Some new fixed point results for monotone enriched nonexpansive mappings in ordered Banach spaces
We study monotone enriched nonexpansive mappings and present some new existence and convergence theorems for these mappings in the setting of ordered Banach spaces. More precisely, we employ the Krasnosel'ski iterative method to approximate fixed points of enriched nonexpansive under different...
Ausführliche Beschreibung
Autor*in: |
Rahul Shukla [verfasserIn] Rajendra Pant [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Advances in the Theory of Nonlinear Analysis and its Applications - ATNAA, 2018, 5(2021), 4, Seite 559-567 |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2021 ; number:4 ; pages:559-567 |
Links: |
---|
DOI / URN: |
10.31197/atnaa.954446 |
---|
Katalog-ID: |
DOAJ00968736X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ00968736X | ||
003 | DE-627 | ||
005 | 20230310181824.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.31197/atnaa.954446 |2 doi | |
035 | |a (DE-627)DOAJ00968736X | ||
035 | |a (DE-599)DOAJ509dfe129496464c994b86f37f15ebf8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Rahul Shukla |e verfasserin |4 aut | |
245 | 1 | 0 | |a Some new fixed point results for monotone enriched nonexpansive mappings in ordered Banach spaces |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We study monotone enriched nonexpansive mappings and present some new existence and convergence theorems for these mappings in the setting of ordered Banach spaces. More precisely, we employ the Krasnosel'ski iterative method to approximate fixed points of enriched nonexpansive under different conditions. This way a number of results from the literature have been extended, generalized and complemented. | ||
650 | 4 | |a nonexpansive mapping | |
650 | 4 | |a enriched nonexpansive mapping | |
650 | 4 | |a banach space | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Rajendra Pant |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Advances in the Theory of Nonlinear Analysis and its Applications |d ATNAA, 2018 |g 5(2021), 4, Seite 559-567 |w (DE-627)1031025480 |x 25872648 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2021 |g number:4 |g pages:559-567 |
856 | 4 | 0 | |u https://doi.org/10.31197/atnaa.954446 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/509dfe129496464c994b86f37f15ebf8 |z kostenfrei |
856 | 4 | 0 | |u https://dergipark.org.tr/tr/download/article-file/1831917 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2587-2648 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 2021 |e 4 |h 559-567 |
author_variant |
r s rs r p rp |
---|---|
matchkey_str |
article:25872648:2021----::oeefxdonrslsomntnercennxasvmpig |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QA |
publishDate |
2021 |
allfields |
10.31197/atnaa.954446 doi (DE-627)DOAJ00968736X (DE-599)DOAJ509dfe129496464c994b86f37f15ebf8 DE-627 ger DE-627 rakwb eng QA1-939 Rahul Shukla verfasserin aut Some new fixed point results for monotone enriched nonexpansive mappings in ordered Banach spaces 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We study monotone enriched nonexpansive mappings and present some new existence and convergence theorems for these mappings in the setting of ordered Banach spaces. More precisely, we employ the Krasnosel'ski iterative method to approximate fixed points of enriched nonexpansive under different conditions. This way a number of results from the literature have been extended, generalized and complemented. nonexpansive mapping enriched nonexpansive mapping banach space Mathematics Rajendra Pant verfasserin aut In Advances in the Theory of Nonlinear Analysis and its Applications ATNAA, 2018 5(2021), 4, Seite 559-567 (DE-627)1031025480 25872648 nnns volume:5 year:2021 number:4 pages:559-567 https://doi.org/10.31197/atnaa.954446 kostenfrei https://doaj.org/article/509dfe129496464c994b86f37f15ebf8 kostenfrei https://dergipark.org.tr/tr/download/article-file/1831917 kostenfrei https://doaj.org/toc/2587-2648 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2021 4 559-567 |
spelling |
10.31197/atnaa.954446 doi (DE-627)DOAJ00968736X (DE-599)DOAJ509dfe129496464c994b86f37f15ebf8 DE-627 ger DE-627 rakwb eng QA1-939 Rahul Shukla verfasserin aut Some new fixed point results for monotone enriched nonexpansive mappings in ordered Banach spaces 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We study monotone enriched nonexpansive mappings and present some new existence and convergence theorems for these mappings in the setting of ordered Banach spaces. More precisely, we employ the Krasnosel'ski iterative method to approximate fixed points of enriched nonexpansive under different conditions. This way a number of results from the literature have been extended, generalized and complemented. nonexpansive mapping enriched nonexpansive mapping banach space Mathematics Rajendra Pant verfasserin aut In Advances in the Theory of Nonlinear Analysis and its Applications ATNAA, 2018 5(2021), 4, Seite 559-567 (DE-627)1031025480 25872648 nnns volume:5 year:2021 number:4 pages:559-567 https://doi.org/10.31197/atnaa.954446 kostenfrei https://doaj.org/article/509dfe129496464c994b86f37f15ebf8 kostenfrei https://dergipark.org.tr/tr/download/article-file/1831917 kostenfrei https://doaj.org/toc/2587-2648 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2021 4 559-567 |
allfields_unstemmed |
10.31197/atnaa.954446 doi (DE-627)DOAJ00968736X (DE-599)DOAJ509dfe129496464c994b86f37f15ebf8 DE-627 ger DE-627 rakwb eng QA1-939 Rahul Shukla verfasserin aut Some new fixed point results for monotone enriched nonexpansive mappings in ordered Banach spaces 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We study monotone enriched nonexpansive mappings and present some new existence and convergence theorems for these mappings in the setting of ordered Banach spaces. More precisely, we employ the Krasnosel'ski iterative method to approximate fixed points of enriched nonexpansive under different conditions. This way a number of results from the literature have been extended, generalized and complemented. nonexpansive mapping enriched nonexpansive mapping banach space Mathematics Rajendra Pant verfasserin aut In Advances in the Theory of Nonlinear Analysis and its Applications ATNAA, 2018 5(2021), 4, Seite 559-567 (DE-627)1031025480 25872648 nnns volume:5 year:2021 number:4 pages:559-567 https://doi.org/10.31197/atnaa.954446 kostenfrei https://doaj.org/article/509dfe129496464c994b86f37f15ebf8 kostenfrei https://dergipark.org.tr/tr/download/article-file/1831917 kostenfrei https://doaj.org/toc/2587-2648 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2021 4 559-567 |
allfieldsGer |
10.31197/atnaa.954446 doi (DE-627)DOAJ00968736X (DE-599)DOAJ509dfe129496464c994b86f37f15ebf8 DE-627 ger DE-627 rakwb eng QA1-939 Rahul Shukla verfasserin aut Some new fixed point results for monotone enriched nonexpansive mappings in ordered Banach spaces 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We study monotone enriched nonexpansive mappings and present some new existence and convergence theorems for these mappings in the setting of ordered Banach spaces. More precisely, we employ the Krasnosel'ski iterative method to approximate fixed points of enriched nonexpansive under different conditions. This way a number of results from the literature have been extended, generalized and complemented. nonexpansive mapping enriched nonexpansive mapping banach space Mathematics Rajendra Pant verfasserin aut In Advances in the Theory of Nonlinear Analysis and its Applications ATNAA, 2018 5(2021), 4, Seite 559-567 (DE-627)1031025480 25872648 nnns volume:5 year:2021 number:4 pages:559-567 https://doi.org/10.31197/atnaa.954446 kostenfrei https://doaj.org/article/509dfe129496464c994b86f37f15ebf8 kostenfrei https://dergipark.org.tr/tr/download/article-file/1831917 kostenfrei https://doaj.org/toc/2587-2648 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2021 4 559-567 |
allfieldsSound |
10.31197/atnaa.954446 doi (DE-627)DOAJ00968736X (DE-599)DOAJ509dfe129496464c994b86f37f15ebf8 DE-627 ger DE-627 rakwb eng QA1-939 Rahul Shukla verfasserin aut Some new fixed point results for monotone enriched nonexpansive mappings in ordered Banach spaces 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We study monotone enriched nonexpansive mappings and present some new existence and convergence theorems for these mappings in the setting of ordered Banach spaces. More precisely, we employ the Krasnosel'ski iterative method to approximate fixed points of enriched nonexpansive under different conditions. This way a number of results from the literature have been extended, generalized and complemented. nonexpansive mapping enriched nonexpansive mapping banach space Mathematics Rajendra Pant verfasserin aut In Advances in the Theory of Nonlinear Analysis and its Applications ATNAA, 2018 5(2021), 4, Seite 559-567 (DE-627)1031025480 25872648 nnns volume:5 year:2021 number:4 pages:559-567 https://doi.org/10.31197/atnaa.954446 kostenfrei https://doaj.org/article/509dfe129496464c994b86f37f15ebf8 kostenfrei https://dergipark.org.tr/tr/download/article-file/1831917 kostenfrei https://doaj.org/toc/2587-2648 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2021 4 559-567 |
language |
English |
source |
In Advances in the Theory of Nonlinear Analysis and its Applications 5(2021), 4, Seite 559-567 volume:5 year:2021 number:4 pages:559-567 |
sourceStr |
In Advances in the Theory of Nonlinear Analysis and its Applications 5(2021), 4, Seite 559-567 volume:5 year:2021 number:4 pages:559-567 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
nonexpansive mapping enriched nonexpansive mapping banach space Mathematics |
isfreeaccess_bool |
true |
container_title |
Advances in the Theory of Nonlinear Analysis and its Applications |
authorswithroles_txt_mv |
Rahul Shukla @@aut@@ Rajendra Pant @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
1031025480 |
id |
DOAJ00968736X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ00968736X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310181824.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.31197/atnaa.954446</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ00968736X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ509dfe129496464c994b86f37f15ebf8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Rahul Shukla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Some new fixed point results for monotone enriched nonexpansive mappings in ordered Banach spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We study monotone enriched nonexpansive mappings and present some new existence and convergence theorems for these mappings in the setting of ordered Banach spaces. More precisely, we employ the Krasnosel'ski iterative method to approximate fixed points of enriched nonexpansive under different conditions. This way a number of results from the literature have been extended, generalized and complemented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonexpansive mapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">enriched nonexpansive mapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">banach space</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rajendra Pant</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Advances in the Theory of Nonlinear Analysis and its Applications</subfield><subfield code="d">ATNAA, 2018</subfield><subfield code="g">5(2021), 4, Seite 559-567</subfield><subfield code="w">(DE-627)1031025480</subfield><subfield code="x">25872648</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:559-567</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.31197/atnaa.954446</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/509dfe129496464c994b86f37f15ebf8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dergipark.org.tr/tr/download/article-file/1831917</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2587-2648</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="h">559-567</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Rahul Shukla |
spellingShingle |
Rahul Shukla misc QA1-939 misc nonexpansive mapping misc enriched nonexpansive mapping misc banach space misc Mathematics Some new fixed point results for monotone enriched nonexpansive mappings in ordered Banach spaces |
authorStr |
Rahul Shukla |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1031025480 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
25872648 |
topic_title |
QA1-939 Some new fixed point results for monotone enriched nonexpansive mappings in ordered Banach spaces nonexpansive mapping enriched nonexpansive mapping banach space |
topic |
misc QA1-939 misc nonexpansive mapping misc enriched nonexpansive mapping misc banach space misc Mathematics |
topic_unstemmed |
misc QA1-939 misc nonexpansive mapping misc enriched nonexpansive mapping misc banach space misc Mathematics |
topic_browse |
misc QA1-939 misc nonexpansive mapping misc enriched nonexpansive mapping misc banach space misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Advances in the Theory of Nonlinear Analysis and its Applications |
hierarchy_parent_id |
1031025480 |
hierarchy_top_title |
Advances in the Theory of Nonlinear Analysis and its Applications |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1031025480 |
title |
Some new fixed point results for monotone enriched nonexpansive mappings in ordered Banach spaces |
ctrlnum |
(DE-627)DOAJ00968736X (DE-599)DOAJ509dfe129496464c994b86f37f15ebf8 |
title_full |
Some new fixed point results for monotone enriched nonexpansive mappings in ordered Banach spaces |
author_sort |
Rahul Shukla |
journal |
Advances in the Theory of Nonlinear Analysis and its Applications |
journalStr |
Advances in the Theory of Nonlinear Analysis and its Applications |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
559 |
author_browse |
Rahul Shukla Rajendra Pant |
container_volume |
5 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Rahul Shukla |
doi_str_mv |
10.31197/atnaa.954446 |
author2-role |
verfasserin |
title_sort |
some new fixed point results for monotone enriched nonexpansive mappings in ordered banach spaces |
callnumber |
QA1-939 |
title_auth |
Some new fixed point results for monotone enriched nonexpansive mappings in ordered Banach spaces |
abstract |
We study monotone enriched nonexpansive mappings and present some new existence and convergence theorems for these mappings in the setting of ordered Banach spaces. More precisely, we employ the Krasnosel'ski iterative method to approximate fixed points of enriched nonexpansive under different conditions. This way a number of results from the literature have been extended, generalized and complemented. |
abstractGer |
We study monotone enriched nonexpansive mappings and present some new existence and convergence theorems for these mappings in the setting of ordered Banach spaces. More precisely, we employ the Krasnosel'ski iterative method to approximate fixed points of enriched nonexpansive under different conditions. This way a number of results from the literature have been extended, generalized and complemented. |
abstract_unstemmed |
We study monotone enriched nonexpansive mappings and present some new existence and convergence theorems for these mappings in the setting of ordered Banach spaces. More precisely, we employ the Krasnosel'ski iterative method to approximate fixed points of enriched nonexpansive under different conditions. This way a number of results from the literature have been extended, generalized and complemented. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Some new fixed point results for monotone enriched nonexpansive mappings in ordered Banach spaces |
url |
https://doi.org/10.31197/atnaa.954446 https://doaj.org/article/509dfe129496464c994b86f37f15ebf8 https://dergipark.org.tr/tr/download/article-file/1831917 https://doaj.org/toc/2587-2648 |
remote_bool |
true |
author2 |
Rajendra Pant |
author2Str |
Rajendra Pant |
ppnlink |
1031025480 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.31197/atnaa.954446 |
callnumber-a |
QA1-939 |
up_date |
2024-07-04T00:38:58.791Z |
_version_ |
1803606859494457344 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ00968736X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310181824.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.31197/atnaa.954446</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ00968736X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ509dfe129496464c994b86f37f15ebf8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Rahul Shukla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Some new fixed point results for monotone enriched nonexpansive mappings in ordered Banach spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We study monotone enriched nonexpansive mappings and present some new existence and convergence theorems for these mappings in the setting of ordered Banach spaces. More precisely, we employ the Krasnosel'ski iterative method to approximate fixed points of enriched nonexpansive under different conditions. This way a number of results from the literature have been extended, generalized and complemented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonexpansive mapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">enriched nonexpansive mapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">banach space</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rajendra Pant</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Advances in the Theory of Nonlinear Analysis and its Applications</subfield><subfield code="d">ATNAA, 2018</subfield><subfield code="g">5(2021), 4, Seite 559-567</subfield><subfield code="w">(DE-627)1031025480</subfield><subfield code="x">25872648</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:559-567</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.31197/atnaa.954446</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/509dfe129496464c994b86f37f15ebf8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dergipark.org.tr/tr/download/article-file/1831917</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2587-2648</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="h">559-567</subfield></datafield></record></collection>
|
score |
7.4017544 |