Ag<sub<met</sub<. The capping on the nanoparticles contained organic groups from the brewery by-products, and the surface overlayer had a rich chemical composition. The organic overlayers on BW7 nanocomposites were thinner than those on BW5 nanocomposites. Notably, the nanocomposites exhibited high antibacterial activity against <i<Escherichia coli</i< ATCC 25922. The antibacterial activity was higher for BW7 nanocomposites due to a larger silver phosphate content in the composition and a thin organic overlayer. The growth of Ag<sub<met</sub< in the structure adversely affected the antimicrobial property of the nanocomposites.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">green chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">waste valorization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">antibacterial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">silver phosphate</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Neha Venkatesh Rangam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Artur Ruszczak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paweł Borowicz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">József Tóth</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">László Kövér</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dorota Michałowska</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marek Ł. Roszko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Krzysztof R. Noworyta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Beata Lesiak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanomaterials</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 10, p 2659</subfield><subfield code="w">(DE-627)718627199</subfield><subfield code="w">(DE-600)2662255-5</subfield><subfield code="x">20794991</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:10, p 2659</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/nano11102659</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3199d41c626a4837a380592166d3953c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-4991/11/10/2659</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-4991</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">10, p 2659</subfield></datafield></record></collection>
|
score |
7.401102 |