Quantization of a self-dual conformal theory in (2 + 1) dimensions
Abstract Compact nonlocal Abelian gauge theory in (2 + 1) dimensions, also known as loop model, is a massless theory with a critical line that is explicitly covariant under duality transformations. It corresponds to the large N F limit of self-dual electrodynamics in mixed three-four dimensions. It...
Ausführliche Beschreibung
Autor*in: |
Francesco Andreucci [verfasserIn] Andrea Cappelli [verfasserIn] Lorenzo Maffi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of High Energy Physics - SpringerOpen, 2016, (2020), 2, Seite 35 |
---|---|
Übergeordnetes Werk: |
year:2020 ; number:2 ; pages:35 |
Links: |
---|
DOI / URN: |
10.1007/JHEP02(2020)116 |
---|
Katalog-ID: |
DOAJ009736077 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ009736077 | ||
003 | DE-627 | ||
005 | 20230310022139.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/JHEP02(2020)116 |2 doi | |
035 | |a (DE-627)DOAJ009736077 | ||
035 | |a (DE-599)DOAJ8a546ca66a1248d58400d6abe37812ae | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC770-798 | |
100 | 0 | |a Francesco Andreucci |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quantization of a self-dual conformal theory in (2 + 1) dimensions |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Compact nonlocal Abelian gauge theory in (2 + 1) dimensions, also known as loop model, is a massless theory with a critical line that is explicitly covariant under duality transformations. It corresponds to the large N F limit of self-dual electrodynamics in mixed three-four dimensions. It also provides a bosonic description for surface excitations of three-dimensional topological insulators. Upon mapping the model to a local gauge theory in (3 + 1) dimensions, we compute the spectrum of electric and magnetic solitonic excitations and the partition function on the three torus T 3 $$ {\mathbbm{T}}_3 $$ . Analogous results for the S 2 × S 1 geometry show that the theory is conformal invariant and determine the manifestly self-dual spectrum of conformal fields, corresponding to order-disorder excitations with fractional statistics. | ||
650 | 4 | |a Topological States of Matter | |
650 | 4 | |a Conformal Field Theory | |
650 | 4 | |a Duality in Gauge Field Theories | |
650 | 4 | |a Field Theories in Lower Dimensions | |
653 | 0 | |a Nuclear and particle physics. Atomic energy. Radioactivity | |
700 | 0 | |a Andrea Cappelli |e verfasserin |4 aut | |
700 | 0 | |a Lorenzo Maffi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of High Energy Physics |d SpringerOpen, 2016 |g (2020), 2, Seite 35 |w (DE-627)320910571 |w (DE-600)2027350-2 |x 10298479 |7 nnns |
773 | 1 | 8 | |g year:2020 |g number:2 |g pages:35 |
856 | 4 | 0 | |u https://doi.org/10.1007/JHEP02(2020)116 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8a546ca66a1248d58400d6abe37812ae |z kostenfrei |
856 | 4 | 0 | |u http://link.springer.com/article/10.1007/JHEP02(2020)116 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1029-8479 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2020 |e 2 |h 35 |
author_variant |
f a fa a c ac l m lm |
---|---|
matchkey_str |
article:10298479:2020----::uniainfsldacnomlhoy |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QC |
publishDate |
2020 |
allfields |
10.1007/JHEP02(2020)116 doi (DE-627)DOAJ009736077 (DE-599)DOAJ8a546ca66a1248d58400d6abe37812ae DE-627 ger DE-627 rakwb eng QC770-798 Francesco Andreucci verfasserin aut Quantization of a self-dual conformal theory in (2 + 1) dimensions 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Compact nonlocal Abelian gauge theory in (2 + 1) dimensions, also known as loop model, is a massless theory with a critical line that is explicitly covariant under duality transformations. It corresponds to the large N F limit of self-dual electrodynamics in mixed three-four dimensions. It also provides a bosonic description for surface excitations of three-dimensional topological insulators. Upon mapping the model to a local gauge theory in (3 + 1) dimensions, we compute the spectrum of electric and magnetic solitonic excitations and the partition function on the three torus T 3 $$ {\mathbbm{T}}_3 $$ . Analogous results for the S 2 × S 1 geometry show that the theory is conformal invariant and determine the manifestly self-dual spectrum of conformal fields, corresponding to order-disorder excitations with fractional statistics. Topological States of Matter Conformal Field Theory Duality in Gauge Field Theories Field Theories in Lower Dimensions Nuclear and particle physics. Atomic energy. Radioactivity Andrea Cappelli verfasserin aut Lorenzo Maffi verfasserin aut In Journal of High Energy Physics SpringerOpen, 2016 (2020), 2, Seite 35 (DE-627)320910571 (DE-600)2027350-2 10298479 nnns year:2020 number:2 pages:35 https://doi.org/10.1007/JHEP02(2020)116 kostenfrei https://doaj.org/article/8a546ca66a1248d58400d6abe37812ae kostenfrei http://link.springer.com/article/10.1007/JHEP02(2020)116 kostenfrei https://doaj.org/toc/1029-8479 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2020 2 35 |
spelling |
10.1007/JHEP02(2020)116 doi (DE-627)DOAJ009736077 (DE-599)DOAJ8a546ca66a1248d58400d6abe37812ae DE-627 ger DE-627 rakwb eng QC770-798 Francesco Andreucci verfasserin aut Quantization of a self-dual conformal theory in (2 + 1) dimensions 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Compact nonlocal Abelian gauge theory in (2 + 1) dimensions, also known as loop model, is a massless theory with a critical line that is explicitly covariant under duality transformations. It corresponds to the large N F limit of self-dual electrodynamics in mixed three-four dimensions. It also provides a bosonic description for surface excitations of three-dimensional topological insulators. Upon mapping the model to a local gauge theory in (3 + 1) dimensions, we compute the spectrum of electric and magnetic solitonic excitations and the partition function on the three torus T 3 $$ {\mathbbm{T}}_3 $$ . Analogous results for the S 2 × S 1 geometry show that the theory is conformal invariant and determine the manifestly self-dual spectrum of conformal fields, corresponding to order-disorder excitations with fractional statistics. Topological States of Matter Conformal Field Theory Duality in Gauge Field Theories Field Theories in Lower Dimensions Nuclear and particle physics. Atomic energy. Radioactivity Andrea Cappelli verfasserin aut Lorenzo Maffi verfasserin aut In Journal of High Energy Physics SpringerOpen, 2016 (2020), 2, Seite 35 (DE-627)320910571 (DE-600)2027350-2 10298479 nnns year:2020 number:2 pages:35 https://doi.org/10.1007/JHEP02(2020)116 kostenfrei https://doaj.org/article/8a546ca66a1248d58400d6abe37812ae kostenfrei http://link.springer.com/article/10.1007/JHEP02(2020)116 kostenfrei https://doaj.org/toc/1029-8479 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2020 2 35 |
allfields_unstemmed |
10.1007/JHEP02(2020)116 doi (DE-627)DOAJ009736077 (DE-599)DOAJ8a546ca66a1248d58400d6abe37812ae DE-627 ger DE-627 rakwb eng QC770-798 Francesco Andreucci verfasserin aut Quantization of a self-dual conformal theory in (2 + 1) dimensions 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Compact nonlocal Abelian gauge theory in (2 + 1) dimensions, also known as loop model, is a massless theory with a critical line that is explicitly covariant under duality transformations. It corresponds to the large N F limit of self-dual electrodynamics in mixed three-four dimensions. It also provides a bosonic description for surface excitations of three-dimensional topological insulators. Upon mapping the model to a local gauge theory in (3 + 1) dimensions, we compute the spectrum of electric and magnetic solitonic excitations and the partition function on the three torus T 3 $$ {\mathbbm{T}}_3 $$ . Analogous results for the S 2 × S 1 geometry show that the theory is conformal invariant and determine the manifestly self-dual spectrum of conformal fields, corresponding to order-disorder excitations with fractional statistics. Topological States of Matter Conformal Field Theory Duality in Gauge Field Theories Field Theories in Lower Dimensions Nuclear and particle physics. Atomic energy. Radioactivity Andrea Cappelli verfasserin aut Lorenzo Maffi verfasserin aut In Journal of High Energy Physics SpringerOpen, 2016 (2020), 2, Seite 35 (DE-627)320910571 (DE-600)2027350-2 10298479 nnns year:2020 number:2 pages:35 https://doi.org/10.1007/JHEP02(2020)116 kostenfrei https://doaj.org/article/8a546ca66a1248d58400d6abe37812ae kostenfrei http://link.springer.com/article/10.1007/JHEP02(2020)116 kostenfrei https://doaj.org/toc/1029-8479 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2020 2 35 |
allfieldsGer |
10.1007/JHEP02(2020)116 doi (DE-627)DOAJ009736077 (DE-599)DOAJ8a546ca66a1248d58400d6abe37812ae DE-627 ger DE-627 rakwb eng QC770-798 Francesco Andreucci verfasserin aut Quantization of a self-dual conformal theory in (2 + 1) dimensions 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Compact nonlocal Abelian gauge theory in (2 + 1) dimensions, also known as loop model, is a massless theory with a critical line that is explicitly covariant under duality transformations. It corresponds to the large N F limit of self-dual electrodynamics in mixed three-four dimensions. It also provides a bosonic description for surface excitations of three-dimensional topological insulators. Upon mapping the model to a local gauge theory in (3 + 1) dimensions, we compute the spectrum of electric and magnetic solitonic excitations and the partition function on the three torus T 3 $$ {\mathbbm{T}}_3 $$ . Analogous results for the S 2 × S 1 geometry show that the theory is conformal invariant and determine the manifestly self-dual spectrum of conformal fields, corresponding to order-disorder excitations with fractional statistics. Topological States of Matter Conformal Field Theory Duality in Gauge Field Theories Field Theories in Lower Dimensions Nuclear and particle physics. Atomic energy. Radioactivity Andrea Cappelli verfasserin aut Lorenzo Maffi verfasserin aut In Journal of High Energy Physics SpringerOpen, 2016 (2020), 2, Seite 35 (DE-627)320910571 (DE-600)2027350-2 10298479 nnns year:2020 number:2 pages:35 https://doi.org/10.1007/JHEP02(2020)116 kostenfrei https://doaj.org/article/8a546ca66a1248d58400d6abe37812ae kostenfrei http://link.springer.com/article/10.1007/JHEP02(2020)116 kostenfrei https://doaj.org/toc/1029-8479 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2020 2 35 |
allfieldsSound |
10.1007/JHEP02(2020)116 doi (DE-627)DOAJ009736077 (DE-599)DOAJ8a546ca66a1248d58400d6abe37812ae DE-627 ger DE-627 rakwb eng QC770-798 Francesco Andreucci verfasserin aut Quantization of a self-dual conformal theory in (2 + 1) dimensions 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Compact nonlocal Abelian gauge theory in (2 + 1) dimensions, also known as loop model, is a massless theory with a critical line that is explicitly covariant under duality transformations. It corresponds to the large N F limit of self-dual electrodynamics in mixed three-four dimensions. It also provides a bosonic description for surface excitations of three-dimensional topological insulators. Upon mapping the model to a local gauge theory in (3 + 1) dimensions, we compute the spectrum of electric and magnetic solitonic excitations and the partition function on the three torus T 3 $$ {\mathbbm{T}}_3 $$ . Analogous results for the S 2 × S 1 geometry show that the theory is conformal invariant and determine the manifestly self-dual spectrum of conformal fields, corresponding to order-disorder excitations with fractional statistics. Topological States of Matter Conformal Field Theory Duality in Gauge Field Theories Field Theories in Lower Dimensions Nuclear and particle physics. Atomic energy. Radioactivity Andrea Cappelli verfasserin aut Lorenzo Maffi verfasserin aut In Journal of High Energy Physics SpringerOpen, 2016 (2020), 2, Seite 35 (DE-627)320910571 (DE-600)2027350-2 10298479 nnns year:2020 number:2 pages:35 https://doi.org/10.1007/JHEP02(2020)116 kostenfrei https://doaj.org/article/8a546ca66a1248d58400d6abe37812ae kostenfrei http://link.springer.com/article/10.1007/JHEP02(2020)116 kostenfrei https://doaj.org/toc/1029-8479 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2020 2 35 |
language |
English |
source |
In Journal of High Energy Physics (2020), 2, Seite 35 year:2020 number:2 pages:35 |
sourceStr |
In Journal of High Energy Physics (2020), 2, Seite 35 year:2020 number:2 pages:35 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Topological States of Matter Conformal Field Theory Duality in Gauge Field Theories Field Theories in Lower Dimensions Nuclear and particle physics. Atomic energy. Radioactivity |
isfreeaccess_bool |
true |
container_title |
Journal of High Energy Physics |
authorswithroles_txt_mv |
Francesco Andreucci @@aut@@ Andrea Cappelli @@aut@@ Lorenzo Maffi @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
320910571 |
id |
DOAJ009736077 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ009736077</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310022139.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/JHEP02(2020)116</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ009736077</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8a546ca66a1248d58400d6abe37812ae</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC770-798</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Francesco Andreucci</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantization of a self-dual conformal theory in (2 + 1) dimensions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Compact nonlocal Abelian gauge theory in (2 + 1) dimensions, also known as loop model, is a massless theory with a critical line that is explicitly covariant under duality transformations. It corresponds to the large N F limit of self-dual electrodynamics in mixed three-four dimensions. It also provides a bosonic description for surface excitations of three-dimensional topological insulators. Upon mapping the model to a local gauge theory in (3 + 1) dimensions, we compute the spectrum of electric and magnetic solitonic excitations and the partition function on the three torus T 3 $$ {\mathbbm{T}}_3 $$ . Analogous results for the S 2 × S 1 geometry show that the theory is conformal invariant and determine the manifestly self-dual spectrum of conformal fields, corresponding to order-disorder excitations with fractional statistics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological States of Matter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conformal Field Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Duality in Gauge Field Theories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field Theories in Lower Dimensions</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nuclear and particle physics. Atomic energy. Radioactivity</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea Cappelli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lorenzo Maffi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of High Energy Physics</subfield><subfield code="d">SpringerOpen, 2016</subfield><subfield code="g">(2020), 2, Seite 35</subfield><subfield code="w">(DE-627)320910571</subfield><subfield code="w">(DE-600)2027350-2</subfield><subfield code="x">10298479</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:35</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/JHEP02(2020)116</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8a546ca66a1248d58400d6abe37812ae</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1007/JHEP02(2020)116</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1029-8479</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="h">35</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Francesco Andreucci |
spellingShingle |
Francesco Andreucci misc QC770-798 misc Topological States of Matter misc Conformal Field Theory misc Duality in Gauge Field Theories misc Field Theories in Lower Dimensions misc Nuclear and particle physics. Atomic energy. Radioactivity Quantization of a self-dual conformal theory in (2 + 1) dimensions |
authorStr |
Francesco Andreucci |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320910571 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC770-798 |
illustrated |
Not Illustrated |
issn |
10298479 |
topic_title |
QC770-798 Quantization of a self-dual conformal theory in (2 + 1) dimensions Topological States of Matter Conformal Field Theory Duality in Gauge Field Theories Field Theories in Lower Dimensions |
topic |
misc QC770-798 misc Topological States of Matter misc Conformal Field Theory misc Duality in Gauge Field Theories misc Field Theories in Lower Dimensions misc Nuclear and particle physics. Atomic energy. Radioactivity |
topic_unstemmed |
misc QC770-798 misc Topological States of Matter misc Conformal Field Theory misc Duality in Gauge Field Theories misc Field Theories in Lower Dimensions misc Nuclear and particle physics. Atomic energy. Radioactivity |
topic_browse |
misc QC770-798 misc Topological States of Matter misc Conformal Field Theory misc Duality in Gauge Field Theories misc Field Theories in Lower Dimensions misc Nuclear and particle physics. Atomic energy. Radioactivity |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of High Energy Physics |
hierarchy_parent_id |
320910571 |
hierarchy_top_title |
Journal of High Energy Physics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320910571 (DE-600)2027350-2 |
title |
Quantization of a self-dual conformal theory in (2 + 1) dimensions |
ctrlnum |
(DE-627)DOAJ009736077 (DE-599)DOAJ8a546ca66a1248d58400d6abe37812ae |
title_full |
Quantization of a self-dual conformal theory in (2 + 1) dimensions |
author_sort |
Francesco Andreucci |
journal |
Journal of High Energy Physics |
journalStr |
Journal of High Energy Physics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
35 |
author_browse |
Francesco Andreucci Andrea Cappelli Lorenzo Maffi |
class |
QC770-798 |
format_se |
Elektronische Aufsätze |
author-letter |
Francesco Andreucci |
doi_str_mv |
10.1007/JHEP02(2020)116 |
author2-role |
verfasserin |
title_sort |
quantization of a self-dual conformal theory in (2 + 1) dimensions |
callnumber |
QC770-798 |
title_auth |
Quantization of a self-dual conformal theory in (2 + 1) dimensions |
abstract |
Abstract Compact nonlocal Abelian gauge theory in (2 + 1) dimensions, also known as loop model, is a massless theory with a critical line that is explicitly covariant under duality transformations. It corresponds to the large N F limit of self-dual electrodynamics in mixed three-four dimensions. It also provides a bosonic description for surface excitations of three-dimensional topological insulators. Upon mapping the model to a local gauge theory in (3 + 1) dimensions, we compute the spectrum of electric and magnetic solitonic excitations and the partition function on the three torus T 3 $$ {\mathbbm{T}}_3 $$ . Analogous results for the S 2 × S 1 geometry show that the theory is conformal invariant and determine the manifestly self-dual spectrum of conformal fields, corresponding to order-disorder excitations with fractional statistics. |
abstractGer |
Abstract Compact nonlocal Abelian gauge theory in (2 + 1) dimensions, also known as loop model, is a massless theory with a critical line that is explicitly covariant under duality transformations. It corresponds to the large N F limit of self-dual electrodynamics in mixed three-four dimensions. It also provides a bosonic description for surface excitations of three-dimensional topological insulators. Upon mapping the model to a local gauge theory in (3 + 1) dimensions, we compute the spectrum of electric and magnetic solitonic excitations and the partition function on the three torus T 3 $$ {\mathbbm{T}}_3 $$ . Analogous results for the S 2 × S 1 geometry show that the theory is conformal invariant and determine the manifestly self-dual spectrum of conformal fields, corresponding to order-disorder excitations with fractional statistics. |
abstract_unstemmed |
Abstract Compact nonlocal Abelian gauge theory in (2 + 1) dimensions, also known as loop model, is a massless theory with a critical line that is explicitly covariant under duality transformations. It corresponds to the large N F limit of self-dual electrodynamics in mixed three-four dimensions. It also provides a bosonic description for surface excitations of three-dimensional topological insulators. Upon mapping the model to a local gauge theory in (3 + 1) dimensions, we compute the spectrum of electric and magnetic solitonic excitations and the partition function on the three torus T 3 $$ {\mathbbm{T}}_3 $$ . Analogous results for the S 2 × S 1 geometry show that the theory is conformal invariant and determine the manifestly self-dual spectrum of conformal fields, corresponding to order-disorder excitations with fractional statistics. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Quantization of a self-dual conformal theory in (2 + 1) dimensions |
url |
https://doi.org/10.1007/JHEP02(2020)116 https://doaj.org/article/8a546ca66a1248d58400d6abe37812ae http://link.springer.com/article/10.1007/JHEP02(2020)116 https://doaj.org/toc/1029-8479 |
remote_bool |
true |
author2 |
Andrea Cappelli Lorenzo Maffi |
author2Str |
Andrea Cappelli Lorenzo Maffi |
ppnlink |
320910571 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/JHEP02(2020)116 |
callnumber-a |
QC770-798 |
up_date |
2024-07-04T00:50:26.553Z |
_version_ |
1803607580663087104 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ009736077</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310022139.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/JHEP02(2020)116</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ009736077</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8a546ca66a1248d58400d6abe37812ae</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC770-798</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Francesco Andreucci</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantization of a self-dual conformal theory in (2 + 1) dimensions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Compact nonlocal Abelian gauge theory in (2 + 1) dimensions, also known as loop model, is a massless theory with a critical line that is explicitly covariant under duality transformations. It corresponds to the large N F limit of self-dual electrodynamics in mixed three-four dimensions. It also provides a bosonic description for surface excitations of three-dimensional topological insulators. Upon mapping the model to a local gauge theory in (3 + 1) dimensions, we compute the spectrum of electric and magnetic solitonic excitations and the partition function on the three torus T 3 $$ {\mathbbm{T}}_3 $$ . Analogous results for the S 2 × S 1 geometry show that the theory is conformal invariant and determine the manifestly self-dual spectrum of conformal fields, corresponding to order-disorder excitations with fractional statistics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological States of Matter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conformal Field Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Duality in Gauge Field Theories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field Theories in Lower Dimensions</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nuclear and particle physics. Atomic energy. Radioactivity</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea Cappelli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lorenzo Maffi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of High Energy Physics</subfield><subfield code="d">SpringerOpen, 2016</subfield><subfield code="g">(2020), 2, Seite 35</subfield><subfield code="w">(DE-627)320910571</subfield><subfield code="w">(DE-600)2027350-2</subfield><subfield code="x">10298479</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:35</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/JHEP02(2020)116</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8a546ca66a1248d58400d6abe37812ae</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1007/JHEP02(2020)116</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1029-8479</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="h">35</subfield></datafield></record></collection>
|
score |
7.402276 |