Exploring the Multi–Target Neuroprotective Chemical Space of Benzofuran Scaffolds: A New Strategy in Drug Development for Alzheimer’s Disease
Alzheimer’s disease (AD) is an irreversible and progressive neurodegenerative disorder that slowly destroys memory. The precise mechanism of AD is still not entirely understood and remains under discussion; it is believed to be a multifactorial disease in which a number of mechanisms are involved in...
Ausführliche Beschreibung
Autor*in: |
Jaime R. Cabrera-Pardo [verfasserIn] Jorge Fuentealba [verfasserIn] Javiera Gavilán [verfasserIn] Daniel Cajas [verfasserIn] José Becerra [verfasserIn] Mariola Napiórkowska [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Pharmacology - Frontiers Media S.A., 2010, 10(2020) |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2020 |
Links: |
---|
DOI / URN: |
10.3389/fphar.2019.01679 |
---|
Katalog-ID: |
DOAJ009540423 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ009540423 | ||
003 | DE-627 | ||
005 | 20230310021146.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fphar.2019.01679 |2 doi | |
035 | |a (DE-627)DOAJ009540423 | ||
035 | |a (DE-599)DOAJ5e057d0f9123405dab9f92cf16fcd2a7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RM1-950 | |
100 | 0 | |a Jaime R. Cabrera-Pardo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Exploring the Multi–Target Neuroprotective Chemical Space of Benzofuran Scaffolds: A New Strategy in Drug Development for Alzheimer’s Disease |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Alzheimer’s disease (AD) is an irreversible and progressive neurodegenerative disorder that slowly destroys memory. The precise mechanism of AD is still not entirely understood and remains under discussion; it is believed to be a multifactorial disease in which a number of mechanisms are involved in its pathogenesis. Worldwide, near 37 million people suffer from the effects of AD. As a cause of death for elderly, it is predicted that AD will rank third in the coming years, just behind cancer and heart disease. Unfortunately, AD remains an incurable condition. Despite the devastating problems associated with AD, there are only four FDA approved drugs for palliative treatment of this pathology. Hence, renewed scientific efforts are required not only to uncover more insights into the AD process but also to develop more efficient pharmacological tools against this disease. Due to the complexity and multiple mechanisms at play in the progression of AD, the development of drugs by rational design is extremely difficult. The existing drugs to fight against Alzheimer’s have had limited success, mainly due to their ability to modulate only one of the mechanisms involved in AD. As opposed to single-targeted strategies, the identification of small molecules able to affect multiple pathways involved in Alzheimer’s is a promising strategy to develop more efficient medicines against this disease. Central to existing efforts to develop pharmaceuticals controlling AD is the discovery of new chemicals displaying strong neuroactivity. Benzofurans are privileged oxygen containing heterocycles that have a strong neuroprotective behavior, inhibiting several of the important events involved in the AD process. In this review, an approach is presented that relies on expanding the neuroprotective chemical space of benzofuran scaffolds by accessing them from Andean–Patagonian fungi and synthetic sources (chemical libraries). The exploration of the neuroprotective chemical space of these scaffolds has the potential to allow the discovery of substitution patterns that display multi-target neuroactivity against multiple events involved in AD. This benzofuran chemical framework will establish a multi-target chemical space that could set the basis for the development of super drugs against AD. | ||
650 | 4 | |a Alzheimer’s disease | |
650 | 4 | |a benzofuran | |
650 | 4 | |a natural products | |
650 | 4 | |a chemical libraries | |
650 | 4 | |a Andean-Patagonian fungi | |
653 | 0 | |a Therapeutics. Pharmacology | |
700 | 0 | |a Jaime R. Cabrera-Pardo |e verfasserin |4 aut | |
700 | 0 | |a Jaime R. Cabrera-Pardo |e verfasserin |4 aut | |
700 | 0 | |a Jorge Fuentealba |e verfasserin |4 aut | |
700 | 0 | |a Javiera Gavilán |e verfasserin |4 aut | |
700 | 0 | |a Daniel Cajas |e verfasserin |4 aut | |
700 | 0 | |a José Becerra |e verfasserin |4 aut | |
700 | 0 | |a Mariola Napiórkowska |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Pharmacology |d Frontiers Media S.A., 2010 |g 10(2020) |w (DE-627)642889392 |w (DE-600)2587355-6 |x 16639812 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2020 |
856 | 4 | 0 | |u https://doi.org/10.3389/fphar.2019.01679 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5e057d0f9123405dab9f92cf16fcd2a7 |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/article/10.3389/fphar.2019.01679/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1663-9812 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2020 |
author_variant |
j r c p jrcp j r c p jrcp j r c p jrcp j f jf j g jg d c dc j b jb m n mn |
---|---|
matchkey_str |
article:16639812:2020----::xlrnteuttrenuortciehmclpcobnouasaflsnwtaeynrg |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
RM |
publishDate |
2020 |
allfields |
10.3389/fphar.2019.01679 doi (DE-627)DOAJ009540423 (DE-599)DOAJ5e057d0f9123405dab9f92cf16fcd2a7 DE-627 ger DE-627 rakwb eng RM1-950 Jaime R. Cabrera-Pardo verfasserin aut Exploring the Multi–Target Neuroprotective Chemical Space of Benzofuran Scaffolds: A New Strategy in Drug Development for Alzheimer’s Disease 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Alzheimer’s disease (AD) is an irreversible and progressive neurodegenerative disorder that slowly destroys memory. The precise mechanism of AD is still not entirely understood and remains under discussion; it is believed to be a multifactorial disease in which a number of mechanisms are involved in its pathogenesis. Worldwide, near 37 million people suffer from the effects of AD. As a cause of death for elderly, it is predicted that AD will rank third in the coming years, just behind cancer and heart disease. Unfortunately, AD remains an incurable condition. Despite the devastating problems associated with AD, there are only four FDA approved drugs for palliative treatment of this pathology. Hence, renewed scientific efforts are required not only to uncover more insights into the AD process but also to develop more efficient pharmacological tools against this disease. Due to the complexity and multiple mechanisms at play in the progression of AD, the development of drugs by rational design is extremely difficult. The existing drugs to fight against Alzheimer’s have had limited success, mainly due to their ability to modulate only one of the mechanisms involved in AD. As opposed to single-targeted strategies, the identification of small molecules able to affect multiple pathways involved in Alzheimer’s is a promising strategy to develop more efficient medicines against this disease. Central to existing efforts to develop pharmaceuticals controlling AD is the discovery of new chemicals displaying strong neuroactivity. Benzofurans are privileged oxygen containing heterocycles that have a strong neuroprotective behavior, inhibiting several of the important events involved in the AD process. In this review, an approach is presented that relies on expanding the neuroprotective chemical space of benzofuran scaffolds by accessing them from Andean–Patagonian fungi and synthetic sources (chemical libraries). The exploration of the neuroprotective chemical space of these scaffolds has the potential to allow the discovery of substitution patterns that display multi-target neuroactivity against multiple events involved in AD. This benzofuran chemical framework will establish a multi-target chemical space that could set the basis for the development of super drugs against AD. Alzheimer’s disease benzofuran natural products chemical libraries Andean-Patagonian fungi Therapeutics. Pharmacology Jaime R. Cabrera-Pardo verfasserin aut Jaime R. Cabrera-Pardo verfasserin aut Jorge Fuentealba verfasserin aut Javiera Gavilán verfasserin aut Daniel Cajas verfasserin aut José Becerra verfasserin aut Mariola Napiórkowska verfasserin aut In Frontiers in Pharmacology Frontiers Media S.A., 2010 10(2020) (DE-627)642889392 (DE-600)2587355-6 16639812 nnns volume:10 year:2020 https://doi.org/10.3389/fphar.2019.01679 kostenfrei https://doaj.org/article/5e057d0f9123405dab9f92cf16fcd2a7 kostenfrei https://www.frontiersin.org/article/10.3389/fphar.2019.01679/full kostenfrei https://doaj.org/toc/1663-9812 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 |
spelling |
10.3389/fphar.2019.01679 doi (DE-627)DOAJ009540423 (DE-599)DOAJ5e057d0f9123405dab9f92cf16fcd2a7 DE-627 ger DE-627 rakwb eng RM1-950 Jaime R. Cabrera-Pardo verfasserin aut Exploring the Multi–Target Neuroprotective Chemical Space of Benzofuran Scaffolds: A New Strategy in Drug Development for Alzheimer’s Disease 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Alzheimer’s disease (AD) is an irreversible and progressive neurodegenerative disorder that slowly destroys memory. The precise mechanism of AD is still not entirely understood and remains under discussion; it is believed to be a multifactorial disease in which a number of mechanisms are involved in its pathogenesis. Worldwide, near 37 million people suffer from the effects of AD. As a cause of death for elderly, it is predicted that AD will rank third in the coming years, just behind cancer and heart disease. Unfortunately, AD remains an incurable condition. Despite the devastating problems associated with AD, there are only four FDA approved drugs for palliative treatment of this pathology. Hence, renewed scientific efforts are required not only to uncover more insights into the AD process but also to develop more efficient pharmacological tools against this disease. Due to the complexity and multiple mechanisms at play in the progression of AD, the development of drugs by rational design is extremely difficult. The existing drugs to fight against Alzheimer’s have had limited success, mainly due to their ability to modulate only one of the mechanisms involved in AD. As opposed to single-targeted strategies, the identification of small molecules able to affect multiple pathways involved in Alzheimer’s is a promising strategy to develop more efficient medicines against this disease. Central to existing efforts to develop pharmaceuticals controlling AD is the discovery of new chemicals displaying strong neuroactivity. Benzofurans are privileged oxygen containing heterocycles that have a strong neuroprotective behavior, inhibiting several of the important events involved in the AD process. In this review, an approach is presented that relies on expanding the neuroprotective chemical space of benzofuran scaffolds by accessing them from Andean–Patagonian fungi and synthetic sources (chemical libraries). The exploration of the neuroprotective chemical space of these scaffolds has the potential to allow the discovery of substitution patterns that display multi-target neuroactivity against multiple events involved in AD. This benzofuran chemical framework will establish a multi-target chemical space that could set the basis for the development of super drugs against AD. Alzheimer’s disease benzofuran natural products chemical libraries Andean-Patagonian fungi Therapeutics. Pharmacology Jaime R. Cabrera-Pardo verfasserin aut Jaime R. Cabrera-Pardo verfasserin aut Jorge Fuentealba verfasserin aut Javiera Gavilán verfasserin aut Daniel Cajas verfasserin aut José Becerra verfasserin aut Mariola Napiórkowska verfasserin aut In Frontiers in Pharmacology Frontiers Media S.A., 2010 10(2020) (DE-627)642889392 (DE-600)2587355-6 16639812 nnns volume:10 year:2020 https://doi.org/10.3389/fphar.2019.01679 kostenfrei https://doaj.org/article/5e057d0f9123405dab9f92cf16fcd2a7 kostenfrei https://www.frontiersin.org/article/10.3389/fphar.2019.01679/full kostenfrei https://doaj.org/toc/1663-9812 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 |
allfields_unstemmed |
10.3389/fphar.2019.01679 doi (DE-627)DOAJ009540423 (DE-599)DOAJ5e057d0f9123405dab9f92cf16fcd2a7 DE-627 ger DE-627 rakwb eng RM1-950 Jaime R. Cabrera-Pardo verfasserin aut Exploring the Multi–Target Neuroprotective Chemical Space of Benzofuran Scaffolds: A New Strategy in Drug Development for Alzheimer’s Disease 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Alzheimer’s disease (AD) is an irreversible and progressive neurodegenerative disorder that slowly destroys memory. The precise mechanism of AD is still not entirely understood and remains under discussion; it is believed to be a multifactorial disease in which a number of mechanisms are involved in its pathogenesis. Worldwide, near 37 million people suffer from the effects of AD. As a cause of death for elderly, it is predicted that AD will rank third in the coming years, just behind cancer and heart disease. Unfortunately, AD remains an incurable condition. Despite the devastating problems associated with AD, there are only four FDA approved drugs for palliative treatment of this pathology. Hence, renewed scientific efforts are required not only to uncover more insights into the AD process but also to develop more efficient pharmacological tools against this disease. Due to the complexity and multiple mechanisms at play in the progression of AD, the development of drugs by rational design is extremely difficult. The existing drugs to fight against Alzheimer’s have had limited success, mainly due to their ability to modulate only one of the mechanisms involved in AD. As opposed to single-targeted strategies, the identification of small molecules able to affect multiple pathways involved in Alzheimer’s is a promising strategy to develop more efficient medicines against this disease. Central to existing efforts to develop pharmaceuticals controlling AD is the discovery of new chemicals displaying strong neuroactivity. Benzofurans are privileged oxygen containing heterocycles that have a strong neuroprotective behavior, inhibiting several of the important events involved in the AD process. In this review, an approach is presented that relies on expanding the neuroprotective chemical space of benzofuran scaffolds by accessing them from Andean–Patagonian fungi and synthetic sources (chemical libraries). The exploration of the neuroprotective chemical space of these scaffolds has the potential to allow the discovery of substitution patterns that display multi-target neuroactivity against multiple events involved in AD. This benzofuran chemical framework will establish a multi-target chemical space that could set the basis for the development of super drugs against AD. Alzheimer’s disease benzofuran natural products chemical libraries Andean-Patagonian fungi Therapeutics. Pharmacology Jaime R. Cabrera-Pardo verfasserin aut Jaime R. Cabrera-Pardo verfasserin aut Jorge Fuentealba verfasserin aut Javiera Gavilán verfasserin aut Daniel Cajas verfasserin aut José Becerra verfasserin aut Mariola Napiórkowska verfasserin aut In Frontiers in Pharmacology Frontiers Media S.A., 2010 10(2020) (DE-627)642889392 (DE-600)2587355-6 16639812 nnns volume:10 year:2020 https://doi.org/10.3389/fphar.2019.01679 kostenfrei https://doaj.org/article/5e057d0f9123405dab9f92cf16fcd2a7 kostenfrei https://www.frontiersin.org/article/10.3389/fphar.2019.01679/full kostenfrei https://doaj.org/toc/1663-9812 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 |
allfieldsGer |
10.3389/fphar.2019.01679 doi (DE-627)DOAJ009540423 (DE-599)DOAJ5e057d0f9123405dab9f92cf16fcd2a7 DE-627 ger DE-627 rakwb eng RM1-950 Jaime R. Cabrera-Pardo verfasserin aut Exploring the Multi–Target Neuroprotective Chemical Space of Benzofuran Scaffolds: A New Strategy in Drug Development for Alzheimer’s Disease 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Alzheimer’s disease (AD) is an irreversible and progressive neurodegenerative disorder that slowly destroys memory. The precise mechanism of AD is still not entirely understood and remains under discussion; it is believed to be a multifactorial disease in which a number of mechanisms are involved in its pathogenesis. Worldwide, near 37 million people suffer from the effects of AD. As a cause of death for elderly, it is predicted that AD will rank third in the coming years, just behind cancer and heart disease. Unfortunately, AD remains an incurable condition. Despite the devastating problems associated with AD, there are only four FDA approved drugs for palliative treatment of this pathology. Hence, renewed scientific efforts are required not only to uncover more insights into the AD process but also to develop more efficient pharmacological tools against this disease. Due to the complexity and multiple mechanisms at play in the progression of AD, the development of drugs by rational design is extremely difficult. The existing drugs to fight against Alzheimer’s have had limited success, mainly due to their ability to modulate only one of the mechanisms involved in AD. As opposed to single-targeted strategies, the identification of small molecules able to affect multiple pathways involved in Alzheimer’s is a promising strategy to develop more efficient medicines against this disease. Central to existing efforts to develop pharmaceuticals controlling AD is the discovery of new chemicals displaying strong neuroactivity. Benzofurans are privileged oxygen containing heterocycles that have a strong neuroprotective behavior, inhibiting several of the important events involved in the AD process. In this review, an approach is presented that relies on expanding the neuroprotective chemical space of benzofuran scaffolds by accessing them from Andean–Patagonian fungi and synthetic sources (chemical libraries). The exploration of the neuroprotective chemical space of these scaffolds has the potential to allow the discovery of substitution patterns that display multi-target neuroactivity against multiple events involved in AD. This benzofuran chemical framework will establish a multi-target chemical space that could set the basis for the development of super drugs against AD. Alzheimer’s disease benzofuran natural products chemical libraries Andean-Patagonian fungi Therapeutics. Pharmacology Jaime R. Cabrera-Pardo verfasserin aut Jaime R. Cabrera-Pardo verfasserin aut Jorge Fuentealba verfasserin aut Javiera Gavilán verfasserin aut Daniel Cajas verfasserin aut José Becerra verfasserin aut Mariola Napiórkowska verfasserin aut In Frontiers in Pharmacology Frontiers Media S.A., 2010 10(2020) (DE-627)642889392 (DE-600)2587355-6 16639812 nnns volume:10 year:2020 https://doi.org/10.3389/fphar.2019.01679 kostenfrei https://doaj.org/article/5e057d0f9123405dab9f92cf16fcd2a7 kostenfrei https://www.frontiersin.org/article/10.3389/fphar.2019.01679/full kostenfrei https://doaj.org/toc/1663-9812 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 |
allfieldsSound |
10.3389/fphar.2019.01679 doi (DE-627)DOAJ009540423 (DE-599)DOAJ5e057d0f9123405dab9f92cf16fcd2a7 DE-627 ger DE-627 rakwb eng RM1-950 Jaime R. Cabrera-Pardo verfasserin aut Exploring the Multi–Target Neuroprotective Chemical Space of Benzofuran Scaffolds: A New Strategy in Drug Development for Alzheimer’s Disease 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Alzheimer’s disease (AD) is an irreversible and progressive neurodegenerative disorder that slowly destroys memory. The precise mechanism of AD is still not entirely understood and remains under discussion; it is believed to be a multifactorial disease in which a number of mechanisms are involved in its pathogenesis. Worldwide, near 37 million people suffer from the effects of AD. As a cause of death for elderly, it is predicted that AD will rank third in the coming years, just behind cancer and heart disease. Unfortunately, AD remains an incurable condition. Despite the devastating problems associated with AD, there are only four FDA approved drugs for palliative treatment of this pathology. Hence, renewed scientific efforts are required not only to uncover more insights into the AD process but also to develop more efficient pharmacological tools against this disease. Due to the complexity and multiple mechanisms at play in the progression of AD, the development of drugs by rational design is extremely difficult. The existing drugs to fight against Alzheimer’s have had limited success, mainly due to their ability to modulate only one of the mechanisms involved in AD. As opposed to single-targeted strategies, the identification of small molecules able to affect multiple pathways involved in Alzheimer’s is a promising strategy to develop more efficient medicines against this disease. Central to existing efforts to develop pharmaceuticals controlling AD is the discovery of new chemicals displaying strong neuroactivity. Benzofurans are privileged oxygen containing heterocycles that have a strong neuroprotective behavior, inhibiting several of the important events involved in the AD process. In this review, an approach is presented that relies on expanding the neuroprotective chemical space of benzofuran scaffolds by accessing them from Andean–Patagonian fungi and synthetic sources (chemical libraries). The exploration of the neuroprotective chemical space of these scaffolds has the potential to allow the discovery of substitution patterns that display multi-target neuroactivity against multiple events involved in AD. This benzofuran chemical framework will establish a multi-target chemical space that could set the basis for the development of super drugs against AD. Alzheimer’s disease benzofuran natural products chemical libraries Andean-Patagonian fungi Therapeutics. Pharmacology Jaime R. Cabrera-Pardo verfasserin aut Jaime R. Cabrera-Pardo verfasserin aut Jorge Fuentealba verfasserin aut Javiera Gavilán verfasserin aut Daniel Cajas verfasserin aut José Becerra verfasserin aut Mariola Napiórkowska verfasserin aut In Frontiers in Pharmacology Frontiers Media S.A., 2010 10(2020) (DE-627)642889392 (DE-600)2587355-6 16639812 nnns volume:10 year:2020 https://doi.org/10.3389/fphar.2019.01679 kostenfrei https://doaj.org/article/5e057d0f9123405dab9f92cf16fcd2a7 kostenfrei https://www.frontiersin.org/article/10.3389/fphar.2019.01679/full kostenfrei https://doaj.org/toc/1663-9812 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 |
language |
English |
source |
In Frontiers in Pharmacology 10(2020) volume:10 year:2020 |
sourceStr |
In Frontiers in Pharmacology 10(2020) volume:10 year:2020 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Alzheimer’s disease benzofuran natural products chemical libraries Andean-Patagonian fungi Therapeutics. Pharmacology |
isfreeaccess_bool |
true |
container_title |
Frontiers in Pharmacology |
authorswithroles_txt_mv |
Jaime R. Cabrera-Pardo @@aut@@ Jorge Fuentealba @@aut@@ Javiera Gavilán @@aut@@ Daniel Cajas @@aut@@ José Becerra @@aut@@ Mariola Napiórkowska @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
642889392 |
id |
DOAJ009540423 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ009540423</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310021146.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fphar.2019.01679</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ009540423</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5e057d0f9123405dab9f92cf16fcd2a7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RM1-950</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jaime R. Cabrera-Pardo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exploring the Multi–Target Neuroprotective Chemical Space of Benzofuran Scaffolds: A New Strategy in Drug Development for Alzheimer’s Disease</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Alzheimer’s disease (AD) is an irreversible and progressive neurodegenerative disorder that slowly destroys memory. The precise mechanism of AD is still not entirely understood and remains under discussion; it is believed to be a multifactorial disease in which a number of mechanisms are involved in its pathogenesis. Worldwide, near 37 million people suffer from the effects of AD. As a cause of death for elderly, it is predicted that AD will rank third in the coming years, just behind cancer and heart disease. Unfortunately, AD remains an incurable condition. Despite the devastating problems associated with AD, there are only four FDA approved drugs for palliative treatment of this pathology. Hence, renewed scientific efforts are required not only to uncover more insights into the AD process but also to develop more efficient pharmacological tools against this disease. Due to the complexity and multiple mechanisms at play in the progression of AD, the development of drugs by rational design is extremely difficult. The existing drugs to fight against Alzheimer’s have had limited success, mainly due to their ability to modulate only one of the mechanisms involved in AD. As opposed to single-targeted strategies, the identification of small molecules able to affect multiple pathways involved in Alzheimer’s is a promising strategy to develop more efficient medicines against this disease. Central to existing efforts to develop pharmaceuticals controlling AD is the discovery of new chemicals displaying strong neuroactivity. Benzofurans are privileged oxygen containing heterocycles that have a strong neuroprotective behavior, inhibiting several of the important events involved in the AD process. In this review, an approach is presented that relies on expanding the neuroprotective chemical space of benzofuran scaffolds by accessing them from Andean–Patagonian fungi and synthetic sources (chemical libraries). The exploration of the neuroprotective chemical space of these scaffolds has the potential to allow the discovery of substitution patterns that display multi-target neuroactivity against multiple events involved in AD. This benzofuran chemical framework will establish a multi-target chemical space that could set the basis for the development of super drugs against AD.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alzheimer’s disease</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">benzofuran</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">natural products</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chemical libraries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Andean-Patagonian fungi</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Therapeutics. Pharmacology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jaime R. Cabrera-Pardo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jaime R. Cabrera-Pardo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jorge Fuentealba</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Javiera Gavilán</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniel Cajas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">José Becerra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mariola Napiórkowska</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Pharmacology</subfield><subfield code="d">Frontiers Media S.A., 2010</subfield><subfield code="g">10(2020)</subfield><subfield code="w">(DE-627)642889392</subfield><subfield code="w">(DE-600)2587355-6</subfield><subfield code="x">16639812</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fphar.2019.01679</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5e057d0f9123405dab9f92cf16fcd2a7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/article/10.3389/fphar.2019.01679/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1663-9812</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Jaime R. Cabrera-Pardo |
spellingShingle |
Jaime R. Cabrera-Pardo misc RM1-950 misc Alzheimer’s disease misc benzofuran misc natural products misc chemical libraries misc Andean-Patagonian fungi misc Therapeutics. Pharmacology Exploring the Multi–Target Neuroprotective Chemical Space of Benzofuran Scaffolds: A New Strategy in Drug Development for Alzheimer’s Disease |
authorStr |
Jaime R. Cabrera-Pardo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)642889392 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RM1-950 |
illustrated |
Not Illustrated |
issn |
16639812 |
topic_title |
RM1-950 Exploring the Multi–Target Neuroprotective Chemical Space of Benzofuran Scaffolds: A New Strategy in Drug Development for Alzheimer’s Disease Alzheimer’s disease benzofuran natural products chemical libraries Andean-Patagonian fungi |
topic |
misc RM1-950 misc Alzheimer’s disease misc benzofuran misc natural products misc chemical libraries misc Andean-Patagonian fungi misc Therapeutics. Pharmacology |
topic_unstemmed |
misc RM1-950 misc Alzheimer’s disease misc benzofuran misc natural products misc chemical libraries misc Andean-Patagonian fungi misc Therapeutics. Pharmacology |
topic_browse |
misc RM1-950 misc Alzheimer’s disease misc benzofuran misc natural products misc chemical libraries misc Andean-Patagonian fungi misc Therapeutics. Pharmacology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Pharmacology |
hierarchy_parent_id |
642889392 |
hierarchy_top_title |
Frontiers in Pharmacology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)642889392 (DE-600)2587355-6 |
title |
Exploring the Multi–Target Neuroprotective Chemical Space of Benzofuran Scaffolds: A New Strategy in Drug Development for Alzheimer’s Disease |
ctrlnum |
(DE-627)DOAJ009540423 (DE-599)DOAJ5e057d0f9123405dab9f92cf16fcd2a7 |
title_full |
Exploring the Multi–Target Neuroprotective Chemical Space of Benzofuran Scaffolds: A New Strategy in Drug Development for Alzheimer’s Disease |
author_sort |
Jaime R. Cabrera-Pardo |
journal |
Frontiers in Pharmacology |
journalStr |
Frontiers in Pharmacology |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Jaime R. Cabrera-Pardo Jorge Fuentealba Javiera Gavilán Daniel Cajas José Becerra Mariola Napiórkowska |
container_volume |
10 |
class |
RM1-950 |
format_se |
Elektronische Aufsätze |
author-letter |
Jaime R. Cabrera-Pardo |
doi_str_mv |
10.3389/fphar.2019.01679 |
author2-role |
verfasserin |
title_sort |
exploring the multi–target neuroprotective chemical space of benzofuran scaffolds: a new strategy in drug development for alzheimer’s disease |
callnumber |
RM1-950 |
title_auth |
Exploring the Multi–Target Neuroprotective Chemical Space of Benzofuran Scaffolds: A New Strategy in Drug Development for Alzheimer’s Disease |
abstract |
Alzheimer’s disease (AD) is an irreversible and progressive neurodegenerative disorder that slowly destroys memory. The precise mechanism of AD is still not entirely understood and remains under discussion; it is believed to be a multifactorial disease in which a number of mechanisms are involved in its pathogenesis. Worldwide, near 37 million people suffer from the effects of AD. As a cause of death for elderly, it is predicted that AD will rank third in the coming years, just behind cancer and heart disease. Unfortunately, AD remains an incurable condition. Despite the devastating problems associated with AD, there are only four FDA approved drugs for palliative treatment of this pathology. Hence, renewed scientific efforts are required not only to uncover more insights into the AD process but also to develop more efficient pharmacological tools against this disease. Due to the complexity and multiple mechanisms at play in the progression of AD, the development of drugs by rational design is extremely difficult. The existing drugs to fight against Alzheimer’s have had limited success, mainly due to their ability to modulate only one of the mechanisms involved in AD. As opposed to single-targeted strategies, the identification of small molecules able to affect multiple pathways involved in Alzheimer’s is a promising strategy to develop more efficient medicines against this disease. Central to existing efforts to develop pharmaceuticals controlling AD is the discovery of new chemicals displaying strong neuroactivity. Benzofurans are privileged oxygen containing heterocycles that have a strong neuroprotective behavior, inhibiting several of the important events involved in the AD process. In this review, an approach is presented that relies on expanding the neuroprotective chemical space of benzofuran scaffolds by accessing them from Andean–Patagonian fungi and synthetic sources (chemical libraries). The exploration of the neuroprotective chemical space of these scaffolds has the potential to allow the discovery of substitution patterns that display multi-target neuroactivity against multiple events involved in AD. This benzofuran chemical framework will establish a multi-target chemical space that could set the basis for the development of super drugs against AD. |
abstractGer |
Alzheimer’s disease (AD) is an irreversible and progressive neurodegenerative disorder that slowly destroys memory. The precise mechanism of AD is still not entirely understood and remains under discussion; it is believed to be a multifactorial disease in which a number of mechanisms are involved in its pathogenesis. Worldwide, near 37 million people suffer from the effects of AD. As a cause of death for elderly, it is predicted that AD will rank third in the coming years, just behind cancer and heart disease. Unfortunately, AD remains an incurable condition. Despite the devastating problems associated with AD, there are only four FDA approved drugs for palliative treatment of this pathology. Hence, renewed scientific efforts are required not only to uncover more insights into the AD process but also to develop more efficient pharmacological tools against this disease. Due to the complexity and multiple mechanisms at play in the progression of AD, the development of drugs by rational design is extremely difficult. The existing drugs to fight against Alzheimer’s have had limited success, mainly due to their ability to modulate only one of the mechanisms involved in AD. As opposed to single-targeted strategies, the identification of small molecules able to affect multiple pathways involved in Alzheimer’s is a promising strategy to develop more efficient medicines against this disease. Central to existing efforts to develop pharmaceuticals controlling AD is the discovery of new chemicals displaying strong neuroactivity. Benzofurans are privileged oxygen containing heterocycles that have a strong neuroprotective behavior, inhibiting several of the important events involved in the AD process. In this review, an approach is presented that relies on expanding the neuroprotective chemical space of benzofuran scaffolds by accessing them from Andean–Patagonian fungi and synthetic sources (chemical libraries). The exploration of the neuroprotective chemical space of these scaffolds has the potential to allow the discovery of substitution patterns that display multi-target neuroactivity against multiple events involved in AD. This benzofuran chemical framework will establish a multi-target chemical space that could set the basis for the development of super drugs against AD. |
abstract_unstemmed |
Alzheimer’s disease (AD) is an irreversible and progressive neurodegenerative disorder that slowly destroys memory. The precise mechanism of AD is still not entirely understood and remains under discussion; it is believed to be a multifactorial disease in which a number of mechanisms are involved in its pathogenesis. Worldwide, near 37 million people suffer from the effects of AD. As a cause of death for elderly, it is predicted that AD will rank third in the coming years, just behind cancer and heart disease. Unfortunately, AD remains an incurable condition. Despite the devastating problems associated with AD, there are only four FDA approved drugs for palliative treatment of this pathology. Hence, renewed scientific efforts are required not only to uncover more insights into the AD process but also to develop more efficient pharmacological tools against this disease. Due to the complexity and multiple mechanisms at play in the progression of AD, the development of drugs by rational design is extremely difficult. The existing drugs to fight against Alzheimer’s have had limited success, mainly due to their ability to modulate only one of the mechanisms involved in AD. As opposed to single-targeted strategies, the identification of small molecules able to affect multiple pathways involved in Alzheimer’s is a promising strategy to develop more efficient medicines against this disease. Central to existing efforts to develop pharmaceuticals controlling AD is the discovery of new chemicals displaying strong neuroactivity. Benzofurans are privileged oxygen containing heterocycles that have a strong neuroprotective behavior, inhibiting several of the important events involved in the AD process. In this review, an approach is presented that relies on expanding the neuroprotective chemical space of benzofuran scaffolds by accessing them from Andean–Patagonian fungi and synthetic sources (chemical libraries). The exploration of the neuroprotective chemical space of these scaffolds has the potential to allow the discovery of substitution patterns that display multi-target neuroactivity against multiple events involved in AD. This benzofuran chemical framework will establish a multi-target chemical space that could set the basis for the development of super drugs against AD. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Exploring the Multi–Target Neuroprotective Chemical Space of Benzofuran Scaffolds: A New Strategy in Drug Development for Alzheimer’s Disease |
url |
https://doi.org/10.3389/fphar.2019.01679 https://doaj.org/article/5e057d0f9123405dab9f92cf16fcd2a7 https://www.frontiersin.org/article/10.3389/fphar.2019.01679/full https://doaj.org/toc/1663-9812 |
remote_bool |
true |
author2 |
Jaime R. Cabrera-Pardo Jorge Fuentealba Javiera Gavilán Daniel Cajas José Becerra Mariola Napiórkowska |
author2Str |
Jaime R. Cabrera-Pardo Jorge Fuentealba Javiera Gavilán Daniel Cajas José Becerra Mariola Napiórkowska |
ppnlink |
642889392 |
callnumber-subject |
RM - Therapeutics and Pharmacology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fphar.2019.01679 |
callnumber-a |
RM1-950 |
up_date |
2024-07-04T00:04:07.342Z |
_version_ |
1803604666449133568 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ009540423</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310021146.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fphar.2019.01679</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ009540423</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5e057d0f9123405dab9f92cf16fcd2a7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RM1-950</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jaime R. Cabrera-Pardo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exploring the Multi–Target Neuroprotective Chemical Space of Benzofuran Scaffolds: A New Strategy in Drug Development for Alzheimer’s Disease</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Alzheimer’s disease (AD) is an irreversible and progressive neurodegenerative disorder that slowly destroys memory. The precise mechanism of AD is still not entirely understood and remains under discussion; it is believed to be a multifactorial disease in which a number of mechanisms are involved in its pathogenesis. Worldwide, near 37 million people suffer from the effects of AD. As a cause of death for elderly, it is predicted that AD will rank third in the coming years, just behind cancer and heart disease. Unfortunately, AD remains an incurable condition. Despite the devastating problems associated with AD, there are only four FDA approved drugs for palliative treatment of this pathology. Hence, renewed scientific efforts are required not only to uncover more insights into the AD process but also to develop more efficient pharmacological tools against this disease. Due to the complexity and multiple mechanisms at play in the progression of AD, the development of drugs by rational design is extremely difficult. The existing drugs to fight against Alzheimer’s have had limited success, mainly due to their ability to modulate only one of the mechanisms involved in AD. As opposed to single-targeted strategies, the identification of small molecules able to affect multiple pathways involved in Alzheimer’s is a promising strategy to develop more efficient medicines against this disease. Central to existing efforts to develop pharmaceuticals controlling AD is the discovery of new chemicals displaying strong neuroactivity. Benzofurans are privileged oxygen containing heterocycles that have a strong neuroprotective behavior, inhibiting several of the important events involved in the AD process. In this review, an approach is presented that relies on expanding the neuroprotective chemical space of benzofuran scaffolds by accessing them from Andean–Patagonian fungi and synthetic sources (chemical libraries). The exploration of the neuroprotective chemical space of these scaffolds has the potential to allow the discovery of substitution patterns that display multi-target neuroactivity against multiple events involved in AD. This benzofuran chemical framework will establish a multi-target chemical space that could set the basis for the development of super drugs against AD.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alzheimer’s disease</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">benzofuran</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">natural products</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chemical libraries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Andean-Patagonian fungi</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Therapeutics. Pharmacology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jaime R. Cabrera-Pardo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jaime R. Cabrera-Pardo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jorge Fuentealba</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Javiera Gavilán</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniel Cajas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">José Becerra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mariola Napiórkowska</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Pharmacology</subfield><subfield code="d">Frontiers Media S.A., 2010</subfield><subfield code="g">10(2020)</subfield><subfield code="w">(DE-627)642889392</subfield><subfield code="w">(DE-600)2587355-6</subfield><subfield code="x">16639812</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fphar.2019.01679</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5e057d0f9123405dab9f92cf16fcd2a7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/article/10.3389/fphar.2019.01679/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1663-9812</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield></datafield></record></collection>
|
score |
7.4015884 |