Relation theoretic metrical fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction with an application
In this paper, we introduce the concept of Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction by unifying the definitions of Suzuki type $\mathcal{Z}$-contraction and $\mathcal{Z_\mathcal{R}}$-contraction and also provide examples to highlight the genuineness of our newly introduced contraction over...
Ausführliche Beschreibung
Autor*in: |
Md Hasanuzzaman [verfasserIn] Mohammad Imdad [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: AIMS Mathematics - AIMS Press, 2018, 5(2020), 3, Seite 2071-2087 |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2020 ; number:3 ; pages:2071-2087 |
Links: |
---|
DOI / URN: |
10.3934/math.2020137 |
---|
Katalog-ID: |
DOAJ009096787 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ009096787 | ||
003 | DE-627 | ||
005 | 20230310014909.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3934/math.2020137 |2 doi | |
035 | |a (DE-627)DOAJ009096787 | ||
035 | |a (DE-599)DOAJ4bdb1836cd54481688aa9da8d34d6208 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Md Hasanuzzaman |e verfasserin |4 aut | |
245 | 1 | 0 | |a Relation theoretic metrical fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction with an application |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, we introduce the concept of Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction by unifying the definitions of Suzuki type $\mathcal{Z}$-contraction and $\mathcal{Z_\mathcal{R}}$-contraction and also provide examples to highlight the genuineness of our newly introduced contraction over earlier mentioned ones. Chiefly, we prove an existence and corresponding uniqueness fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction employing an amorphous binary relation on metric spaces without completeness and also furnish an illustrative example to demonstrate the utility of our main results. Finally, we utilize our main results to discuss the existence and uniqueness of solutions of a family of nonlinear matrix equations. | ||
650 | 4 | |a fixed points | |
650 | 4 | |a suzuki type $\mathcal{z}_{\mathcal{r}}$-contraction | |
650 | 4 | |a simulation functions | |
650 | 4 | |a binary relations | |
650 | 4 | |a matrix equations | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Mohammad Imdad |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t AIMS Mathematics |d AIMS Press, 2018 |g 5(2020), 3, Seite 2071-2087 |w (DE-627)1011276194 |w (DE-600)2917342-5 |x 24736988 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2020 |g number:3 |g pages:2071-2087 |
856 | 4 | 0 | |u https://doi.org/10.3934/math.2020137 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4bdb1836cd54481688aa9da8d34d6208 |z kostenfrei |
856 | 4 | 0 | |u https://www.aimspress.com/article/10.3934/math.2020137/fulltext.html |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2473-6988 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 2020 |e 3 |h 2071-2087 |
author_variant |
m h mh m i mi |
---|---|
matchkey_str |
article:24736988:2020----::eainhoeimtiafxdonrslsoszktpmtcl_aharo |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QA |
publishDate |
2020 |
allfields |
10.3934/math.2020137 doi (DE-627)DOAJ009096787 (DE-599)DOAJ4bdb1836cd54481688aa9da8d34d6208 DE-627 ger DE-627 rakwb eng QA1-939 Md Hasanuzzaman verfasserin aut Relation theoretic metrical fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction with an application 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we introduce the concept of Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction by unifying the definitions of Suzuki type $\mathcal{Z}$-contraction and $\mathcal{Z_\mathcal{R}}$-contraction and also provide examples to highlight the genuineness of our newly introduced contraction over earlier mentioned ones. Chiefly, we prove an existence and corresponding uniqueness fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction employing an amorphous binary relation on metric spaces without completeness and also furnish an illustrative example to demonstrate the utility of our main results. Finally, we utilize our main results to discuss the existence and uniqueness of solutions of a family of nonlinear matrix equations. fixed points suzuki type $\mathcal{z}_{\mathcal{r}}$-contraction simulation functions binary relations matrix equations Mathematics Mohammad Imdad verfasserin aut In AIMS Mathematics AIMS Press, 2018 5(2020), 3, Seite 2071-2087 (DE-627)1011276194 (DE-600)2917342-5 24736988 nnns volume:5 year:2020 number:3 pages:2071-2087 https://doi.org/10.3934/math.2020137 kostenfrei https://doaj.org/article/4bdb1836cd54481688aa9da8d34d6208 kostenfrei https://www.aimspress.com/article/10.3934/math.2020137/fulltext.html kostenfrei https://doaj.org/toc/2473-6988 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2020 3 2071-2087 |
spelling |
10.3934/math.2020137 doi (DE-627)DOAJ009096787 (DE-599)DOAJ4bdb1836cd54481688aa9da8d34d6208 DE-627 ger DE-627 rakwb eng QA1-939 Md Hasanuzzaman verfasserin aut Relation theoretic metrical fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction with an application 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we introduce the concept of Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction by unifying the definitions of Suzuki type $\mathcal{Z}$-contraction and $\mathcal{Z_\mathcal{R}}$-contraction and also provide examples to highlight the genuineness of our newly introduced contraction over earlier mentioned ones. Chiefly, we prove an existence and corresponding uniqueness fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction employing an amorphous binary relation on metric spaces without completeness and also furnish an illustrative example to demonstrate the utility of our main results. Finally, we utilize our main results to discuss the existence and uniqueness of solutions of a family of nonlinear matrix equations. fixed points suzuki type $\mathcal{z}_{\mathcal{r}}$-contraction simulation functions binary relations matrix equations Mathematics Mohammad Imdad verfasserin aut In AIMS Mathematics AIMS Press, 2018 5(2020), 3, Seite 2071-2087 (DE-627)1011276194 (DE-600)2917342-5 24736988 nnns volume:5 year:2020 number:3 pages:2071-2087 https://doi.org/10.3934/math.2020137 kostenfrei https://doaj.org/article/4bdb1836cd54481688aa9da8d34d6208 kostenfrei https://www.aimspress.com/article/10.3934/math.2020137/fulltext.html kostenfrei https://doaj.org/toc/2473-6988 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2020 3 2071-2087 |
allfields_unstemmed |
10.3934/math.2020137 doi (DE-627)DOAJ009096787 (DE-599)DOAJ4bdb1836cd54481688aa9da8d34d6208 DE-627 ger DE-627 rakwb eng QA1-939 Md Hasanuzzaman verfasserin aut Relation theoretic metrical fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction with an application 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we introduce the concept of Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction by unifying the definitions of Suzuki type $\mathcal{Z}$-contraction and $\mathcal{Z_\mathcal{R}}$-contraction and also provide examples to highlight the genuineness of our newly introduced contraction over earlier mentioned ones. Chiefly, we prove an existence and corresponding uniqueness fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction employing an amorphous binary relation on metric spaces without completeness and also furnish an illustrative example to demonstrate the utility of our main results. Finally, we utilize our main results to discuss the existence and uniqueness of solutions of a family of nonlinear matrix equations. fixed points suzuki type $\mathcal{z}_{\mathcal{r}}$-contraction simulation functions binary relations matrix equations Mathematics Mohammad Imdad verfasserin aut In AIMS Mathematics AIMS Press, 2018 5(2020), 3, Seite 2071-2087 (DE-627)1011276194 (DE-600)2917342-5 24736988 nnns volume:5 year:2020 number:3 pages:2071-2087 https://doi.org/10.3934/math.2020137 kostenfrei https://doaj.org/article/4bdb1836cd54481688aa9da8d34d6208 kostenfrei https://www.aimspress.com/article/10.3934/math.2020137/fulltext.html kostenfrei https://doaj.org/toc/2473-6988 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2020 3 2071-2087 |
allfieldsGer |
10.3934/math.2020137 doi (DE-627)DOAJ009096787 (DE-599)DOAJ4bdb1836cd54481688aa9da8d34d6208 DE-627 ger DE-627 rakwb eng QA1-939 Md Hasanuzzaman verfasserin aut Relation theoretic metrical fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction with an application 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we introduce the concept of Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction by unifying the definitions of Suzuki type $\mathcal{Z}$-contraction and $\mathcal{Z_\mathcal{R}}$-contraction and also provide examples to highlight the genuineness of our newly introduced contraction over earlier mentioned ones. Chiefly, we prove an existence and corresponding uniqueness fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction employing an amorphous binary relation on metric spaces without completeness and also furnish an illustrative example to demonstrate the utility of our main results. Finally, we utilize our main results to discuss the existence and uniqueness of solutions of a family of nonlinear matrix equations. fixed points suzuki type $\mathcal{z}_{\mathcal{r}}$-contraction simulation functions binary relations matrix equations Mathematics Mohammad Imdad verfasserin aut In AIMS Mathematics AIMS Press, 2018 5(2020), 3, Seite 2071-2087 (DE-627)1011276194 (DE-600)2917342-5 24736988 nnns volume:5 year:2020 number:3 pages:2071-2087 https://doi.org/10.3934/math.2020137 kostenfrei https://doaj.org/article/4bdb1836cd54481688aa9da8d34d6208 kostenfrei https://www.aimspress.com/article/10.3934/math.2020137/fulltext.html kostenfrei https://doaj.org/toc/2473-6988 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2020 3 2071-2087 |
allfieldsSound |
10.3934/math.2020137 doi (DE-627)DOAJ009096787 (DE-599)DOAJ4bdb1836cd54481688aa9da8d34d6208 DE-627 ger DE-627 rakwb eng QA1-939 Md Hasanuzzaman verfasserin aut Relation theoretic metrical fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction with an application 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we introduce the concept of Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction by unifying the definitions of Suzuki type $\mathcal{Z}$-contraction and $\mathcal{Z_\mathcal{R}}$-contraction and also provide examples to highlight the genuineness of our newly introduced contraction over earlier mentioned ones. Chiefly, we prove an existence and corresponding uniqueness fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction employing an amorphous binary relation on metric spaces without completeness and also furnish an illustrative example to demonstrate the utility of our main results. Finally, we utilize our main results to discuss the existence and uniqueness of solutions of a family of nonlinear matrix equations. fixed points suzuki type $\mathcal{z}_{\mathcal{r}}$-contraction simulation functions binary relations matrix equations Mathematics Mohammad Imdad verfasserin aut In AIMS Mathematics AIMS Press, 2018 5(2020), 3, Seite 2071-2087 (DE-627)1011276194 (DE-600)2917342-5 24736988 nnns volume:5 year:2020 number:3 pages:2071-2087 https://doi.org/10.3934/math.2020137 kostenfrei https://doaj.org/article/4bdb1836cd54481688aa9da8d34d6208 kostenfrei https://www.aimspress.com/article/10.3934/math.2020137/fulltext.html kostenfrei https://doaj.org/toc/2473-6988 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2020 3 2071-2087 |
language |
English |
source |
In AIMS Mathematics 5(2020), 3, Seite 2071-2087 volume:5 year:2020 number:3 pages:2071-2087 |
sourceStr |
In AIMS Mathematics 5(2020), 3, Seite 2071-2087 volume:5 year:2020 number:3 pages:2071-2087 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
fixed points suzuki type $\mathcal{z}_{\mathcal{r}}$-contraction simulation functions binary relations matrix equations Mathematics |
isfreeaccess_bool |
true |
container_title |
AIMS Mathematics |
authorswithroles_txt_mv |
Md Hasanuzzaman @@aut@@ Mohammad Imdad @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
1011276194 |
id |
DOAJ009096787 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ009096787</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310014909.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3934/math.2020137</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ009096787</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4bdb1836cd54481688aa9da8d34d6208</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Md Hasanuzzaman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Relation theoretic metrical fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction with an application</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we introduce the concept of Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction by unifying the definitions of Suzuki type $\mathcal{Z}$-contraction and $\mathcal{Z_\mathcal{R}}$-contraction and also provide examples to highlight the genuineness of our newly introduced contraction over earlier mentioned ones. Chiefly, we prove an existence and corresponding uniqueness fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction employing an amorphous binary relation on metric spaces without completeness and also furnish an illustrative example to demonstrate the utility of our main results. Finally, we utilize our main results to discuss the existence and uniqueness of solutions of a family of nonlinear matrix equations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fixed points</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">suzuki type $\mathcal{z}_{\mathcal{r}}$-contraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">simulation functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">binary relations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">matrix equations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohammad Imdad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">AIMS Mathematics</subfield><subfield code="d">AIMS Press, 2018</subfield><subfield code="g">5(2020), 3, Seite 2071-2087</subfield><subfield code="w">(DE-627)1011276194</subfield><subfield code="w">(DE-600)2917342-5</subfield><subfield code="x">24736988</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:2071-2087</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3934/math.2020137</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4bdb1836cd54481688aa9da8d34d6208</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.aimspress.com/article/10.3934/math.2020137/fulltext.html</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2473-6988</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2020</subfield><subfield code="e">3</subfield><subfield code="h">2071-2087</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Md Hasanuzzaman |
spellingShingle |
Md Hasanuzzaman misc QA1-939 misc fixed points misc suzuki type $\mathcal{z}_{\mathcal{r}}$-contraction misc simulation functions misc binary relations misc matrix equations misc Mathematics Relation theoretic metrical fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction with an application |
authorStr |
Md Hasanuzzaman |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1011276194 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
24736988 |
topic_title |
QA1-939 Relation theoretic metrical fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction with an application fixed points suzuki type $\mathcal{z}_{\mathcal{r}}$-contraction simulation functions binary relations matrix equations |
topic |
misc QA1-939 misc fixed points misc suzuki type $\mathcal{z}_{\mathcal{r}}$-contraction misc simulation functions misc binary relations misc matrix equations misc Mathematics |
topic_unstemmed |
misc QA1-939 misc fixed points misc suzuki type $\mathcal{z}_{\mathcal{r}}$-contraction misc simulation functions misc binary relations misc matrix equations misc Mathematics |
topic_browse |
misc QA1-939 misc fixed points misc suzuki type $\mathcal{z}_{\mathcal{r}}$-contraction misc simulation functions misc binary relations misc matrix equations misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
AIMS Mathematics |
hierarchy_parent_id |
1011276194 |
hierarchy_top_title |
AIMS Mathematics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1011276194 (DE-600)2917342-5 |
title |
Relation theoretic metrical fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction with an application |
ctrlnum |
(DE-627)DOAJ009096787 (DE-599)DOAJ4bdb1836cd54481688aa9da8d34d6208 |
title_full |
Relation theoretic metrical fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction with an application |
author_sort |
Md Hasanuzzaman |
journal |
AIMS Mathematics |
journalStr |
AIMS Mathematics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
2071 |
author_browse |
Md Hasanuzzaman Mohammad Imdad |
container_volume |
5 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Md Hasanuzzaman |
doi_str_mv |
10.3934/math.2020137 |
author2-role |
verfasserin |
title_sort |
relation theoretic metrical fixed point results for suzuki type $\mathcal{z_\mathcal{r}}$-contraction with an application |
callnumber |
QA1-939 |
title_auth |
Relation theoretic metrical fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction with an application |
abstract |
In this paper, we introduce the concept of Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction by unifying the definitions of Suzuki type $\mathcal{Z}$-contraction and $\mathcal{Z_\mathcal{R}}$-contraction and also provide examples to highlight the genuineness of our newly introduced contraction over earlier mentioned ones. Chiefly, we prove an existence and corresponding uniqueness fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction employing an amorphous binary relation on metric spaces without completeness and also furnish an illustrative example to demonstrate the utility of our main results. Finally, we utilize our main results to discuss the existence and uniqueness of solutions of a family of nonlinear matrix equations. |
abstractGer |
In this paper, we introduce the concept of Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction by unifying the definitions of Suzuki type $\mathcal{Z}$-contraction and $\mathcal{Z_\mathcal{R}}$-contraction and also provide examples to highlight the genuineness of our newly introduced contraction over earlier mentioned ones. Chiefly, we prove an existence and corresponding uniqueness fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction employing an amorphous binary relation on metric spaces without completeness and also furnish an illustrative example to demonstrate the utility of our main results. Finally, we utilize our main results to discuss the existence and uniqueness of solutions of a family of nonlinear matrix equations. |
abstract_unstemmed |
In this paper, we introduce the concept of Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction by unifying the definitions of Suzuki type $\mathcal{Z}$-contraction and $\mathcal{Z_\mathcal{R}}$-contraction and also provide examples to highlight the genuineness of our newly introduced contraction over earlier mentioned ones. Chiefly, we prove an existence and corresponding uniqueness fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction employing an amorphous binary relation on metric spaces without completeness and also furnish an illustrative example to demonstrate the utility of our main results. Finally, we utilize our main results to discuss the existence and uniqueness of solutions of a family of nonlinear matrix equations. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Relation theoretic metrical fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction with an application |
url |
https://doi.org/10.3934/math.2020137 https://doaj.org/article/4bdb1836cd54481688aa9da8d34d6208 https://www.aimspress.com/article/10.3934/math.2020137/fulltext.html https://doaj.org/toc/2473-6988 |
remote_bool |
true |
author2 |
Mohammad Imdad |
author2Str |
Mohammad Imdad |
ppnlink |
1011276194 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3934/math.2020137 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T21:58:13.959Z |
_version_ |
1803596746153000960 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ009096787</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310014909.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3934/math.2020137</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ009096787</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4bdb1836cd54481688aa9da8d34d6208</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Md Hasanuzzaman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Relation theoretic metrical fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction with an application</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we introduce the concept of Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction by unifying the definitions of Suzuki type $\mathcal{Z}$-contraction and $\mathcal{Z_\mathcal{R}}$-contraction and also provide examples to highlight the genuineness of our newly introduced contraction over earlier mentioned ones. Chiefly, we prove an existence and corresponding uniqueness fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction employing an amorphous binary relation on metric spaces without completeness and also furnish an illustrative example to demonstrate the utility of our main results. Finally, we utilize our main results to discuss the existence and uniqueness of solutions of a family of nonlinear matrix equations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fixed points</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">suzuki type $\mathcal{z}_{\mathcal{r}}$-contraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">simulation functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">binary relations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">matrix equations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohammad Imdad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">AIMS Mathematics</subfield><subfield code="d">AIMS Press, 2018</subfield><subfield code="g">5(2020), 3, Seite 2071-2087</subfield><subfield code="w">(DE-627)1011276194</subfield><subfield code="w">(DE-600)2917342-5</subfield><subfield code="x">24736988</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:2071-2087</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3934/math.2020137</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4bdb1836cd54481688aa9da8d34d6208</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.aimspress.com/article/10.3934/math.2020137/fulltext.html</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2473-6988</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2020</subfield><subfield code="e">3</subfield><subfield code="h">2071-2087</subfield></datafield></record></collection>
|
score |
7.401019 |