Genetic structure and relationships of an associated population in ramie (Boehmeria nivea L. Gaud) evaluated by SSR markers
Ramie (Boehmeria nivea L. Gaud) is one of the most important natural fibre crops. For enhanced crop development, it is necessary to understand its population structure and genetic relationships. In this study, we assessed the genetic diversity and population structure of 134 ramie accessions (with t...
Ausführliche Beschreibung
Autor*in: |
Siyuan Zhu [verfasserIn] Touming Liu [verfasserIn] Qiuzhong Dai [verfasserIn] Duanqing Wu [verfasserIn] Xia Zheng [verfasserIn] Shouwei Tang [verfasserIn] Jianhua Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Biotechnology & Biotechnological Equipment - Taylor & Francis Group, 2016, 31(2017), 1, Seite 36-44 |
---|---|
Übergeordnetes Werk: |
volume:31 ; year:2017 ; number:1 ; pages:36-44 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1080/13102818.2016.1253437 |
---|
Katalog-ID: |
DOAJ009683216 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ009683216 | ||
003 | DE-627 | ||
005 | 20230310021915.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1080/13102818.2016.1253437 |2 doi | |
035 | |a (DE-627)DOAJ009683216 | ||
035 | |a (DE-599)DOAJ0c93bd0f056344a5b698a3052729a5c5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP248.13-248.65 | |
100 | 0 | |a Siyuan Zhu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Genetic structure and relationships of an associated population in ramie (Boehmeria nivea L. Gaud) evaluated by SSR markers |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Ramie (Boehmeria nivea L. Gaud) is one of the most important natural fibre crops. For enhanced crop development, it is necessary to understand its population structure and genetic relationships. In this study, we assessed the genetic diversity and population structure of 134 ramie accessions (with three plants per accession) from 12 regions by using 36 simple sequence repeat markers. The 36 microsatellite primers revealed 149 alleles in 134 ramie populations, with an average of 4.14 alleles per locus. The structure analysis divided the 134 ramie accessions into three groups (I, II and III), and into further six subgroups (a, b, c, d, e and f). In Subgroup b, 13 accessions were from Guizhou Province, 9 accessions were from Sichuan Province and the remaining 20 accessions were from Chongqing (4), Hunan (8), Guangxi (4), Jiangxi (2), Yunan (1) and Taiwan (1). In Subgroup d, 22 accessions were from Guizhou Province and the remaining 17 accessions were from Chongqing (6), Sichuan (5) and Yunnan (6). It can be inferred that the genetic background of these ramie accessions did not always correlate with their geographical regions. Similar results were found in Subgroups a and f. The pair-wise genetic similarity coefficients between the 134 accessions ranged from 0.390 to 0.939, which suggested that there was abundant genetic diversity in the ramie accessions. These markers have provided important information about the genetic structure of ramie, which can contribute to future breeding and improvement programmes for these resources. | ||
650 | 4 | |a Ramie | |
650 | 4 | |a SSR | |
650 | 4 | |a genetic structure | |
650 | 4 | |a biological characteristics | |
653 | 0 | |a Biotechnology | |
700 | 0 | |a Touming Liu |e verfasserin |4 aut | |
700 | 0 | |a Qiuzhong Dai |e verfasserin |4 aut | |
700 | 0 | |a Duanqing Wu |e verfasserin |4 aut | |
700 | 0 | |a Xia Zheng |e verfasserin |4 aut | |
700 | 0 | |a Shouwei Tang |e verfasserin |4 aut | |
700 | 0 | |a Jianhua Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Biotechnology & Biotechnological Equipment |d Taylor & Francis Group, 2016 |g 31(2017), 1, Seite 36-44 |w (DE-627)555687376 |w (DE-600)2400627-0 |x 13143530 |7 nnns |
773 | 1 | 8 | |g volume:31 |g year:2017 |g number:1 |g pages:36-44 |
856 | 4 | 0 | |u https://doi.org/10.1080/13102818.2016.1253437 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/0c93bd0f056344a5b698a3052729a5c5 |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1080/13102818.2016.1253437 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1310-2818 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1314-3530 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 31 |j 2017 |e 1 |h 36-44 |
author_variant |
s z sz t l tl q d qd d w dw x z xz s t st j c jc |
---|---|
matchkey_str |
article:13143530:2017----::eeisrcuenrltosisfnsoitdouainnaibemrai |
hierarchy_sort_str |
2017 |
callnumber-subject-code |
TP |
publishDate |
2017 |
allfields |
10.1080/13102818.2016.1253437 doi (DE-627)DOAJ009683216 (DE-599)DOAJ0c93bd0f056344a5b698a3052729a5c5 DE-627 ger DE-627 rakwb eng TP248.13-248.65 Siyuan Zhu verfasserin aut Genetic structure and relationships of an associated population in ramie (Boehmeria nivea L. Gaud) evaluated by SSR markers 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ramie (Boehmeria nivea L. Gaud) is one of the most important natural fibre crops. For enhanced crop development, it is necessary to understand its population structure and genetic relationships. In this study, we assessed the genetic diversity and population structure of 134 ramie accessions (with three plants per accession) from 12 regions by using 36 simple sequence repeat markers. The 36 microsatellite primers revealed 149 alleles in 134 ramie populations, with an average of 4.14 alleles per locus. The structure analysis divided the 134 ramie accessions into three groups (I, II and III), and into further six subgroups (a, b, c, d, e and f). In Subgroup b, 13 accessions were from Guizhou Province, 9 accessions were from Sichuan Province and the remaining 20 accessions were from Chongqing (4), Hunan (8), Guangxi (4), Jiangxi (2), Yunan (1) and Taiwan (1). In Subgroup d, 22 accessions were from Guizhou Province and the remaining 17 accessions were from Chongqing (6), Sichuan (5) and Yunnan (6). It can be inferred that the genetic background of these ramie accessions did not always correlate with their geographical regions. Similar results were found in Subgroups a and f. The pair-wise genetic similarity coefficients between the 134 accessions ranged from 0.390 to 0.939, which suggested that there was abundant genetic diversity in the ramie accessions. These markers have provided important information about the genetic structure of ramie, which can contribute to future breeding and improvement programmes for these resources. Ramie SSR genetic structure biological characteristics Biotechnology Touming Liu verfasserin aut Qiuzhong Dai verfasserin aut Duanqing Wu verfasserin aut Xia Zheng verfasserin aut Shouwei Tang verfasserin aut Jianhua Chen verfasserin aut In Biotechnology & Biotechnological Equipment Taylor & Francis Group, 2016 31(2017), 1, Seite 36-44 (DE-627)555687376 (DE-600)2400627-0 13143530 nnns volume:31 year:2017 number:1 pages:36-44 https://doi.org/10.1080/13102818.2016.1253437 kostenfrei https://doaj.org/article/0c93bd0f056344a5b698a3052729a5c5 kostenfrei http://dx.doi.org/10.1080/13102818.2016.1253437 kostenfrei https://doaj.org/toc/1310-2818 Journal toc kostenfrei https://doaj.org/toc/1314-3530 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 31 2017 1 36-44 |
spelling |
10.1080/13102818.2016.1253437 doi (DE-627)DOAJ009683216 (DE-599)DOAJ0c93bd0f056344a5b698a3052729a5c5 DE-627 ger DE-627 rakwb eng TP248.13-248.65 Siyuan Zhu verfasserin aut Genetic structure and relationships of an associated population in ramie (Boehmeria nivea L. Gaud) evaluated by SSR markers 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ramie (Boehmeria nivea L. Gaud) is one of the most important natural fibre crops. For enhanced crop development, it is necessary to understand its population structure and genetic relationships. In this study, we assessed the genetic diversity and population structure of 134 ramie accessions (with three plants per accession) from 12 regions by using 36 simple sequence repeat markers. The 36 microsatellite primers revealed 149 alleles in 134 ramie populations, with an average of 4.14 alleles per locus. The structure analysis divided the 134 ramie accessions into three groups (I, II and III), and into further six subgroups (a, b, c, d, e and f). In Subgroup b, 13 accessions were from Guizhou Province, 9 accessions were from Sichuan Province and the remaining 20 accessions were from Chongqing (4), Hunan (8), Guangxi (4), Jiangxi (2), Yunan (1) and Taiwan (1). In Subgroup d, 22 accessions were from Guizhou Province and the remaining 17 accessions were from Chongqing (6), Sichuan (5) and Yunnan (6). It can be inferred that the genetic background of these ramie accessions did not always correlate with their geographical regions. Similar results were found in Subgroups a and f. The pair-wise genetic similarity coefficients between the 134 accessions ranged from 0.390 to 0.939, which suggested that there was abundant genetic diversity in the ramie accessions. These markers have provided important information about the genetic structure of ramie, which can contribute to future breeding and improvement programmes for these resources. Ramie SSR genetic structure biological characteristics Biotechnology Touming Liu verfasserin aut Qiuzhong Dai verfasserin aut Duanqing Wu verfasserin aut Xia Zheng verfasserin aut Shouwei Tang verfasserin aut Jianhua Chen verfasserin aut In Biotechnology & Biotechnological Equipment Taylor & Francis Group, 2016 31(2017), 1, Seite 36-44 (DE-627)555687376 (DE-600)2400627-0 13143530 nnns volume:31 year:2017 number:1 pages:36-44 https://doi.org/10.1080/13102818.2016.1253437 kostenfrei https://doaj.org/article/0c93bd0f056344a5b698a3052729a5c5 kostenfrei http://dx.doi.org/10.1080/13102818.2016.1253437 kostenfrei https://doaj.org/toc/1310-2818 Journal toc kostenfrei https://doaj.org/toc/1314-3530 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 31 2017 1 36-44 |
allfields_unstemmed |
10.1080/13102818.2016.1253437 doi (DE-627)DOAJ009683216 (DE-599)DOAJ0c93bd0f056344a5b698a3052729a5c5 DE-627 ger DE-627 rakwb eng TP248.13-248.65 Siyuan Zhu verfasserin aut Genetic structure and relationships of an associated population in ramie (Boehmeria nivea L. Gaud) evaluated by SSR markers 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ramie (Boehmeria nivea L. Gaud) is one of the most important natural fibre crops. For enhanced crop development, it is necessary to understand its population structure and genetic relationships. In this study, we assessed the genetic diversity and population structure of 134 ramie accessions (with three plants per accession) from 12 regions by using 36 simple sequence repeat markers. The 36 microsatellite primers revealed 149 alleles in 134 ramie populations, with an average of 4.14 alleles per locus. The structure analysis divided the 134 ramie accessions into three groups (I, II and III), and into further six subgroups (a, b, c, d, e and f). In Subgroup b, 13 accessions were from Guizhou Province, 9 accessions were from Sichuan Province and the remaining 20 accessions were from Chongqing (4), Hunan (8), Guangxi (4), Jiangxi (2), Yunan (1) and Taiwan (1). In Subgroup d, 22 accessions were from Guizhou Province and the remaining 17 accessions were from Chongqing (6), Sichuan (5) and Yunnan (6). It can be inferred that the genetic background of these ramie accessions did not always correlate with their geographical regions. Similar results were found in Subgroups a and f. The pair-wise genetic similarity coefficients between the 134 accessions ranged from 0.390 to 0.939, which suggested that there was abundant genetic diversity in the ramie accessions. These markers have provided important information about the genetic structure of ramie, which can contribute to future breeding and improvement programmes for these resources. Ramie SSR genetic structure biological characteristics Biotechnology Touming Liu verfasserin aut Qiuzhong Dai verfasserin aut Duanqing Wu verfasserin aut Xia Zheng verfasserin aut Shouwei Tang verfasserin aut Jianhua Chen verfasserin aut In Biotechnology & Biotechnological Equipment Taylor & Francis Group, 2016 31(2017), 1, Seite 36-44 (DE-627)555687376 (DE-600)2400627-0 13143530 nnns volume:31 year:2017 number:1 pages:36-44 https://doi.org/10.1080/13102818.2016.1253437 kostenfrei https://doaj.org/article/0c93bd0f056344a5b698a3052729a5c5 kostenfrei http://dx.doi.org/10.1080/13102818.2016.1253437 kostenfrei https://doaj.org/toc/1310-2818 Journal toc kostenfrei https://doaj.org/toc/1314-3530 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 31 2017 1 36-44 |
allfieldsGer |
10.1080/13102818.2016.1253437 doi (DE-627)DOAJ009683216 (DE-599)DOAJ0c93bd0f056344a5b698a3052729a5c5 DE-627 ger DE-627 rakwb eng TP248.13-248.65 Siyuan Zhu verfasserin aut Genetic structure and relationships of an associated population in ramie (Boehmeria nivea L. Gaud) evaluated by SSR markers 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ramie (Boehmeria nivea L. Gaud) is one of the most important natural fibre crops. For enhanced crop development, it is necessary to understand its population structure and genetic relationships. In this study, we assessed the genetic diversity and population structure of 134 ramie accessions (with three plants per accession) from 12 regions by using 36 simple sequence repeat markers. The 36 microsatellite primers revealed 149 alleles in 134 ramie populations, with an average of 4.14 alleles per locus. The structure analysis divided the 134 ramie accessions into three groups (I, II and III), and into further six subgroups (a, b, c, d, e and f). In Subgroup b, 13 accessions were from Guizhou Province, 9 accessions were from Sichuan Province and the remaining 20 accessions were from Chongqing (4), Hunan (8), Guangxi (4), Jiangxi (2), Yunan (1) and Taiwan (1). In Subgroup d, 22 accessions were from Guizhou Province and the remaining 17 accessions were from Chongqing (6), Sichuan (5) and Yunnan (6). It can be inferred that the genetic background of these ramie accessions did not always correlate with their geographical regions. Similar results were found in Subgroups a and f. The pair-wise genetic similarity coefficients between the 134 accessions ranged from 0.390 to 0.939, which suggested that there was abundant genetic diversity in the ramie accessions. These markers have provided important information about the genetic structure of ramie, which can contribute to future breeding and improvement programmes for these resources. Ramie SSR genetic structure biological characteristics Biotechnology Touming Liu verfasserin aut Qiuzhong Dai verfasserin aut Duanqing Wu verfasserin aut Xia Zheng verfasserin aut Shouwei Tang verfasserin aut Jianhua Chen verfasserin aut In Biotechnology & Biotechnological Equipment Taylor & Francis Group, 2016 31(2017), 1, Seite 36-44 (DE-627)555687376 (DE-600)2400627-0 13143530 nnns volume:31 year:2017 number:1 pages:36-44 https://doi.org/10.1080/13102818.2016.1253437 kostenfrei https://doaj.org/article/0c93bd0f056344a5b698a3052729a5c5 kostenfrei http://dx.doi.org/10.1080/13102818.2016.1253437 kostenfrei https://doaj.org/toc/1310-2818 Journal toc kostenfrei https://doaj.org/toc/1314-3530 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 31 2017 1 36-44 |
allfieldsSound |
10.1080/13102818.2016.1253437 doi (DE-627)DOAJ009683216 (DE-599)DOAJ0c93bd0f056344a5b698a3052729a5c5 DE-627 ger DE-627 rakwb eng TP248.13-248.65 Siyuan Zhu verfasserin aut Genetic structure and relationships of an associated population in ramie (Boehmeria nivea L. Gaud) evaluated by SSR markers 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ramie (Boehmeria nivea L. Gaud) is one of the most important natural fibre crops. For enhanced crop development, it is necessary to understand its population structure and genetic relationships. In this study, we assessed the genetic diversity and population structure of 134 ramie accessions (with three plants per accession) from 12 regions by using 36 simple sequence repeat markers. The 36 microsatellite primers revealed 149 alleles in 134 ramie populations, with an average of 4.14 alleles per locus. The structure analysis divided the 134 ramie accessions into three groups (I, II and III), and into further six subgroups (a, b, c, d, e and f). In Subgroup b, 13 accessions were from Guizhou Province, 9 accessions were from Sichuan Province and the remaining 20 accessions were from Chongqing (4), Hunan (8), Guangxi (4), Jiangxi (2), Yunan (1) and Taiwan (1). In Subgroup d, 22 accessions were from Guizhou Province and the remaining 17 accessions were from Chongqing (6), Sichuan (5) and Yunnan (6). It can be inferred that the genetic background of these ramie accessions did not always correlate with their geographical regions. Similar results were found in Subgroups a and f. The pair-wise genetic similarity coefficients between the 134 accessions ranged from 0.390 to 0.939, which suggested that there was abundant genetic diversity in the ramie accessions. These markers have provided important information about the genetic structure of ramie, which can contribute to future breeding and improvement programmes for these resources. Ramie SSR genetic structure biological characteristics Biotechnology Touming Liu verfasserin aut Qiuzhong Dai verfasserin aut Duanqing Wu verfasserin aut Xia Zheng verfasserin aut Shouwei Tang verfasserin aut Jianhua Chen verfasserin aut In Biotechnology & Biotechnological Equipment Taylor & Francis Group, 2016 31(2017), 1, Seite 36-44 (DE-627)555687376 (DE-600)2400627-0 13143530 nnns volume:31 year:2017 number:1 pages:36-44 https://doi.org/10.1080/13102818.2016.1253437 kostenfrei https://doaj.org/article/0c93bd0f056344a5b698a3052729a5c5 kostenfrei http://dx.doi.org/10.1080/13102818.2016.1253437 kostenfrei https://doaj.org/toc/1310-2818 Journal toc kostenfrei https://doaj.org/toc/1314-3530 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 31 2017 1 36-44 |
language |
English |
source |
In Biotechnology & Biotechnological Equipment 31(2017), 1, Seite 36-44 volume:31 year:2017 number:1 pages:36-44 |
sourceStr |
In Biotechnology & Biotechnological Equipment 31(2017), 1, Seite 36-44 volume:31 year:2017 number:1 pages:36-44 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Ramie SSR genetic structure biological characteristics Biotechnology |
isfreeaccess_bool |
true |
container_title |
Biotechnology & Biotechnological Equipment |
authorswithroles_txt_mv |
Siyuan Zhu @@aut@@ Touming Liu @@aut@@ Qiuzhong Dai @@aut@@ Duanqing Wu @@aut@@ Xia Zheng @@aut@@ Shouwei Tang @@aut@@ Jianhua Chen @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
555687376 |
id |
DOAJ009683216 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ009683216</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310021915.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/13102818.2016.1253437</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ009683216</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0c93bd0f056344a5b698a3052729a5c5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.13-248.65</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Siyuan Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genetic structure and relationships of an associated population in ramie (Boehmeria nivea L. Gaud) evaluated by SSR markers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ramie (Boehmeria nivea L. Gaud) is one of the most important natural fibre crops. For enhanced crop development, it is necessary to understand its population structure and genetic relationships. In this study, we assessed the genetic diversity and population structure of 134 ramie accessions (with three plants per accession) from 12 regions by using 36 simple sequence repeat markers. The 36 microsatellite primers revealed 149 alleles in 134 ramie populations, with an average of 4.14 alleles per locus. The structure analysis divided the 134 ramie accessions into three groups (I, II and III), and into further six subgroups (a, b, c, d, e and f). In Subgroup b, 13 accessions were from Guizhou Province, 9 accessions were from Sichuan Province and the remaining 20 accessions were from Chongqing (4), Hunan (8), Guangxi (4), Jiangxi (2), Yunan (1) and Taiwan (1). In Subgroup d, 22 accessions were from Guizhou Province and the remaining 17 accessions were from Chongqing (6), Sichuan (5) and Yunnan (6). It can be inferred that the genetic background of these ramie accessions did not always correlate with their geographical regions. Similar results were found in Subgroups a and f. The pair-wise genetic similarity coefficients between the 134 accessions ranged from 0.390 to 0.939, which suggested that there was abundant genetic diversity in the ramie accessions. These markers have provided important information about the genetic structure of ramie, which can contribute to future breeding and improvement programmes for these resources.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ramie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SSR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genetic structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biological characteristics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Touming Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiuzhong Dai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Duanqing Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xia Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shouwei Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianhua Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Biotechnology & Biotechnological Equipment</subfield><subfield code="d">Taylor & Francis Group, 2016</subfield><subfield code="g">31(2017), 1, Seite 36-44</subfield><subfield code="w">(DE-627)555687376</subfield><subfield code="w">(DE-600)2400627-0</subfield><subfield code="x">13143530</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:36-44</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/13102818.2016.1253437</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0c93bd0f056344a5b698a3052729a5c5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1080/13102818.2016.1253437</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1310-2818</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1314-3530</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">36-44</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Siyuan Zhu |
spellingShingle |
Siyuan Zhu misc TP248.13-248.65 misc Ramie misc SSR misc genetic structure misc biological characteristics misc Biotechnology Genetic structure and relationships of an associated population in ramie (Boehmeria nivea L. Gaud) evaluated by SSR markers |
authorStr |
Siyuan Zhu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)555687376 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP248 |
illustrated |
Not Illustrated |
issn |
13143530 |
topic_title |
TP248.13-248.65 Genetic structure and relationships of an associated population in ramie (Boehmeria nivea L. Gaud) evaluated by SSR markers Ramie SSR genetic structure biological characteristics |
topic |
misc TP248.13-248.65 misc Ramie misc SSR misc genetic structure misc biological characteristics misc Biotechnology |
topic_unstemmed |
misc TP248.13-248.65 misc Ramie misc SSR misc genetic structure misc biological characteristics misc Biotechnology |
topic_browse |
misc TP248.13-248.65 misc Ramie misc SSR misc genetic structure misc biological characteristics misc Biotechnology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Biotechnology & Biotechnological Equipment |
hierarchy_parent_id |
555687376 |
hierarchy_top_title |
Biotechnology & Biotechnological Equipment |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)555687376 (DE-600)2400627-0 |
title |
Genetic structure and relationships of an associated population in ramie (Boehmeria nivea L. Gaud) evaluated by SSR markers |
ctrlnum |
(DE-627)DOAJ009683216 (DE-599)DOAJ0c93bd0f056344a5b698a3052729a5c5 |
title_full |
Genetic structure and relationships of an associated population in ramie (Boehmeria nivea L. Gaud) evaluated by SSR markers |
author_sort |
Siyuan Zhu |
journal |
Biotechnology & Biotechnological Equipment |
journalStr |
Biotechnology & Biotechnological Equipment |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
36 |
author_browse |
Siyuan Zhu Touming Liu Qiuzhong Dai Duanqing Wu Xia Zheng Shouwei Tang Jianhua Chen |
container_volume |
31 |
class |
TP248.13-248.65 |
format_se |
Elektronische Aufsätze |
author-letter |
Siyuan Zhu |
doi_str_mv |
10.1080/13102818.2016.1253437 |
author2-role |
verfasserin |
title_sort |
genetic structure and relationships of an associated population in ramie (boehmeria nivea l. gaud) evaluated by ssr markers |
callnumber |
TP248.13-248.65 |
title_auth |
Genetic structure and relationships of an associated population in ramie (Boehmeria nivea L. Gaud) evaluated by SSR markers |
abstract |
Ramie (Boehmeria nivea L. Gaud) is one of the most important natural fibre crops. For enhanced crop development, it is necessary to understand its population structure and genetic relationships. In this study, we assessed the genetic diversity and population structure of 134 ramie accessions (with three plants per accession) from 12 regions by using 36 simple sequence repeat markers. The 36 microsatellite primers revealed 149 alleles in 134 ramie populations, with an average of 4.14 alleles per locus. The structure analysis divided the 134 ramie accessions into three groups (I, II and III), and into further six subgroups (a, b, c, d, e and f). In Subgroup b, 13 accessions were from Guizhou Province, 9 accessions were from Sichuan Province and the remaining 20 accessions were from Chongqing (4), Hunan (8), Guangxi (4), Jiangxi (2), Yunan (1) and Taiwan (1). In Subgroup d, 22 accessions were from Guizhou Province and the remaining 17 accessions were from Chongqing (6), Sichuan (5) and Yunnan (6). It can be inferred that the genetic background of these ramie accessions did not always correlate with their geographical regions. Similar results were found in Subgroups a and f. The pair-wise genetic similarity coefficients between the 134 accessions ranged from 0.390 to 0.939, which suggested that there was abundant genetic diversity in the ramie accessions. These markers have provided important information about the genetic structure of ramie, which can contribute to future breeding and improvement programmes for these resources. |
abstractGer |
Ramie (Boehmeria nivea L. Gaud) is one of the most important natural fibre crops. For enhanced crop development, it is necessary to understand its population structure and genetic relationships. In this study, we assessed the genetic diversity and population structure of 134 ramie accessions (with three plants per accession) from 12 regions by using 36 simple sequence repeat markers. The 36 microsatellite primers revealed 149 alleles in 134 ramie populations, with an average of 4.14 alleles per locus. The structure analysis divided the 134 ramie accessions into three groups (I, II and III), and into further six subgroups (a, b, c, d, e and f). In Subgroup b, 13 accessions were from Guizhou Province, 9 accessions were from Sichuan Province and the remaining 20 accessions were from Chongqing (4), Hunan (8), Guangxi (4), Jiangxi (2), Yunan (1) and Taiwan (1). In Subgroup d, 22 accessions were from Guizhou Province and the remaining 17 accessions were from Chongqing (6), Sichuan (5) and Yunnan (6). It can be inferred that the genetic background of these ramie accessions did not always correlate with their geographical regions. Similar results were found in Subgroups a and f. The pair-wise genetic similarity coefficients between the 134 accessions ranged from 0.390 to 0.939, which suggested that there was abundant genetic diversity in the ramie accessions. These markers have provided important information about the genetic structure of ramie, which can contribute to future breeding and improvement programmes for these resources. |
abstract_unstemmed |
Ramie (Boehmeria nivea L. Gaud) is one of the most important natural fibre crops. For enhanced crop development, it is necessary to understand its population structure and genetic relationships. In this study, we assessed the genetic diversity and population structure of 134 ramie accessions (with three plants per accession) from 12 regions by using 36 simple sequence repeat markers. The 36 microsatellite primers revealed 149 alleles in 134 ramie populations, with an average of 4.14 alleles per locus. The structure analysis divided the 134 ramie accessions into three groups (I, II and III), and into further six subgroups (a, b, c, d, e and f). In Subgroup b, 13 accessions were from Guizhou Province, 9 accessions were from Sichuan Province and the remaining 20 accessions were from Chongqing (4), Hunan (8), Guangxi (4), Jiangxi (2), Yunan (1) and Taiwan (1). In Subgroup d, 22 accessions were from Guizhou Province and the remaining 17 accessions were from Chongqing (6), Sichuan (5) and Yunnan (6). It can be inferred that the genetic background of these ramie accessions did not always correlate with their geographical regions. Similar results were found in Subgroups a and f. The pair-wise genetic similarity coefficients between the 134 accessions ranged from 0.390 to 0.939, which suggested that there was abundant genetic diversity in the ramie accessions. These markers have provided important information about the genetic structure of ramie, which can contribute to future breeding and improvement programmes for these resources. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Genetic structure and relationships of an associated population in ramie (Boehmeria nivea L. Gaud) evaluated by SSR markers |
url |
https://doi.org/10.1080/13102818.2016.1253437 https://doaj.org/article/0c93bd0f056344a5b698a3052729a5c5 http://dx.doi.org/10.1080/13102818.2016.1253437 https://doaj.org/toc/1310-2818 https://doaj.org/toc/1314-3530 |
remote_bool |
true |
author2 |
Touming Liu Qiuzhong Dai Duanqing Wu Xia Zheng Shouwei Tang Jianhua Chen |
author2Str |
Touming Liu Qiuzhong Dai Duanqing Wu Xia Zheng Shouwei Tang Jianhua Chen |
ppnlink |
555687376 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1080/13102818.2016.1253437 |
callnumber-a |
TP248.13-248.65 |
up_date |
2024-07-04T00:38:00.278Z |
_version_ |
1803606798137032704 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ009683216</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310021915.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/13102818.2016.1253437</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ009683216</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0c93bd0f056344a5b698a3052729a5c5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.13-248.65</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Siyuan Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genetic structure and relationships of an associated population in ramie (Boehmeria nivea L. Gaud) evaluated by SSR markers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ramie (Boehmeria nivea L. Gaud) is one of the most important natural fibre crops. For enhanced crop development, it is necessary to understand its population structure and genetic relationships. In this study, we assessed the genetic diversity and population structure of 134 ramie accessions (with three plants per accession) from 12 regions by using 36 simple sequence repeat markers. The 36 microsatellite primers revealed 149 alleles in 134 ramie populations, with an average of 4.14 alleles per locus. The structure analysis divided the 134 ramie accessions into three groups (I, II and III), and into further six subgroups (a, b, c, d, e and f). In Subgroup b, 13 accessions were from Guizhou Province, 9 accessions were from Sichuan Province and the remaining 20 accessions were from Chongqing (4), Hunan (8), Guangxi (4), Jiangxi (2), Yunan (1) and Taiwan (1). In Subgroup d, 22 accessions were from Guizhou Province and the remaining 17 accessions were from Chongqing (6), Sichuan (5) and Yunnan (6). It can be inferred that the genetic background of these ramie accessions did not always correlate with their geographical regions. Similar results were found in Subgroups a and f. The pair-wise genetic similarity coefficients between the 134 accessions ranged from 0.390 to 0.939, which suggested that there was abundant genetic diversity in the ramie accessions. These markers have provided important information about the genetic structure of ramie, which can contribute to future breeding and improvement programmes for these resources.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ramie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SSR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genetic structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biological characteristics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Touming Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiuzhong Dai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Duanqing Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xia Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shouwei Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianhua Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Biotechnology & Biotechnological Equipment</subfield><subfield code="d">Taylor & Francis Group, 2016</subfield><subfield code="g">31(2017), 1, Seite 36-44</subfield><subfield code="w">(DE-627)555687376</subfield><subfield code="w">(DE-600)2400627-0</subfield><subfield code="x">13143530</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:36-44</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/13102818.2016.1253437</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0c93bd0f056344a5b698a3052729a5c5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1080/13102818.2016.1253437</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1310-2818</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1314-3530</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">36-44</subfield></datafield></record></collection>
|
score |
7.3993254 |