Computer-Aided Diagnosis in Mammography Using Content-Based Image Retrieval Approaches: Current Status and Future Perspectives
As the rapid advance of digital imaging technologies, the content-based image retrieval (CBIR) has became one of the most vivid research areas in computer vision. In the last several years, developing computer-aided detection and/or diagnosis (CAD) schemes that use CBIR to search for the clinically...
Ausführliche Beschreibung
Autor*in: |
Bin Zheng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2009 |
---|
Schlagwörter: |
computer-aided diagnosis (CAD) |
---|
Übergeordnetes Werk: |
In: Algorithms - MDPI AG, 2008, 2(2009), 2, Seite 828-849 |
---|---|
Übergeordnetes Werk: |
volume:2 ; year:2009 ; number:2 ; pages:828-849 |
Links: |
---|
DOI / URN: |
10.3390/a2020828 |
---|
Katalog-ID: |
DOAJ008824088 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ008824088 | ||
003 | DE-627 | ||
005 | 20230501182757.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2009 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/a2020828 |2 doi | |
035 | |a (DE-627)DOAJ008824088 | ||
035 | |a (DE-599)DOAJ3e83d6135e9d43edbf2325f15bed0889 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a T55.4-60.8 | |
050 | 0 | |a QA75.5-76.95 | |
100 | 0 | |a Bin Zheng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Computer-Aided Diagnosis in Mammography Using Content-Based Image Retrieval Approaches: Current Status and Future Perspectives |
264 | 1 | |c 2009 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a As the rapid advance of digital imaging technologies, the content-based image retrieval (CBIR) has became one of the most vivid research areas in computer vision. In the last several years, developing computer-aided detection and/or diagnosis (CAD) schemes that use CBIR to search for the clinically relevant and visually similar medical images (or regions) depicting suspicious lesions has also been attracting research interest. CBIR-based CAD schemes have potential to provide radiologists with “visual aid” and increase their confidence in accepting CAD-cued results in the decision making. The CAD performance and reliability depends on a number of factors including the optimization of lesion segmentation, feature selection, reference database size, computational efficiency, and relationship between the clinical relevance and visual similarity of the CAD results. By presenting and comparing a number of approaches commonly used in previous studies, this article identifies and discusses the optimal approaches in developing CBIR-based CAD schemes and assessing their performance. Although preliminary studies have suggested that using CBIR-based CAD schemes might improve radiologists’ performance and/or increase their confidence in the decision making, this technology is still in the early development stage. Much research work is needed before the CBIR-based CAD schemes can be accepted in the clinical practice. | ||
650 | 4 | |a computer-aided diagnosis (CAD) | |
650 | 4 | |a content-based Image Retrieval (CBIR) | |
650 | 4 | |a medical imaging | |
650 | 4 | |a technology assessment | |
653 | 0 | |a Industrial engineering. Management engineering | |
653 | 0 | |a Electronic computers. Computer science | |
773 | 0 | 8 | |i In |t Algorithms |d MDPI AG, 2008 |g 2(2009), 2, Seite 828-849 |w (DE-627)581036506 |w (DE-600)2455149-1 |x 19994893 |7 nnns |
773 | 1 | 8 | |g volume:2 |g year:2009 |g number:2 |g pages:828-849 |
856 | 4 | 0 | |u https://doi.org/10.3390/a2020828 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3e83d6135e9d43edbf2325f15bed0889 |z kostenfrei |
856 | 4 | 0 | |u http://www.mdpi.com/1999-4893/2/2/828/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1999-4893 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2 |j 2009 |e 2 |h 828-849 |
author_variant |
b z bz |
---|---|
matchkey_str |
article:19994893:2009----::optriedanssnamgahuigotnbsdmgrtivlprahsur |
hierarchy_sort_str |
2009 |
callnumber-subject-code |
T |
publishDate |
2009 |
allfields |
10.3390/a2020828 doi (DE-627)DOAJ008824088 (DE-599)DOAJ3e83d6135e9d43edbf2325f15bed0889 DE-627 ger DE-627 rakwb eng T55.4-60.8 QA75.5-76.95 Bin Zheng verfasserin aut Computer-Aided Diagnosis in Mammography Using Content-Based Image Retrieval Approaches: Current Status and Future Perspectives 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As the rapid advance of digital imaging technologies, the content-based image retrieval (CBIR) has became one of the most vivid research areas in computer vision. In the last several years, developing computer-aided detection and/or diagnosis (CAD) schemes that use CBIR to search for the clinically relevant and visually similar medical images (or regions) depicting suspicious lesions has also been attracting research interest. CBIR-based CAD schemes have potential to provide radiologists with “visual aid” and increase their confidence in accepting CAD-cued results in the decision making. The CAD performance and reliability depends on a number of factors including the optimization of lesion segmentation, feature selection, reference database size, computational efficiency, and relationship between the clinical relevance and visual similarity of the CAD results. By presenting and comparing a number of approaches commonly used in previous studies, this article identifies and discusses the optimal approaches in developing CBIR-based CAD schemes and assessing their performance. Although preliminary studies have suggested that using CBIR-based CAD schemes might improve radiologists’ performance and/or increase their confidence in the decision making, this technology is still in the early development stage. Much research work is needed before the CBIR-based CAD schemes can be accepted in the clinical practice. computer-aided diagnosis (CAD) content-based Image Retrieval (CBIR) medical imaging technology assessment Industrial engineering. Management engineering Electronic computers. Computer science In Algorithms MDPI AG, 2008 2(2009), 2, Seite 828-849 (DE-627)581036506 (DE-600)2455149-1 19994893 nnns volume:2 year:2009 number:2 pages:828-849 https://doi.org/10.3390/a2020828 kostenfrei https://doaj.org/article/3e83d6135e9d43edbf2325f15bed0889 kostenfrei http://www.mdpi.com/1999-4893/2/2/828/ kostenfrei https://doaj.org/toc/1999-4893 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2009 2 828-849 |
spelling |
10.3390/a2020828 doi (DE-627)DOAJ008824088 (DE-599)DOAJ3e83d6135e9d43edbf2325f15bed0889 DE-627 ger DE-627 rakwb eng T55.4-60.8 QA75.5-76.95 Bin Zheng verfasserin aut Computer-Aided Diagnosis in Mammography Using Content-Based Image Retrieval Approaches: Current Status and Future Perspectives 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As the rapid advance of digital imaging technologies, the content-based image retrieval (CBIR) has became one of the most vivid research areas in computer vision. In the last several years, developing computer-aided detection and/or diagnosis (CAD) schemes that use CBIR to search for the clinically relevant and visually similar medical images (or regions) depicting suspicious lesions has also been attracting research interest. CBIR-based CAD schemes have potential to provide radiologists with “visual aid” and increase their confidence in accepting CAD-cued results in the decision making. The CAD performance and reliability depends on a number of factors including the optimization of lesion segmentation, feature selection, reference database size, computational efficiency, and relationship between the clinical relevance and visual similarity of the CAD results. By presenting and comparing a number of approaches commonly used in previous studies, this article identifies and discusses the optimal approaches in developing CBIR-based CAD schemes and assessing their performance. Although preliminary studies have suggested that using CBIR-based CAD schemes might improve radiologists’ performance and/or increase their confidence in the decision making, this technology is still in the early development stage. Much research work is needed before the CBIR-based CAD schemes can be accepted in the clinical practice. computer-aided diagnosis (CAD) content-based Image Retrieval (CBIR) medical imaging technology assessment Industrial engineering. Management engineering Electronic computers. Computer science In Algorithms MDPI AG, 2008 2(2009), 2, Seite 828-849 (DE-627)581036506 (DE-600)2455149-1 19994893 nnns volume:2 year:2009 number:2 pages:828-849 https://doi.org/10.3390/a2020828 kostenfrei https://doaj.org/article/3e83d6135e9d43edbf2325f15bed0889 kostenfrei http://www.mdpi.com/1999-4893/2/2/828/ kostenfrei https://doaj.org/toc/1999-4893 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2009 2 828-849 |
allfields_unstemmed |
10.3390/a2020828 doi (DE-627)DOAJ008824088 (DE-599)DOAJ3e83d6135e9d43edbf2325f15bed0889 DE-627 ger DE-627 rakwb eng T55.4-60.8 QA75.5-76.95 Bin Zheng verfasserin aut Computer-Aided Diagnosis in Mammography Using Content-Based Image Retrieval Approaches: Current Status and Future Perspectives 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As the rapid advance of digital imaging technologies, the content-based image retrieval (CBIR) has became one of the most vivid research areas in computer vision. In the last several years, developing computer-aided detection and/or diagnosis (CAD) schemes that use CBIR to search for the clinically relevant and visually similar medical images (or regions) depicting suspicious lesions has also been attracting research interest. CBIR-based CAD schemes have potential to provide radiologists with “visual aid” and increase their confidence in accepting CAD-cued results in the decision making. The CAD performance and reliability depends on a number of factors including the optimization of lesion segmentation, feature selection, reference database size, computational efficiency, and relationship between the clinical relevance and visual similarity of the CAD results. By presenting and comparing a number of approaches commonly used in previous studies, this article identifies and discusses the optimal approaches in developing CBIR-based CAD schemes and assessing their performance. Although preliminary studies have suggested that using CBIR-based CAD schemes might improve radiologists’ performance and/or increase their confidence in the decision making, this technology is still in the early development stage. Much research work is needed before the CBIR-based CAD schemes can be accepted in the clinical practice. computer-aided diagnosis (CAD) content-based Image Retrieval (CBIR) medical imaging technology assessment Industrial engineering. Management engineering Electronic computers. Computer science In Algorithms MDPI AG, 2008 2(2009), 2, Seite 828-849 (DE-627)581036506 (DE-600)2455149-1 19994893 nnns volume:2 year:2009 number:2 pages:828-849 https://doi.org/10.3390/a2020828 kostenfrei https://doaj.org/article/3e83d6135e9d43edbf2325f15bed0889 kostenfrei http://www.mdpi.com/1999-4893/2/2/828/ kostenfrei https://doaj.org/toc/1999-4893 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2009 2 828-849 |
allfieldsGer |
10.3390/a2020828 doi (DE-627)DOAJ008824088 (DE-599)DOAJ3e83d6135e9d43edbf2325f15bed0889 DE-627 ger DE-627 rakwb eng T55.4-60.8 QA75.5-76.95 Bin Zheng verfasserin aut Computer-Aided Diagnosis in Mammography Using Content-Based Image Retrieval Approaches: Current Status and Future Perspectives 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As the rapid advance of digital imaging technologies, the content-based image retrieval (CBIR) has became one of the most vivid research areas in computer vision. In the last several years, developing computer-aided detection and/or diagnosis (CAD) schemes that use CBIR to search for the clinically relevant and visually similar medical images (or regions) depicting suspicious lesions has also been attracting research interest. CBIR-based CAD schemes have potential to provide radiologists with “visual aid” and increase their confidence in accepting CAD-cued results in the decision making. The CAD performance and reliability depends on a number of factors including the optimization of lesion segmentation, feature selection, reference database size, computational efficiency, and relationship between the clinical relevance and visual similarity of the CAD results. By presenting and comparing a number of approaches commonly used in previous studies, this article identifies and discusses the optimal approaches in developing CBIR-based CAD schemes and assessing their performance. Although preliminary studies have suggested that using CBIR-based CAD schemes might improve radiologists’ performance and/or increase their confidence in the decision making, this technology is still in the early development stage. Much research work is needed before the CBIR-based CAD schemes can be accepted in the clinical practice. computer-aided diagnosis (CAD) content-based Image Retrieval (CBIR) medical imaging technology assessment Industrial engineering. Management engineering Electronic computers. Computer science In Algorithms MDPI AG, 2008 2(2009), 2, Seite 828-849 (DE-627)581036506 (DE-600)2455149-1 19994893 nnns volume:2 year:2009 number:2 pages:828-849 https://doi.org/10.3390/a2020828 kostenfrei https://doaj.org/article/3e83d6135e9d43edbf2325f15bed0889 kostenfrei http://www.mdpi.com/1999-4893/2/2/828/ kostenfrei https://doaj.org/toc/1999-4893 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2009 2 828-849 |
allfieldsSound |
10.3390/a2020828 doi (DE-627)DOAJ008824088 (DE-599)DOAJ3e83d6135e9d43edbf2325f15bed0889 DE-627 ger DE-627 rakwb eng T55.4-60.8 QA75.5-76.95 Bin Zheng verfasserin aut Computer-Aided Diagnosis in Mammography Using Content-Based Image Retrieval Approaches: Current Status and Future Perspectives 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As the rapid advance of digital imaging technologies, the content-based image retrieval (CBIR) has became one of the most vivid research areas in computer vision. In the last several years, developing computer-aided detection and/or diagnosis (CAD) schemes that use CBIR to search for the clinically relevant and visually similar medical images (or regions) depicting suspicious lesions has also been attracting research interest. CBIR-based CAD schemes have potential to provide radiologists with “visual aid” and increase their confidence in accepting CAD-cued results in the decision making. The CAD performance and reliability depends on a number of factors including the optimization of lesion segmentation, feature selection, reference database size, computational efficiency, and relationship between the clinical relevance and visual similarity of the CAD results. By presenting and comparing a number of approaches commonly used in previous studies, this article identifies and discusses the optimal approaches in developing CBIR-based CAD schemes and assessing their performance. Although preliminary studies have suggested that using CBIR-based CAD schemes might improve radiologists’ performance and/or increase their confidence in the decision making, this technology is still in the early development stage. Much research work is needed before the CBIR-based CAD schemes can be accepted in the clinical practice. computer-aided diagnosis (CAD) content-based Image Retrieval (CBIR) medical imaging technology assessment Industrial engineering. Management engineering Electronic computers. Computer science In Algorithms MDPI AG, 2008 2(2009), 2, Seite 828-849 (DE-627)581036506 (DE-600)2455149-1 19994893 nnns volume:2 year:2009 number:2 pages:828-849 https://doi.org/10.3390/a2020828 kostenfrei https://doaj.org/article/3e83d6135e9d43edbf2325f15bed0889 kostenfrei http://www.mdpi.com/1999-4893/2/2/828/ kostenfrei https://doaj.org/toc/1999-4893 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2009 2 828-849 |
language |
English |
source |
In Algorithms 2(2009), 2, Seite 828-849 volume:2 year:2009 number:2 pages:828-849 |
sourceStr |
In Algorithms 2(2009), 2, Seite 828-849 volume:2 year:2009 number:2 pages:828-849 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
computer-aided diagnosis (CAD) content-based Image Retrieval (CBIR) medical imaging technology assessment Industrial engineering. Management engineering Electronic computers. Computer science |
isfreeaccess_bool |
true |
container_title |
Algorithms |
authorswithroles_txt_mv |
Bin Zheng @@aut@@ |
publishDateDaySort_date |
2009-01-01T00:00:00Z |
hierarchy_top_id |
581036506 |
id |
DOAJ008824088 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ008824088</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501182757.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2009 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/a2020828</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ008824088</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3e83d6135e9d43edbf2325f15bed0889</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T55.4-60.8</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bin Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computer-Aided Diagnosis in Mammography Using Content-Based Image Retrieval Approaches: Current Status and Future Perspectives</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As the rapid advance of digital imaging technologies, the content-based image retrieval (CBIR) has became one of the most vivid research areas in computer vision. In the last several years, developing computer-aided detection and/or diagnosis (CAD) schemes that use CBIR to search for the clinically relevant and visually similar medical images (or regions) depicting suspicious lesions has also been attracting research interest. CBIR-based CAD schemes have potential to provide radiologists with “visual aid” and increase their confidence in accepting CAD-cued results in the decision making. The CAD performance and reliability depends on a number of factors including the optimization of lesion segmentation, feature selection, reference database size, computational efficiency, and relationship between the clinical relevance and visual similarity of the CAD results. By presenting and comparing a number of approaches commonly used in previous studies, this article identifies and discusses the optimal approaches in developing CBIR-based CAD schemes and assessing their performance. Although preliminary studies have suggested that using CBIR-based CAD schemes might improve radiologists’ performance and/or increase their confidence in the decision making, this technology is still in the early development stage. Much research work is needed before the CBIR-based CAD schemes can be accepted in the clinical practice.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computer-aided diagnosis (CAD)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">content-based Image Retrieval (CBIR)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">medical imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">technology assessment</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Industrial engineering. Management engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Algorithms</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">2(2009), 2, Seite 828-849</subfield><subfield code="w">(DE-627)581036506</subfield><subfield code="w">(DE-600)2455149-1</subfield><subfield code="x">19994893</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:828-849</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/a2020828</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3e83d6135e9d43edbf2325f15bed0889</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/1999-4893/2/2/828/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1999-4893</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2009</subfield><subfield code="e">2</subfield><subfield code="h">828-849</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Bin Zheng |
spellingShingle |
Bin Zheng misc T55.4-60.8 misc QA75.5-76.95 misc computer-aided diagnosis (CAD) misc content-based Image Retrieval (CBIR) misc medical imaging misc technology assessment misc Industrial engineering. Management engineering misc Electronic computers. Computer science Computer-Aided Diagnosis in Mammography Using Content-Based Image Retrieval Approaches: Current Status and Future Perspectives |
authorStr |
Bin Zheng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)581036506 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
T55 |
illustrated |
Not Illustrated |
issn |
19994893 |
topic_title |
T55.4-60.8 QA75.5-76.95 Computer-Aided Diagnosis in Mammography Using Content-Based Image Retrieval Approaches: Current Status and Future Perspectives computer-aided diagnosis (CAD) content-based Image Retrieval (CBIR) medical imaging technology assessment |
topic |
misc T55.4-60.8 misc QA75.5-76.95 misc computer-aided diagnosis (CAD) misc content-based Image Retrieval (CBIR) misc medical imaging misc technology assessment misc Industrial engineering. Management engineering misc Electronic computers. Computer science |
topic_unstemmed |
misc T55.4-60.8 misc QA75.5-76.95 misc computer-aided diagnosis (CAD) misc content-based Image Retrieval (CBIR) misc medical imaging misc technology assessment misc Industrial engineering. Management engineering misc Electronic computers. Computer science |
topic_browse |
misc T55.4-60.8 misc QA75.5-76.95 misc computer-aided diagnosis (CAD) misc content-based Image Retrieval (CBIR) misc medical imaging misc technology assessment misc Industrial engineering. Management engineering misc Electronic computers. Computer science |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Algorithms |
hierarchy_parent_id |
581036506 |
hierarchy_top_title |
Algorithms |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)581036506 (DE-600)2455149-1 |
title |
Computer-Aided Diagnosis in Mammography Using Content-Based Image Retrieval Approaches: Current Status and Future Perspectives |
ctrlnum |
(DE-627)DOAJ008824088 (DE-599)DOAJ3e83d6135e9d43edbf2325f15bed0889 |
title_full |
Computer-Aided Diagnosis in Mammography Using Content-Based Image Retrieval Approaches: Current Status and Future Perspectives |
author_sort |
Bin Zheng |
journal |
Algorithms |
journalStr |
Algorithms |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2009 |
contenttype_str_mv |
txt |
container_start_page |
828 |
author_browse |
Bin Zheng |
container_volume |
2 |
class |
T55.4-60.8 QA75.5-76.95 |
format_se |
Elektronische Aufsätze |
author-letter |
Bin Zheng |
doi_str_mv |
10.3390/a2020828 |
title_sort |
computer-aided diagnosis in mammography using content-based image retrieval approaches: current status and future perspectives |
callnumber |
T55.4-60.8 |
title_auth |
Computer-Aided Diagnosis in Mammography Using Content-Based Image Retrieval Approaches: Current Status and Future Perspectives |
abstract |
As the rapid advance of digital imaging technologies, the content-based image retrieval (CBIR) has became one of the most vivid research areas in computer vision. In the last several years, developing computer-aided detection and/or diagnosis (CAD) schemes that use CBIR to search for the clinically relevant and visually similar medical images (or regions) depicting suspicious lesions has also been attracting research interest. CBIR-based CAD schemes have potential to provide radiologists with “visual aid” and increase their confidence in accepting CAD-cued results in the decision making. The CAD performance and reliability depends on a number of factors including the optimization of lesion segmentation, feature selection, reference database size, computational efficiency, and relationship between the clinical relevance and visual similarity of the CAD results. By presenting and comparing a number of approaches commonly used in previous studies, this article identifies and discusses the optimal approaches in developing CBIR-based CAD schemes and assessing their performance. Although preliminary studies have suggested that using CBIR-based CAD schemes might improve radiologists’ performance and/or increase their confidence in the decision making, this technology is still in the early development stage. Much research work is needed before the CBIR-based CAD schemes can be accepted in the clinical practice. |
abstractGer |
As the rapid advance of digital imaging technologies, the content-based image retrieval (CBIR) has became one of the most vivid research areas in computer vision. In the last several years, developing computer-aided detection and/or diagnosis (CAD) schemes that use CBIR to search for the clinically relevant and visually similar medical images (or regions) depicting suspicious lesions has also been attracting research interest. CBIR-based CAD schemes have potential to provide radiologists with “visual aid” and increase their confidence in accepting CAD-cued results in the decision making. The CAD performance and reliability depends on a number of factors including the optimization of lesion segmentation, feature selection, reference database size, computational efficiency, and relationship between the clinical relevance and visual similarity of the CAD results. By presenting and comparing a number of approaches commonly used in previous studies, this article identifies and discusses the optimal approaches in developing CBIR-based CAD schemes and assessing their performance. Although preliminary studies have suggested that using CBIR-based CAD schemes might improve radiologists’ performance and/or increase their confidence in the decision making, this technology is still in the early development stage. Much research work is needed before the CBIR-based CAD schemes can be accepted in the clinical practice. |
abstract_unstemmed |
As the rapid advance of digital imaging technologies, the content-based image retrieval (CBIR) has became one of the most vivid research areas in computer vision. In the last several years, developing computer-aided detection and/or diagnosis (CAD) schemes that use CBIR to search for the clinically relevant and visually similar medical images (or regions) depicting suspicious lesions has also been attracting research interest. CBIR-based CAD schemes have potential to provide radiologists with “visual aid” and increase their confidence in accepting CAD-cued results in the decision making. The CAD performance and reliability depends on a number of factors including the optimization of lesion segmentation, feature selection, reference database size, computational efficiency, and relationship between the clinical relevance and visual similarity of the CAD results. By presenting and comparing a number of approaches commonly used in previous studies, this article identifies and discusses the optimal approaches in developing CBIR-based CAD schemes and assessing their performance. Although preliminary studies have suggested that using CBIR-based CAD schemes might improve radiologists’ performance and/or increase their confidence in the decision making, this technology is still in the early development stage. Much research work is needed before the CBIR-based CAD schemes can be accepted in the clinical practice. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Computer-Aided Diagnosis in Mammography Using Content-Based Image Retrieval Approaches: Current Status and Future Perspectives |
url |
https://doi.org/10.3390/a2020828 https://doaj.org/article/3e83d6135e9d43edbf2325f15bed0889 http://www.mdpi.com/1999-4893/2/2/828/ https://doaj.org/toc/1999-4893 |
remote_bool |
true |
ppnlink |
581036506 |
callnumber-subject |
T - General Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/a2020828 |
callnumber-a |
T55.4-60.8 |
up_date |
2024-07-03T20:20:59.505Z |
_version_ |
1803590628284563456 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ008824088</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501182757.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2009 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/a2020828</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ008824088</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3e83d6135e9d43edbf2325f15bed0889</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T55.4-60.8</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bin Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computer-Aided Diagnosis in Mammography Using Content-Based Image Retrieval Approaches: Current Status and Future Perspectives</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As the rapid advance of digital imaging technologies, the content-based image retrieval (CBIR) has became one of the most vivid research areas in computer vision. In the last several years, developing computer-aided detection and/or diagnosis (CAD) schemes that use CBIR to search for the clinically relevant and visually similar medical images (or regions) depicting suspicious lesions has also been attracting research interest. CBIR-based CAD schemes have potential to provide radiologists with “visual aid” and increase their confidence in accepting CAD-cued results in the decision making. The CAD performance and reliability depends on a number of factors including the optimization of lesion segmentation, feature selection, reference database size, computational efficiency, and relationship between the clinical relevance and visual similarity of the CAD results. By presenting and comparing a number of approaches commonly used in previous studies, this article identifies and discusses the optimal approaches in developing CBIR-based CAD schemes and assessing their performance. Although preliminary studies have suggested that using CBIR-based CAD schemes might improve radiologists’ performance and/or increase their confidence in the decision making, this technology is still in the early development stage. Much research work is needed before the CBIR-based CAD schemes can be accepted in the clinical practice.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computer-aided diagnosis (CAD)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">content-based Image Retrieval (CBIR)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">medical imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">technology assessment</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Industrial engineering. Management engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Algorithms</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">2(2009), 2, Seite 828-849</subfield><subfield code="w">(DE-627)581036506</subfield><subfield code="w">(DE-600)2455149-1</subfield><subfield code="x">19994893</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:828-849</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/a2020828</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3e83d6135e9d43edbf2325f15bed0889</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/1999-4893/2/2/828/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1999-4893</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2009</subfield><subfield code="e">2</subfield><subfield code="h">828-849</subfield></datafield></record></collection>
|
score |
7.3993473 |