Refractive index of [100] lithium fluoride under shock pressures up to 151 GPa
Single-crystal lithium fluoride(LiF) is a widely used window material in shock wave experiments to maintain the shock stress on the sample surface. It is transparent under shock compression up to ∼200 GPa, allowing the interferometer to record the movement of the monitored surface. However, the inte...
Ausführliche Beschreibung
Autor*in: |
G. Young [verfasserIn] Xun Liu [verfasserIn] Chunwei Leng [verfasserIn] Jun Yang [verfasserIn] Haijun Huang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Übergeordnetes Werk: |
In: AIP Advances - AIP Publishing LLC, 2011, 8(2018), 12, Seite 125310-125310-5 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2018 ; number:12 ; pages:125310-125310-5 |
Links: |
---|
DOI / URN: |
10.1063/1.5065543 |
---|
Katalog-ID: |
DOAJ010232036 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ010232036 | ||
003 | DE-627 | ||
005 | 20230310024241.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1063/1.5065543 |2 doi | |
035 | |a (DE-627)DOAJ010232036 | ||
035 | |a (DE-599)DOAJe5f172c4d65e46d987412942a11c70ab | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC1-999 | |
100 | 0 | |a G. Young |e verfasserin |4 aut | |
245 | 1 | 0 | |a Refractive index of [100] lithium fluoride under shock pressures up to 151 GPa |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Single-crystal lithium fluoride(LiF) is a widely used window material in shock wave experiments to maintain the shock stress on the sample surface. It is transparent under shock compression up to ∼200 GPa, allowing the interferometer to record the movement of the monitored surface. However, the interferometer techniques require knowing the accurate refractive index of LiF under shock compression to deduce the true particle velocity. Although the refractive index of LiF under shock compression has long been studied, different experimental results diverge, especially in the high pressure region. Here, we used iron as the standard material to measure the refractive index of [100] LiF up to 151 GPa using two-stage light gas gun. Our results show that for the 1550 nm light, the true particle velocity (utrue) has a linear dependence on the apparent particle velocity (uapp), utrue = 12.26(2.07)m/s + 0.7759(0.0005)uapp, when the apparent particle velocity, uapp < 0.38 km/s. | ||
653 | 0 | |a Physics | |
700 | 0 | |a Xun Liu |e verfasserin |4 aut | |
700 | 0 | |a Chunwei Leng |e verfasserin |4 aut | |
700 | 0 | |a Jun Yang |e verfasserin |4 aut | |
700 | 0 | |a Haijun Huang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t AIP Advances |d AIP Publishing LLC, 2011 |g 8(2018), 12, Seite 125310-125310-5 |w (DE-627)641391706 |w (DE-600)2583909-3 |x 21583226 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2018 |g number:12 |g pages:125310-125310-5 |
856 | 4 | 0 | |u https://doi.org/10.1063/1.5065543 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e5f172c4d65e46d987412942a11c70ab |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1063/1.5065543 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2158-3226 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2018 |e 12 |h 125310-125310-5 |
author_variant |
g y gy x l xl c l cl j y jy h h hh |
---|---|
matchkey_str |
article:21583226:2018----::ercieneo10ihufurdudrhcpe |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
QC |
publishDate |
2018 |
allfields |
10.1063/1.5065543 doi (DE-627)DOAJ010232036 (DE-599)DOAJe5f172c4d65e46d987412942a11c70ab DE-627 ger DE-627 rakwb eng QC1-999 G. Young verfasserin aut Refractive index of [100] lithium fluoride under shock pressures up to 151 GPa 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Single-crystal lithium fluoride(LiF) is a widely used window material in shock wave experiments to maintain the shock stress on the sample surface. It is transparent under shock compression up to ∼200 GPa, allowing the interferometer to record the movement of the monitored surface. However, the interferometer techniques require knowing the accurate refractive index of LiF under shock compression to deduce the true particle velocity. Although the refractive index of LiF under shock compression has long been studied, different experimental results diverge, especially in the high pressure region. Here, we used iron as the standard material to measure the refractive index of [100] LiF up to 151 GPa using two-stage light gas gun. Our results show that for the 1550 nm light, the true particle velocity (utrue) has a linear dependence on the apparent particle velocity (uapp), utrue = 12.26(2.07)m/s + 0.7759(0.0005)uapp, when the apparent particle velocity, uapp < 0.38 km/s. Physics Xun Liu verfasserin aut Chunwei Leng verfasserin aut Jun Yang verfasserin aut Haijun Huang verfasserin aut In AIP Advances AIP Publishing LLC, 2011 8(2018), 12, Seite 125310-125310-5 (DE-627)641391706 (DE-600)2583909-3 21583226 nnns volume:8 year:2018 number:12 pages:125310-125310-5 https://doi.org/10.1063/1.5065543 kostenfrei https://doaj.org/article/e5f172c4d65e46d987412942a11c70ab kostenfrei http://dx.doi.org/10.1063/1.5065543 kostenfrei https://doaj.org/toc/2158-3226 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2018 12 125310-125310-5 |
spelling |
10.1063/1.5065543 doi (DE-627)DOAJ010232036 (DE-599)DOAJe5f172c4d65e46d987412942a11c70ab DE-627 ger DE-627 rakwb eng QC1-999 G. Young verfasserin aut Refractive index of [100] lithium fluoride under shock pressures up to 151 GPa 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Single-crystal lithium fluoride(LiF) is a widely used window material in shock wave experiments to maintain the shock stress on the sample surface. It is transparent under shock compression up to ∼200 GPa, allowing the interferometer to record the movement of the monitored surface. However, the interferometer techniques require knowing the accurate refractive index of LiF under shock compression to deduce the true particle velocity. Although the refractive index of LiF under shock compression has long been studied, different experimental results diverge, especially in the high pressure region. Here, we used iron as the standard material to measure the refractive index of [100] LiF up to 151 GPa using two-stage light gas gun. Our results show that for the 1550 nm light, the true particle velocity (utrue) has a linear dependence on the apparent particle velocity (uapp), utrue = 12.26(2.07)m/s + 0.7759(0.0005)uapp, when the apparent particle velocity, uapp < 0.38 km/s. Physics Xun Liu verfasserin aut Chunwei Leng verfasserin aut Jun Yang verfasserin aut Haijun Huang verfasserin aut In AIP Advances AIP Publishing LLC, 2011 8(2018), 12, Seite 125310-125310-5 (DE-627)641391706 (DE-600)2583909-3 21583226 nnns volume:8 year:2018 number:12 pages:125310-125310-5 https://doi.org/10.1063/1.5065543 kostenfrei https://doaj.org/article/e5f172c4d65e46d987412942a11c70ab kostenfrei http://dx.doi.org/10.1063/1.5065543 kostenfrei https://doaj.org/toc/2158-3226 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2018 12 125310-125310-5 |
allfields_unstemmed |
10.1063/1.5065543 doi (DE-627)DOAJ010232036 (DE-599)DOAJe5f172c4d65e46d987412942a11c70ab DE-627 ger DE-627 rakwb eng QC1-999 G. Young verfasserin aut Refractive index of [100] lithium fluoride under shock pressures up to 151 GPa 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Single-crystal lithium fluoride(LiF) is a widely used window material in shock wave experiments to maintain the shock stress on the sample surface. It is transparent under shock compression up to ∼200 GPa, allowing the interferometer to record the movement of the monitored surface. However, the interferometer techniques require knowing the accurate refractive index of LiF under shock compression to deduce the true particle velocity. Although the refractive index of LiF under shock compression has long been studied, different experimental results diverge, especially in the high pressure region. Here, we used iron as the standard material to measure the refractive index of [100] LiF up to 151 GPa using two-stage light gas gun. Our results show that for the 1550 nm light, the true particle velocity (utrue) has a linear dependence on the apparent particle velocity (uapp), utrue = 12.26(2.07)m/s + 0.7759(0.0005)uapp, when the apparent particle velocity, uapp < 0.38 km/s. Physics Xun Liu verfasserin aut Chunwei Leng verfasserin aut Jun Yang verfasserin aut Haijun Huang verfasserin aut In AIP Advances AIP Publishing LLC, 2011 8(2018), 12, Seite 125310-125310-5 (DE-627)641391706 (DE-600)2583909-3 21583226 nnns volume:8 year:2018 number:12 pages:125310-125310-5 https://doi.org/10.1063/1.5065543 kostenfrei https://doaj.org/article/e5f172c4d65e46d987412942a11c70ab kostenfrei http://dx.doi.org/10.1063/1.5065543 kostenfrei https://doaj.org/toc/2158-3226 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2018 12 125310-125310-5 |
allfieldsGer |
10.1063/1.5065543 doi (DE-627)DOAJ010232036 (DE-599)DOAJe5f172c4d65e46d987412942a11c70ab DE-627 ger DE-627 rakwb eng QC1-999 G. Young verfasserin aut Refractive index of [100] lithium fluoride under shock pressures up to 151 GPa 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Single-crystal lithium fluoride(LiF) is a widely used window material in shock wave experiments to maintain the shock stress on the sample surface. It is transparent under shock compression up to ∼200 GPa, allowing the interferometer to record the movement of the monitored surface. However, the interferometer techniques require knowing the accurate refractive index of LiF under shock compression to deduce the true particle velocity. Although the refractive index of LiF under shock compression has long been studied, different experimental results diverge, especially in the high pressure region. Here, we used iron as the standard material to measure the refractive index of [100] LiF up to 151 GPa using two-stage light gas gun. Our results show that for the 1550 nm light, the true particle velocity (utrue) has a linear dependence on the apparent particle velocity (uapp), utrue = 12.26(2.07)m/s + 0.7759(0.0005)uapp, when the apparent particle velocity, uapp < 0.38 km/s. Physics Xun Liu verfasserin aut Chunwei Leng verfasserin aut Jun Yang verfasserin aut Haijun Huang verfasserin aut In AIP Advances AIP Publishing LLC, 2011 8(2018), 12, Seite 125310-125310-5 (DE-627)641391706 (DE-600)2583909-3 21583226 nnns volume:8 year:2018 number:12 pages:125310-125310-5 https://doi.org/10.1063/1.5065543 kostenfrei https://doaj.org/article/e5f172c4d65e46d987412942a11c70ab kostenfrei http://dx.doi.org/10.1063/1.5065543 kostenfrei https://doaj.org/toc/2158-3226 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2018 12 125310-125310-5 |
allfieldsSound |
10.1063/1.5065543 doi (DE-627)DOAJ010232036 (DE-599)DOAJe5f172c4d65e46d987412942a11c70ab DE-627 ger DE-627 rakwb eng QC1-999 G. Young verfasserin aut Refractive index of [100] lithium fluoride under shock pressures up to 151 GPa 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Single-crystal lithium fluoride(LiF) is a widely used window material in shock wave experiments to maintain the shock stress on the sample surface. It is transparent under shock compression up to ∼200 GPa, allowing the interferometer to record the movement of the monitored surface. However, the interferometer techniques require knowing the accurate refractive index of LiF under shock compression to deduce the true particle velocity. Although the refractive index of LiF under shock compression has long been studied, different experimental results diverge, especially in the high pressure region. Here, we used iron as the standard material to measure the refractive index of [100] LiF up to 151 GPa using two-stage light gas gun. Our results show that for the 1550 nm light, the true particle velocity (utrue) has a linear dependence on the apparent particle velocity (uapp), utrue = 12.26(2.07)m/s + 0.7759(0.0005)uapp, when the apparent particle velocity, uapp < 0.38 km/s. Physics Xun Liu verfasserin aut Chunwei Leng verfasserin aut Jun Yang verfasserin aut Haijun Huang verfasserin aut In AIP Advances AIP Publishing LLC, 2011 8(2018), 12, Seite 125310-125310-5 (DE-627)641391706 (DE-600)2583909-3 21583226 nnns volume:8 year:2018 number:12 pages:125310-125310-5 https://doi.org/10.1063/1.5065543 kostenfrei https://doaj.org/article/e5f172c4d65e46d987412942a11c70ab kostenfrei http://dx.doi.org/10.1063/1.5065543 kostenfrei https://doaj.org/toc/2158-3226 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2018 12 125310-125310-5 |
language |
English |
source |
In AIP Advances 8(2018), 12, Seite 125310-125310-5 volume:8 year:2018 number:12 pages:125310-125310-5 |
sourceStr |
In AIP Advances 8(2018), 12, Seite 125310-125310-5 volume:8 year:2018 number:12 pages:125310-125310-5 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Physics |
isfreeaccess_bool |
true |
container_title |
AIP Advances |
authorswithroles_txt_mv |
G. Young @@aut@@ Xun Liu @@aut@@ Chunwei Leng @@aut@@ Jun Yang @@aut@@ Haijun Huang @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
641391706 |
id |
DOAJ010232036 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ010232036</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310024241.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1063/1.5065543</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ010232036</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe5f172c4d65e46d987412942a11c70ab</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">G. Young</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Refractive index of [100] lithium fluoride under shock pressures up to 151 GPa</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Single-crystal lithium fluoride(LiF) is a widely used window material in shock wave experiments to maintain the shock stress on the sample surface. It is transparent under shock compression up to ∼200 GPa, allowing the interferometer to record the movement of the monitored surface. However, the interferometer techniques require knowing the accurate refractive index of LiF under shock compression to deduce the true particle velocity. Although the refractive index of LiF under shock compression has long been studied, different experimental results diverge, especially in the high pressure region. Here, we used iron as the standard material to measure the refractive index of [100] LiF up to 151 GPa using two-stage light gas gun. Our results show that for the 1550 nm light, the true particle velocity (utrue) has a linear dependence on the apparent particle velocity (uapp), utrue = 12.26(2.07)m/s + 0.7759(0.0005)uapp, when the apparent particle velocity, uapp < 0.38 km/s.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xun Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chunwei Leng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haijun Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">AIP Advances</subfield><subfield code="d">AIP Publishing LLC, 2011</subfield><subfield code="g">8(2018), 12, Seite 125310-125310-5</subfield><subfield code="w">(DE-627)641391706</subfield><subfield code="w">(DE-600)2583909-3</subfield><subfield code="x">21583226</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:12</subfield><subfield code="g">pages:125310-125310-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1063/1.5065543</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e5f172c4d65e46d987412942a11c70ab</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1063/1.5065543</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2158-3226</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2018</subfield><subfield code="e">12</subfield><subfield code="h">125310-125310-5</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
G. Young |
spellingShingle |
G. Young misc QC1-999 misc Physics Refractive index of [100] lithium fluoride under shock pressures up to 151 GPa |
authorStr |
G. Young |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)641391706 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC1-999 |
illustrated |
Not Illustrated |
issn |
21583226 |
topic_title |
QC1-999 Refractive index of [100] lithium fluoride under shock pressures up to 151 GPa |
topic |
misc QC1-999 misc Physics |
topic_unstemmed |
misc QC1-999 misc Physics |
topic_browse |
misc QC1-999 misc Physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
AIP Advances |
hierarchy_parent_id |
641391706 |
hierarchy_top_title |
AIP Advances |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)641391706 (DE-600)2583909-3 |
title |
Refractive index of [100] lithium fluoride under shock pressures up to 151 GPa |
ctrlnum |
(DE-627)DOAJ010232036 (DE-599)DOAJe5f172c4d65e46d987412942a11c70ab |
title_full |
Refractive index of [100] lithium fluoride under shock pressures up to 151 GPa |
author_sort |
G. Young |
journal |
AIP Advances |
journalStr |
AIP Advances |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
125310 |
author_browse |
G. Young Xun Liu Chunwei Leng Jun Yang Haijun Huang |
container_volume |
8 |
class |
QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
G. Young |
doi_str_mv |
10.1063/1.5065543 |
author2-role |
verfasserin |
title_sort |
refractive index of [100] lithium fluoride under shock pressures up to 151 gpa |
callnumber |
QC1-999 |
title_auth |
Refractive index of [100] lithium fluoride under shock pressures up to 151 GPa |
abstract |
Single-crystal lithium fluoride(LiF) is a widely used window material in shock wave experiments to maintain the shock stress on the sample surface. It is transparent under shock compression up to ∼200 GPa, allowing the interferometer to record the movement of the monitored surface. However, the interferometer techniques require knowing the accurate refractive index of LiF under shock compression to deduce the true particle velocity. Although the refractive index of LiF under shock compression has long been studied, different experimental results diverge, especially in the high pressure region. Here, we used iron as the standard material to measure the refractive index of [100] LiF up to 151 GPa using two-stage light gas gun. Our results show that for the 1550 nm light, the true particle velocity (utrue) has a linear dependence on the apparent particle velocity (uapp), utrue = 12.26(2.07)m/s + 0.7759(0.0005)uapp, when the apparent particle velocity, uapp < 0.38 km/s. |
abstractGer |
Single-crystal lithium fluoride(LiF) is a widely used window material in shock wave experiments to maintain the shock stress on the sample surface. It is transparent under shock compression up to ∼200 GPa, allowing the interferometer to record the movement of the monitored surface. However, the interferometer techniques require knowing the accurate refractive index of LiF under shock compression to deduce the true particle velocity. Although the refractive index of LiF under shock compression has long been studied, different experimental results diverge, especially in the high pressure region. Here, we used iron as the standard material to measure the refractive index of [100] LiF up to 151 GPa using two-stage light gas gun. Our results show that for the 1550 nm light, the true particle velocity (utrue) has a linear dependence on the apparent particle velocity (uapp), utrue = 12.26(2.07)m/s + 0.7759(0.0005)uapp, when the apparent particle velocity, uapp < 0.38 km/s. |
abstract_unstemmed |
Single-crystal lithium fluoride(LiF) is a widely used window material in shock wave experiments to maintain the shock stress on the sample surface. It is transparent under shock compression up to ∼200 GPa, allowing the interferometer to record the movement of the monitored surface. However, the interferometer techniques require knowing the accurate refractive index of LiF under shock compression to deduce the true particle velocity. Although the refractive index of LiF under shock compression has long been studied, different experimental results diverge, especially in the high pressure region. Here, we used iron as the standard material to measure the refractive index of [100] LiF up to 151 GPa using two-stage light gas gun. Our results show that for the 1550 nm light, the true particle velocity (utrue) has a linear dependence on the apparent particle velocity (uapp), utrue = 12.26(2.07)m/s + 0.7759(0.0005)uapp, when the apparent particle velocity, uapp < 0.38 km/s. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
12 |
title_short |
Refractive index of [100] lithium fluoride under shock pressures up to 151 GPa |
url |
https://doi.org/10.1063/1.5065543 https://doaj.org/article/e5f172c4d65e46d987412942a11c70ab http://dx.doi.org/10.1063/1.5065543 https://doaj.org/toc/2158-3226 |
remote_bool |
true |
author2 |
Xun Liu Chunwei Leng Jun Yang Haijun Huang |
author2Str |
Xun Liu Chunwei Leng Jun Yang Haijun Huang |
ppnlink |
641391706 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1063/1.5065543 |
callnumber-a |
QC1-999 |
up_date |
2024-07-03T13:43:41.190Z |
_version_ |
1803565632003768320 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ010232036</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310024241.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1063/1.5065543</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ010232036</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe5f172c4d65e46d987412942a11c70ab</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">G. Young</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Refractive index of [100] lithium fluoride under shock pressures up to 151 GPa</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Single-crystal lithium fluoride(LiF) is a widely used window material in shock wave experiments to maintain the shock stress on the sample surface. It is transparent under shock compression up to ∼200 GPa, allowing the interferometer to record the movement of the monitored surface. However, the interferometer techniques require knowing the accurate refractive index of LiF under shock compression to deduce the true particle velocity. Although the refractive index of LiF under shock compression has long been studied, different experimental results diverge, especially in the high pressure region. Here, we used iron as the standard material to measure the refractive index of [100] LiF up to 151 GPa using two-stage light gas gun. Our results show that for the 1550 nm light, the true particle velocity (utrue) has a linear dependence on the apparent particle velocity (uapp), utrue = 12.26(2.07)m/s + 0.7759(0.0005)uapp, when the apparent particle velocity, uapp < 0.38 km/s.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xun Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chunwei Leng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haijun Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">AIP Advances</subfield><subfield code="d">AIP Publishing LLC, 2011</subfield><subfield code="g">8(2018), 12, Seite 125310-125310-5</subfield><subfield code="w">(DE-627)641391706</subfield><subfield code="w">(DE-600)2583909-3</subfield><subfield code="x">21583226</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:12</subfield><subfield code="g">pages:125310-125310-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1063/1.5065543</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e5f172c4d65e46d987412942a11c70ab</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1063/1.5065543</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2158-3226</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2018</subfield><subfield code="e">12</subfield><subfield code="h">125310-125310-5</subfield></datafield></record></collection>
|
score |
7.4002275 |