Comparative transcriptome analysis of mulberry reveals anthocyanin biosynthesis mechanisms in black (Morus atropurpurea Roxb.) and white (Morus alba L.) fruit genotypes
Abstract Background To gain a better understanding of anthocyanin biosynthesis in mulberry fruit, we analyzed the transcriptome of the mulberry varieties Da 10 (Morus atropurpurea Roxb., black fruit) and Baisang (Morus alba L., white fruit). Results We found that whereas Da 10 had high levels of cya...
Ausführliche Beschreibung
Autor*in: |
Gaiqun Huang [verfasserIn] Yichun Zeng [verfasserIn] Ling Wei [verfasserIn] Yongquan Yao [verfasserIn] Jie Dai [verfasserIn] Gang Liu [verfasserIn] Zhongzheng Gui [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: BMC Plant Biology - BMC, 2003, 20(2020), 1, Seite 12 |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2020 ; number:1 ; pages:12 |
Links: |
---|
DOI / URN: |
10.1186/s12870-020-02486-1 |
---|
Katalog-ID: |
DOAJ010493573 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ010493573 | ||
003 | DE-627 | ||
005 | 20230503142717.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12870-020-02486-1 |2 doi | |
035 | |a (DE-627)DOAJ010493573 | ||
035 | |a (DE-599)DOAJca920a5302084c1ba0186802203f5f6c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QK1-989 | |
100 | 0 | |a Gaiqun Huang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Comparative transcriptome analysis of mulberry reveals anthocyanin biosynthesis mechanisms in black (Morus atropurpurea Roxb.) and white (Morus alba L.) fruit genotypes |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Background To gain a better understanding of anthocyanin biosynthesis in mulberry fruit, we analyzed the transcriptome of the mulberry varieties Da 10 (Morus atropurpurea Roxb., black fruit) and Baisang (Morus alba L., white fruit). Results We found that whereas Da 10 had high levels of cyanidin 3-O-glucoside (Cy), and pelargonidin 3-O-glucoside (Pg), Baisang contained only Cy, at low levels. Based on a comparative transcriptome analysis, we annotated more than 27,085 genes (including 1735 new genes). Genes that were differentially expressed between Da 10 and Baisang were detected at three stages of fruit development: S1 [4256 genes, 10 days post-anthesis (DPA)], S2 (5612 genes, 19 DPA), and S3 (5226 genes, 28 DPA). Anthocyanin biosynthesis was found to be associated with the expression of 15 core genes and 5 transcription factors. Relative to Baisang, Da 10 showed a significant upregulation of genes involved in the early stages (production of the intermediate compounds chalcone and dihydroflavonol) and late stages (production of Cy and Pg) of anthocyanin biosynthesis. Baisang showed a significant downregulation of the genes involved in the early stages of anthocyanin biosynthesis and overexpression of flavanone 3-hydroxylase (FLS), resulting in the generation of quercetin and/or myricetin but not anthocyanins. Conclusions The biosynthesis of anthocyanin in mulberry fruit is initiated from the precursor, phenylalanine, and mediated by the upregulation of dihydroflavonol 4-reductase, anthocyanidin synthase, anthocyanidin 3-O-glucosyltransferase, and cyanidin-3-O-glucoside 2-O-glucuronosyltransferase, and downregulation of FLS to produce Cy and Pg. | ||
650 | 4 | |a Mulberry fruit | |
650 | 4 | |a Anthocyanin | |
650 | 4 | |a Biosynthesis | |
650 | 4 | |a Transcriptome | |
653 | 0 | |a Botany | |
700 | 0 | |a Yichun Zeng |e verfasserin |4 aut | |
700 | 0 | |a Ling Wei |e verfasserin |4 aut | |
700 | 0 | |a Yongquan Yao |e verfasserin |4 aut | |
700 | 0 | |a Jie Dai |e verfasserin |4 aut | |
700 | 0 | |a Gang Liu |e verfasserin |4 aut | |
700 | 0 | |a Zhongzheng Gui |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t BMC Plant Biology |d BMC, 2003 |g 20(2020), 1, Seite 12 |w (DE-627)335489060 |w (DE-600)2059868-3 |x 14712229 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2020 |g number:1 |g pages:12 |
856 | 4 | 0 | |u https://doi.org/10.1186/s12870-020-02486-1 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ca920a5302084c1ba0186802203f5f6c |z kostenfrei |
856 | 4 | 0 | |u http://link.springer.com/article/10.1186/s12870-020-02486-1 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1471-2229 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 20 |j 2020 |e 1 |h 12 |
author_variant |
g h gh y z yz l w lw y y yy j d jd g l gl z g zg |
---|---|
matchkey_str |
article:14712229:2020----::oprtvtasrpoenlssfubryeelatoynnisnhssehnssnlcmrstoupr |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QK |
publishDate |
2020 |
allfields |
10.1186/s12870-020-02486-1 doi (DE-627)DOAJ010493573 (DE-599)DOAJca920a5302084c1ba0186802203f5f6c DE-627 ger DE-627 rakwb eng QK1-989 Gaiqun Huang verfasserin aut Comparative transcriptome analysis of mulberry reveals anthocyanin biosynthesis mechanisms in black (Morus atropurpurea Roxb.) and white (Morus alba L.) fruit genotypes 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background To gain a better understanding of anthocyanin biosynthesis in mulberry fruit, we analyzed the transcriptome of the mulberry varieties Da 10 (Morus atropurpurea Roxb., black fruit) and Baisang (Morus alba L., white fruit). Results We found that whereas Da 10 had high levels of cyanidin 3-O-glucoside (Cy), and pelargonidin 3-O-glucoside (Pg), Baisang contained only Cy, at low levels. Based on a comparative transcriptome analysis, we annotated more than 27,085 genes (including 1735 new genes). Genes that were differentially expressed between Da 10 and Baisang were detected at three stages of fruit development: S1 [4256 genes, 10 days post-anthesis (DPA)], S2 (5612 genes, 19 DPA), and S3 (5226 genes, 28 DPA). Anthocyanin biosynthesis was found to be associated with the expression of 15 core genes and 5 transcription factors. Relative to Baisang, Da 10 showed a significant upregulation of genes involved in the early stages (production of the intermediate compounds chalcone and dihydroflavonol) and late stages (production of Cy and Pg) of anthocyanin biosynthesis. Baisang showed a significant downregulation of the genes involved in the early stages of anthocyanin biosynthesis and overexpression of flavanone 3-hydroxylase (FLS), resulting in the generation of quercetin and/or myricetin but not anthocyanins. Conclusions The biosynthesis of anthocyanin in mulberry fruit is initiated from the precursor, phenylalanine, and mediated by the upregulation of dihydroflavonol 4-reductase, anthocyanidin synthase, anthocyanidin 3-O-glucosyltransferase, and cyanidin-3-O-glucoside 2-O-glucuronosyltransferase, and downregulation of FLS to produce Cy and Pg. Mulberry fruit Anthocyanin Biosynthesis Transcriptome Botany Yichun Zeng verfasserin aut Ling Wei verfasserin aut Yongquan Yao verfasserin aut Jie Dai verfasserin aut Gang Liu verfasserin aut Zhongzheng Gui verfasserin aut In BMC Plant Biology BMC, 2003 20(2020), 1, Seite 12 (DE-627)335489060 (DE-600)2059868-3 14712229 nnns volume:20 year:2020 number:1 pages:12 https://doi.org/10.1186/s12870-020-02486-1 kostenfrei https://doaj.org/article/ca920a5302084c1ba0186802203f5f6c kostenfrei http://link.springer.com/article/10.1186/s12870-020-02486-1 kostenfrei https://doaj.org/toc/1471-2229 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 1 12 |
spelling |
10.1186/s12870-020-02486-1 doi (DE-627)DOAJ010493573 (DE-599)DOAJca920a5302084c1ba0186802203f5f6c DE-627 ger DE-627 rakwb eng QK1-989 Gaiqun Huang verfasserin aut Comparative transcriptome analysis of mulberry reveals anthocyanin biosynthesis mechanisms in black (Morus atropurpurea Roxb.) and white (Morus alba L.) fruit genotypes 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background To gain a better understanding of anthocyanin biosynthesis in mulberry fruit, we analyzed the transcriptome of the mulberry varieties Da 10 (Morus atropurpurea Roxb., black fruit) and Baisang (Morus alba L., white fruit). Results We found that whereas Da 10 had high levels of cyanidin 3-O-glucoside (Cy), and pelargonidin 3-O-glucoside (Pg), Baisang contained only Cy, at low levels. Based on a comparative transcriptome analysis, we annotated more than 27,085 genes (including 1735 new genes). Genes that were differentially expressed between Da 10 and Baisang were detected at three stages of fruit development: S1 [4256 genes, 10 days post-anthesis (DPA)], S2 (5612 genes, 19 DPA), and S3 (5226 genes, 28 DPA). Anthocyanin biosynthesis was found to be associated with the expression of 15 core genes and 5 transcription factors. Relative to Baisang, Da 10 showed a significant upregulation of genes involved in the early stages (production of the intermediate compounds chalcone and dihydroflavonol) and late stages (production of Cy and Pg) of anthocyanin biosynthesis. Baisang showed a significant downregulation of the genes involved in the early stages of anthocyanin biosynthesis and overexpression of flavanone 3-hydroxylase (FLS), resulting in the generation of quercetin and/or myricetin but not anthocyanins. Conclusions The biosynthesis of anthocyanin in mulberry fruit is initiated from the precursor, phenylalanine, and mediated by the upregulation of dihydroflavonol 4-reductase, anthocyanidin synthase, anthocyanidin 3-O-glucosyltransferase, and cyanidin-3-O-glucoside 2-O-glucuronosyltransferase, and downregulation of FLS to produce Cy and Pg. Mulberry fruit Anthocyanin Biosynthesis Transcriptome Botany Yichun Zeng verfasserin aut Ling Wei verfasserin aut Yongquan Yao verfasserin aut Jie Dai verfasserin aut Gang Liu verfasserin aut Zhongzheng Gui verfasserin aut In BMC Plant Biology BMC, 2003 20(2020), 1, Seite 12 (DE-627)335489060 (DE-600)2059868-3 14712229 nnns volume:20 year:2020 number:1 pages:12 https://doi.org/10.1186/s12870-020-02486-1 kostenfrei https://doaj.org/article/ca920a5302084c1ba0186802203f5f6c kostenfrei http://link.springer.com/article/10.1186/s12870-020-02486-1 kostenfrei https://doaj.org/toc/1471-2229 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 1 12 |
allfields_unstemmed |
10.1186/s12870-020-02486-1 doi (DE-627)DOAJ010493573 (DE-599)DOAJca920a5302084c1ba0186802203f5f6c DE-627 ger DE-627 rakwb eng QK1-989 Gaiqun Huang verfasserin aut Comparative transcriptome analysis of mulberry reveals anthocyanin biosynthesis mechanisms in black (Morus atropurpurea Roxb.) and white (Morus alba L.) fruit genotypes 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background To gain a better understanding of anthocyanin biosynthesis in mulberry fruit, we analyzed the transcriptome of the mulberry varieties Da 10 (Morus atropurpurea Roxb., black fruit) and Baisang (Morus alba L., white fruit). Results We found that whereas Da 10 had high levels of cyanidin 3-O-glucoside (Cy), and pelargonidin 3-O-glucoside (Pg), Baisang contained only Cy, at low levels. Based on a comparative transcriptome analysis, we annotated more than 27,085 genes (including 1735 new genes). Genes that were differentially expressed between Da 10 and Baisang were detected at three stages of fruit development: S1 [4256 genes, 10 days post-anthesis (DPA)], S2 (5612 genes, 19 DPA), and S3 (5226 genes, 28 DPA). Anthocyanin biosynthesis was found to be associated with the expression of 15 core genes and 5 transcription factors. Relative to Baisang, Da 10 showed a significant upregulation of genes involved in the early stages (production of the intermediate compounds chalcone and dihydroflavonol) and late stages (production of Cy and Pg) of anthocyanin biosynthesis. Baisang showed a significant downregulation of the genes involved in the early stages of anthocyanin biosynthesis and overexpression of flavanone 3-hydroxylase (FLS), resulting in the generation of quercetin and/or myricetin but not anthocyanins. Conclusions The biosynthesis of anthocyanin in mulberry fruit is initiated from the precursor, phenylalanine, and mediated by the upregulation of dihydroflavonol 4-reductase, anthocyanidin synthase, anthocyanidin 3-O-glucosyltransferase, and cyanidin-3-O-glucoside 2-O-glucuronosyltransferase, and downregulation of FLS to produce Cy and Pg. Mulberry fruit Anthocyanin Biosynthesis Transcriptome Botany Yichun Zeng verfasserin aut Ling Wei verfasserin aut Yongquan Yao verfasserin aut Jie Dai verfasserin aut Gang Liu verfasserin aut Zhongzheng Gui verfasserin aut In BMC Plant Biology BMC, 2003 20(2020), 1, Seite 12 (DE-627)335489060 (DE-600)2059868-3 14712229 nnns volume:20 year:2020 number:1 pages:12 https://doi.org/10.1186/s12870-020-02486-1 kostenfrei https://doaj.org/article/ca920a5302084c1ba0186802203f5f6c kostenfrei http://link.springer.com/article/10.1186/s12870-020-02486-1 kostenfrei https://doaj.org/toc/1471-2229 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 1 12 |
allfieldsGer |
10.1186/s12870-020-02486-1 doi (DE-627)DOAJ010493573 (DE-599)DOAJca920a5302084c1ba0186802203f5f6c DE-627 ger DE-627 rakwb eng QK1-989 Gaiqun Huang verfasserin aut Comparative transcriptome analysis of mulberry reveals anthocyanin biosynthesis mechanisms in black (Morus atropurpurea Roxb.) and white (Morus alba L.) fruit genotypes 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background To gain a better understanding of anthocyanin biosynthesis in mulberry fruit, we analyzed the transcriptome of the mulberry varieties Da 10 (Morus atropurpurea Roxb., black fruit) and Baisang (Morus alba L., white fruit). Results We found that whereas Da 10 had high levels of cyanidin 3-O-glucoside (Cy), and pelargonidin 3-O-glucoside (Pg), Baisang contained only Cy, at low levels. Based on a comparative transcriptome analysis, we annotated more than 27,085 genes (including 1735 new genes). Genes that were differentially expressed between Da 10 and Baisang were detected at three stages of fruit development: S1 [4256 genes, 10 days post-anthesis (DPA)], S2 (5612 genes, 19 DPA), and S3 (5226 genes, 28 DPA). Anthocyanin biosynthesis was found to be associated with the expression of 15 core genes and 5 transcription factors. Relative to Baisang, Da 10 showed a significant upregulation of genes involved in the early stages (production of the intermediate compounds chalcone and dihydroflavonol) and late stages (production of Cy and Pg) of anthocyanin biosynthesis. Baisang showed a significant downregulation of the genes involved in the early stages of anthocyanin biosynthesis and overexpression of flavanone 3-hydroxylase (FLS), resulting in the generation of quercetin and/or myricetin but not anthocyanins. Conclusions The biosynthesis of anthocyanin in mulberry fruit is initiated from the precursor, phenylalanine, and mediated by the upregulation of dihydroflavonol 4-reductase, anthocyanidin synthase, anthocyanidin 3-O-glucosyltransferase, and cyanidin-3-O-glucoside 2-O-glucuronosyltransferase, and downregulation of FLS to produce Cy and Pg. Mulberry fruit Anthocyanin Biosynthesis Transcriptome Botany Yichun Zeng verfasserin aut Ling Wei verfasserin aut Yongquan Yao verfasserin aut Jie Dai verfasserin aut Gang Liu verfasserin aut Zhongzheng Gui verfasserin aut In BMC Plant Biology BMC, 2003 20(2020), 1, Seite 12 (DE-627)335489060 (DE-600)2059868-3 14712229 nnns volume:20 year:2020 number:1 pages:12 https://doi.org/10.1186/s12870-020-02486-1 kostenfrei https://doaj.org/article/ca920a5302084c1ba0186802203f5f6c kostenfrei http://link.springer.com/article/10.1186/s12870-020-02486-1 kostenfrei https://doaj.org/toc/1471-2229 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 1 12 |
allfieldsSound |
10.1186/s12870-020-02486-1 doi (DE-627)DOAJ010493573 (DE-599)DOAJca920a5302084c1ba0186802203f5f6c DE-627 ger DE-627 rakwb eng QK1-989 Gaiqun Huang verfasserin aut Comparative transcriptome analysis of mulberry reveals anthocyanin biosynthesis mechanisms in black (Morus atropurpurea Roxb.) and white (Morus alba L.) fruit genotypes 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background To gain a better understanding of anthocyanin biosynthesis in mulberry fruit, we analyzed the transcriptome of the mulberry varieties Da 10 (Morus atropurpurea Roxb., black fruit) and Baisang (Morus alba L., white fruit). Results We found that whereas Da 10 had high levels of cyanidin 3-O-glucoside (Cy), and pelargonidin 3-O-glucoside (Pg), Baisang contained only Cy, at low levels. Based on a comparative transcriptome analysis, we annotated more than 27,085 genes (including 1735 new genes). Genes that were differentially expressed between Da 10 and Baisang were detected at three stages of fruit development: S1 [4256 genes, 10 days post-anthesis (DPA)], S2 (5612 genes, 19 DPA), and S3 (5226 genes, 28 DPA). Anthocyanin biosynthesis was found to be associated with the expression of 15 core genes and 5 transcription factors. Relative to Baisang, Da 10 showed a significant upregulation of genes involved in the early stages (production of the intermediate compounds chalcone and dihydroflavonol) and late stages (production of Cy and Pg) of anthocyanin biosynthesis. Baisang showed a significant downregulation of the genes involved in the early stages of anthocyanin biosynthesis and overexpression of flavanone 3-hydroxylase (FLS), resulting in the generation of quercetin and/or myricetin but not anthocyanins. Conclusions The biosynthesis of anthocyanin in mulberry fruit is initiated from the precursor, phenylalanine, and mediated by the upregulation of dihydroflavonol 4-reductase, anthocyanidin synthase, anthocyanidin 3-O-glucosyltransferase, and cyanidin-3-O-glucoside 2-O-glucuronosyltransferase, and downregulation of FLS to produce Cy and Pg. Mulberry fruit Anthocyanin Biosynthesis Transcriptome Botany Yichun Zeng verfasserin aut Ling Wei verfasserin aut Yongquan Yao verfasserin aut Jie Dai verfasserin aut Gang Liu verfasserin aut Zhongzheng Gui verfasserin aut In BMC Plant Biology BMC, 2003 20(2020), 1, Seite 12 (DE-627)335489060 (DE-600)2059868-3 14712229 nnns volume:20 year:2020 number:1 pages:12 https://doi.org/10.1186/s12870-020-02486-1 kostenfrei https://doaj.org/article/ca920a5302084c1ba0186802203f5f6c kostenfrei http://link.springer.com/article/10.1186/s12870-020-02486-1 kostenfrei https://doaj.org/toc/1471-2229 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 1 12 |
language |
English |
source |
In BMC Plant Biology 20(2020), 1, Seite 12 volume:20 year:2020 number:1 pages:12 |
sourceStr |
In BMC Plant Biology 20(2020), 1, Seite 12 volume:20 year:2020 number:1 pages:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Mulberry fruit Anthocyanin Biosynthesis Transcriptome Botany |
isfreeaccess_bool |
true |
container_title |
BMC Plant Biology |
authorswithroles_txt_mv |
Gaiqun Huang @@aut@@ Yichun Zeng @@aut@@ Ling Wei @@aut@@ Yongquan Yao @@aut@@ Jie Dai @@aut@@ Gang Liu @@aut@@ Zhongzheng Gui @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
335489060 |
id |
DOAJ010493573 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ010493573</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503142717.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12870-020-02486-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ010493573</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJca920a5302084c1ba0186802203f5f6c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gaiqun Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparative transcriptome analysis of mulberry reveals anthocyanin biosynthesis mechanisms in black (Morus atropurpurea Roxb.) and white (Morus alba L.) fruit genotypes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background To gain a better understanding of anthocyanin biosynthesis in mulberry fruit, we analyzed the transcriptome of the mulberry varieties Da 10 (Morus atropurpurea Roxb., black fruit) and Baisang (Morus alba L., white fruit). Results We found that whereas Da 10 had high levels of cyanidin 3-O-glucoside (Cy), and pelargonidin 3-O-glucoside (Pg), Baisang contained only Cy, at low levels. Based on a comparative transcriptome analysis, we annotated more than 27,085 genes (including 1735 new genes). Genes that were differentially expressed between Da 10 and Baisang were detected at three stages of fruit development: S1 [4256 genes, 10 days post-anthesis (DPA)], S2 (5612 genes, 19 DPA), and S3 (5226 genes, 28 DPA). Anthocyanin biosynthesis was found to be associated with the expression of 15 core genes and 5 transcription factors. Relative to Baisang, Da 10 showed a significant upregulation of genes involved in the early stages (production of the intermediate compounds chalcone and dihydroflavonol) and late stages (production of Cy and Pg) of anthocyanin biosynthesis. Baisang showed a significant downregulation of the genes involved in the early stages of anthocyanin biosynthesis and overexpression of flavanone 3-hydroxylase (FLS), resulting in the generation of quercetin and/or myricetin but not anthocyanins. Conclusions The biosynthesis of anthocyanin in mulberry fruit is initiated from the precursor, phenylalanine, and mediated by the upregulation of dihydroflavonol 4-reductase, anthocyanidin synthase, anthocyanidin 3-O-glucosyltransferase, and cyanidin-3-O-glucoside 2-O-glucuronosyltransferase, and downregulation of FLS to produce Cy and Pg.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mulberry fruit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anthocyanin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biosynthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transcriptome</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yichun Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ling Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongquan Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jie Dai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gang Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhongzheng Gui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Plant Biology</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">20(2020), 1, Seite 12</subfield><subfield code="w">(DE-627)335489060</subfield><subfield code="w">(DE-600)2059868-3</subfield><subfield code="x">14712229</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12870-020-02486-1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ca920a5302084c1ba0186802203f5f6c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s12870-020-02486-1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1471-2229</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="h">12</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Gaiqun Huang |
spellingShingle |
Gaiqun Huang misc QK1-989 misc Mulberry fruit misc Anthocyanin misc Biosynthesis misc Transcriptome misc Botany Comparative transcriptome analysis of mulberry reveals anthocyanin biosynthesis mechanisms in black (Morus atropurpurea Roxb.) and white (Morus alba L.) fruit genotypes |
authorStr |
Gaiqun Huang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)335489060 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QK1-989 |
illustrated |
Not Illustrated |
issn |
14712229 |
topic_title |
QK1-989 Comparative transcriptome analysis of mulberry reveals anthocyanin biosynthesis mechanisms in black (Morus atropurpurea Roxb.) and white (Morus alba L.) fruit genotypes Mulberry fruit Anthocyanin Biosynthesis Transcriptome |
topic |
misc QK1-989 misc Mulberry fruit misc Anthocyanin misc Biosynthesis misc Transcriptome misc Botany |
topic_unstemmed |
misc QK1-989 misc Mulberry fruit misc Anthocyanin misc Biosynthesis misc Transcriptome misc Botany |
topic_browse |
misc QK1-989 misc Mulberry fruit misc Anthocyanin misc Biosynthesis misc Transcriptome misc Botany |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC Plant Biology |
hierarchy_parent_id |
335489060 |
hierarchy_top_title |
BMC Plant Biology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)335489060 (DE-600)2059868-3 |
title |
Comparative transcriptome analysis of mulberry reveals anthocyanin biosynthesis mechanisms in black (Morus atropurpurea Roxb.) and white (Morus alba L.) fruit genotypes |
ctrlnum |
(DE-627)DOAJ010493573 (DE-599)DOAJca920a5302084c1ba0186802203f5f6c |
title_full |
Comparative transcriptome analysis of mulberry reveals anthocyanin biosynthesis mechanisms in black (Morus atropurpurea Roxb.) and white (Morus alba L.) fruit genotypes |
author_sort |
Gaiqun Huang |
journal |
BMC Plant Biology |
journalStr |
BMC Plant Biology |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
12 |
author_browse |
Gaiqun Huang Yichun Zeng Ling Wei Yongquan Yao Jie Dai Gang Liu Zhongzheng Gui |
container_volume |
20 |
class |
QK1-989 |
format_se |
Elektronische Aufsätze |
author-letter |
Gaiqun Huang |
doi_str_mv |
10.1186/s12870-020-02486-1 |
author2-role |
verfasserin |
title_sort |
comparative transcriptome analysis of mulberry reveals anthocyanin biosynthesis mechanisms in black (morus atropurpurea roxb.) and white (morus alba l.) fruit genotypes |
callnumber |
QK1-989 |
title_auth |
Comparative transcriptome analysis of mulberry reveals anthocyanin biosynthesis mechanisms in black (Morus atropurpurea Roxb.) and white (Morus alba L.) fruit genotypes |
abstract |
Abstract Background To gain a better understanding of anthocyanin biosynthesis in mulberry fruit, we analyzed the transcriptome of the mulberry varieties Da 10 (Morus atropurpurea Roxb., black fruit) and Baisang (Morus alba L., white fruit). Results We found that whereas Da 10 had high levels of cyanidin 3-O-glucoside (Cy), and pelargonidin 3-O-glucoside (Pg), Baisang contained only Cy, at low levels. Based on a comparative transcriptome analysis, we annotated more than 27,085 genes (including 1735 new genes). Genes that were differentially expressed between Da 10 and Baisang were detected at three stages of fruit development: S1 [4256 genes, 10 days post-anthesis (DPA)], S2 (5612 genes, 19 DPA), and S3 (5226 genes, 28 DPA). Anthocyanin biosynthesis was found to be associated with the expression of 15 core genes and 5 transcription factors. Relative to Baisang, Da 10 showed a significant upregulation of genes involved in the early stages (production of the intermediate compounds chalcone and dihydroflavonol) and late stages (production of Cy and Pg) of anthocyanin biosynthesis. Baisang showed a significant downregulation of the genes involved in the early stages of anthocyanin biosynthesis and overexpression of flavanone 3-hydroxylase (FLS), resulting in the generation of quercetin and/or myricetin but not anthocyanins. Conclusions The biosynthesis of anthocyanin in mulberry fruit is initiated from the precursor, phenylalanine, and mediated by the upregulation of dihydroflavonol 4-reductase, anthocyanidin synthase, anthocyanidin 3-O-glucosyltransferase, and cyanidin-3-O-glucoside 2-O-glucuronosyltransferase, and downregulation of FLS to produce Cy and Pg. |
abstractGer |
Abstract Background To gain a better understanding of anthocyanin biosynthesis in mulberry fruit, we analyzed the transcriptome of the mulberry varieties Da 10 (Morus atropurpurea Roxb., black fruit) and Baisang (Morus alba L., white fruit). Results We found that whereas Da 10 had high levels of cyanidin 3-O-glucoside (Cy), and pelargonidin 3-O-glucoside (Pg), Baisang contained only Cy, at low levels. Based on a comparative transcriptome analysis, we annotated more than 27,085 genes (including 1735 new genes). Genes that were differentially expressed between Da 10 and Baisang were detected at three stages of fruit development: S1 [4256 genes, 10 days post-anthesis (DPA)], S2 (5612 genes, 19 DPA), and S3 (5226 genes, 28 DPA). Anthocyanin biosynthesis was found to be associated with the expression of 15 core genes and 5 transcription factors. Relative to Baisang, Da 10 showed a significant upregulation of genes involved in the early stages (production of the intermediate compounds chalcone and dihydroflavonol) and late stages (production of Cy and Pg) of anthocyanin biosynthesis. Baisang showed a significant downregulation of the genes involved in the early stages of anthocyanin biosynthesis and overexpression of flavanone 3-hydroxylase (FLS), resulting in the generation of quercetin and/or myricetin but not anthocyanins. Conclusions The biosynthesis of anthocyanin in mulberry fruit is initiated from the precursor, phenylalanine, and mediated by the upregulation of dihydroflavonol 4-reductase, anthocyanidin synthase, anthocyanidin 3-O-glucosyltransferase, and cyanidin-3-O-glucoside 2-O-glucuronosyltransferase, and downregulation of FLS to produce Cy and Pg. |
abstract_unstemmed |
Abstract Background To gain a better understanding of anthocyanin biosynthesis in mulberry fruit, we analyzed the transcriptome of the mulberry varieties Da 10 (Morus atropurpurea Roxb., black fruit) and Baisang (Morus alba L., white fruit). Results We found that whereas Da 10 had high levels of cyanidin 3-O-glucoside (Cy), and pelargonidin 3-O-glucoside (Pg), Baisang contained only Cy, at low levels. Based on a comparative transcriptome analysis, we annotated more than 27,085 genes (including 1735 new genes). Genes that were differentially expressed between Da 10 and Baisang were detected at three stages of fruit development: S1 [4256 genes, 10 days post-anthesis (DPA)], S2 (5612 genes, 19 DPA), and S3 (5226 genes, 28 DPA). Anthocyanin biosynthesis was found to be associated with the expression of 15 core genes and 5 transcription factors. Relative to Baisang, Da 10 showed a significant upregulation of genes involved in the early stages (production of the intermediate compounds chalcone and dihydroflavonol) and late stages (production of Cy and Pg) of anthocyanin biosynthesis. Baisang showed a significant downregulation of the genes involved in the early stages of anthocyanin biosynthesis and overexpression of flavanone 3-hydroxylase (FLS), resulting in the generation of quercetin and/or myricetin but not anthocyanins. Conclusions The biosynthesis of anthocyanin in mulberry fruit is initiated from the precursor, phenylalanine, and mediated by the upregulation of dihydroflavonol 4-reductase, anthocyanidin synthase, anthocyanidin 3-O-glucosyltransferase, and cyanidin-3-O-glucoside 2-O-glucuronosyltransferase, and downregulation of FLS to produce Cy and Pg. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Comparative transcriptome analysis of mulberry reveals anthocyanin biosynthesis mechanisms in black (Morus atropurpurea Roxb.) and white (Morus alba L.) fruit genotypes |
url |
https://doi.org/10.1186/s12870-020-02486-1 https://doaj.org/article/ca920a5302084c1ba0186802203f5f6c http://link.springer.com/article/10.1186/s12870-020-02486-1 https://doaj.org/toc/1471-2229 |
remote_bool |
true |
author2 |
Yichun Zeng Ling Wei Yongquan Yao Jie Dai Gang Liu Zhongzheng Gui |
author2Str |
Yichun Zeng Ling Wei Yongquan Yao Jie Dai Gang Liu Zhongzheng Gui |
ppnlink |
335489060 |
callnumber-subject |
QK - Botany |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12870-020-02486-1 |
callnumber-a |
QK1-989 |
up_date |
2024-07-03T15:08:14.858Z |
_version_ |
1803570952127119360 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ010493573</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503142717.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12870-020-02486-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ010493573</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJca920a5302084c1ba0186802203f5f6c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gaiqun Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparative transcriptome analysis of mulberry reveals anthocyanin biosynthesis mechanisms in black (Morus atropurpurea Roxb.) and white (Morus alba L.) fruit genotypes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background To gain a better understanding of anthocyanin biosynthesis in mulberry fruit, we analyzed the transcriptome of the mulberry varieties Da 10 (Morus atropurpurea Roxb., black fruit) and Baisang (Morus alba L., white fruit). Results We found that whereas Da 10 had high levels of cyanidin 3-O-glucoside (Cy), and pelargonidin 3-O-glucoside (Pg), Baisang contained only Cy, at low levels. Based on a comparative transcriptome analysis, we annotated more than 27,085 genes (including 1735 new genes). Genes that were differentially expressed between Da 10 and Baisang were detected at three stages of fruit development: S1 [4256 genes, 10 days post-anthesis (DPA)], S2 (5612 genes, 19 DPA), and S3 (5226 genes, 28 DPA). Anthocyanin biosynthesis was found to be associated with the expression of 15 core genes and 5 transcription factors. Relative to Baisang, Da 10 showed a significant upregulation of genes involved in the early stages (production of the intermediate compounds chalcone and dihydroflavonol) and late stages (production of Cy and Pg) of anthocyanin biosynthesis. Baisang showed a significant downregulation of the genes involved in the early stages of anthocyanin biosynthesis and overexpression of flavanone 3-hydroxylase (FLS), resulting in the generation of quercetin and/or myricetin but not anthocyanins. Conclusions The biosynthesis of anthocyanin in mulberry fruit is initiated from the precursor, phenylalanine, and mediated by the upregulation of dihydroflavonol 4-reductase, anthocyanidin synthase, anthocyanidin 3-O-glucosyltransferase, and cyanidin-3-O-glucoside 2-O-glucuronosyltransferase, and downregulation of FLS to produce Cy and Pg.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mulberry fruit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anthocyanin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biosynthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transcriptome</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yichun Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ling Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongquan Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jie Dai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gang Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhongzheng Gui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Plant Biology</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">20(2020), 1, Seite 12</subfield><subfield code="w">(DE-627)335489060</subfield><subfield code="w">(DE-600)2059868-3</subfield><subfield code="x">14712229</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12870-020-02486-1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ca920a5302084c1ba0186802203f5f6c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s12870-020-02486-1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1471-2229</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="h">12</subfield></datafield></record></collection>
|
score |
7.400694 |