Modelling future changes in surface ozone: a parameterized approach
This study describes a simple parameterization to estimate regionally averaged changes in surface ozone due to past or future changes in anthropogenic precursor emissions based on results from 14 global chemistry transport models. The method successfully reproduces the results of full simulations wi...
Ausführliche Beschreibung
Autor*in: |
O. Wild [verfasserIn] A. M. Fiore [verfasserIn] D. T. Shindell [verfasserIn] R. M. Doherty [verfasserIn] W. J. Collins [verfasserIn] F. J. Dentener [verfasserIn] M. G. Schultz [verfasserIn] S. Gong [verfasserIn] I. A. MacKenzie [verfasserIn] G. Zeng [verfasserIn] P. Hess [verfasserIn] B. N. Duncan [verfasserIn] D. J. Bergmann [verfasserIn] S. Szopa [verfasserIn] J. E. Jonson [verfasserIn] T. J. Keating [verfasserIn] A. Zuber [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Übergeordnetes Werk: |
In: Atmospheric Chemistry and Physics - Copernicus Publications, 2003, 12(2012), 4, Seite 2037-2054 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2012 ; number:4 ; pages:2037-2054 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.5194/acp-12-2037-2012 |
---|
Katalog-ID: |
DOAJ010652612 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ010652612 | ||
003 | DE-627 | ||
005 | 20230310030859.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2012 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.5194/acp-12-2037-2012 |2 doi | |
035 | |a (DE-627)DOAJ010652612 | ||
035 | |a (DE-599)DOAJ6cfb49ca1f2f4fe9b438c67d7e5febe6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC1-999 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a O. Wild |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modelling future changes in surface ozone: a parameterized approach |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This study describes a simple parameterization to estimate regionally averaged changes in surface ozone due to past or future changes in anthropogenic precursor emissions based on results from 14 global chemistry transport models. The method successfully reproduces the results of full simulations with these models. For a given emission scenario it provides the ensemble mean surface ozone change, a regional source attribution for each change, and an estimate of the associated uncertainty as represented by the variation between models. Using the Representative Concentration Pathway (RCP) emission scenarios as an example, we show how regional surface ozone is likely to respond to emission changes by 2050 and how changes in precursor emissions and atmospheric methane contribute to this. Surface ozone changes are substantially smaller than expected with the SRES A1B, A2 and B2 scenarios, with annual global mean reductions of as much as 2 ppb by 2050 vs. increases of 4–6 ppb under SRES, and this reflects the assumptions of more stringent precursor emission controls under the RCP scenarios. We find an average difference of around 5 ppb between the outlying RCP 2.6 and RCP 8.5 scenarios, about 75% of which can be attributed to differences in methane abundance. The study reveals the increasing importance of limiting atmospheric methane growth as emissions of other precursors are controlled, but highlights differences in modelled ozone responses to methane changes of as much as a factor of two, indicating that this remains a major uncertainty in current models. | ||
653 | 0 | |a Physics | |
653 | 0 | |a Chemistry | |
700 | 0 | |a A. M. Fiore |e verfasserin |4 aut | |
700 | 0 | |a D. T. Shindell |e verfasserin |4 aut | |
700 | 0 | |a R. M. Doherty |e verfasserin |4 aut | |
700 | 0 | |a W. J. Collins |e verfasserin |4 aut | |
700 | 0 | |a F. J. Dentener |e verfasserin |4 aut | |
700 | 0 | |a M. G. Schultz |e verfasserin |4 aut | |
700 | 0 | |a S. Gong |e verfasserin |4 aut | |
700 | 0 | |a I. A. MacKenzie |e verfasserin |4 aut | |
700 | 0 | |a G. Zeng |e verfasserin |4 aut | |
700 | 0 | |a P. Hess |e verfasserin |4 aut | |
700 | 0 | |a B. N. Duncan |e verfasserin |4 aut | |
700 | 0 | |a D. J. Bergmann |e verfasserin |4 aut | |
700 | 0 | |a S. Szopa |e verfasserin |4 aut | |
700 | 0 | |a J. E. Jonson |e verfasserin |4 aut | |
700 | 0 | |a T. J. Keating |e verfasserin |4 aut | |
700 | 0 | |a A. Zuber |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Atmospheric Chemistry and Physics |d Copernicus Publications, 2003 |g 12(2012), 4, Seite 2037-2054 |w (DE-627)092499996 |x 16807324 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2012 |g number:4 |g pages:2037-2054 |
856 | 4 | 0 | |u https://doi.org/10.5194/acp-12-2037-2012 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6cfb49ca1f2f4fe9b438c67d7e5febe6 |z kostenfrei |
856 | 4 | 0 | |u http://www.atmos-chem-phys.net/12/2037/2012/acp-12-2037-2012.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1680-7316 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1680-7324 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_381 | ||
951 | |a AR | ||
952 | |d 12 |j 2012 |e 4 |h 2037-2054 |
author_variant |
o w ow a m f amf d t s dts r m d rmd w j c wjc f j d fjd m g s mgs s g sg i a m iam g z gz p h ph b n d bnd d j b djb s s ss j e j jej t j k tjk a z az |
---|---|
matchkey_str |
article:16807324:2012----::oelnftrcagsnufcooeprm |
hierarchy_sort_str |
2012 |
callnumber-subject-code |
QC |
publishDate |
2012 |
allfields |
10.5194/acp-12-2037-2012 doi (DE-627)DOAJ010652612 (DE-599)DOAJ6cfb49ca1f2f4fe9b438c67d7e5febe6 DE-627 ger DE-627 rakwb eng QC1-999 QD1-999 O. Wild verfasserin aut Modelling future changes in surface ozone: a parameterized approach 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study describes a simple parameterization to estimate regionally averaged changes in surface ozone due to past or future changes in anthropogenic precursor emissions based on results from 14 global chemistry transport models. The method successfully reproduces the results of full simulations with these models. For a given emission scenario it provides the ensemble mean surface ozone change, a regional source attribution for each change, and an estimate of the associated uncertainty as represented by the variation between models. Using the Representative Concentration Pathway (RCP) emission scenarios as an example, we show how regional surface ozone is likely to respond to emission changes by 2050 and how changes in precursor emissions and atmospheric methane contribute to this. Surface ozone changes are substantially smaller than expected with the SRES A1B, A2 and B2 scenarios, with annual global mean reductions of as much as 2 ppb by 2050 vs. increases of 4–6 ppb under SRES, and this reflects the assumptions of more stringent precursor emission controls under the RCP scenarios. We find an average difference of around 5 ppb between the outlying RCP 2.6 and RCP 8.5 scenarios, about 75% of which can be attributed to differences in methane abundance. The study reveals the increasing importance of limiting atmospheric methane growth as emissions of other precursors are controlled, but highlights differences in modelled ozone responses to methane changes of as much as a factor of two, indicating that this remains a major uncertainty in current models. Physics Chemistry A. M. Fiore verfasserin aut D. T. Shindell verfasserin aut R. M. Doherty verfasserin aut W. J. Collins verfasserin aut F. J. Dentener verfasserin aut M. G. Schultz verfasserin aut S. Gong verfasserin aut I. A. MacKenzie verfasserin aut G. Zeng verfasserin aut P. Hess verfasserin aut B. N. Duncan verfasserin aut D. J. Bergmann verfasserin aut S. Szopa verfasserin aut J. E. Jonson verfasserin aut T. J. Keating verfasserin aut A. Zuber verfasserin aut In Atmospheric Chemistry and Physics Copernicus Publications, 2003 12(2012), 4, Seite 2037-2054 (DE-627)092499996 16807324 nnns volume:12 year:2012 number:4 pages:2037-2054 https://doi.org/10.5194/acp-12-2037-2012 kostenfrei https://doaj.org/article/6cfb49ca1f2f4fe9b438c67d7e5febe6 kostenfrei http://www.atmos-chem-phys.net/12/2037/2012/acp-12-2037-2012.pdf kostenfrei https://doaj.org/toc/1680-7316 Journal toc kostenfrei https://doaj.org/toc/1680-7324 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_381 AR 12 2012 4 2037-2054 |
spelling |
10.5194/acp-12-2037-2012 doi (DE-627)DOAJ010652612 (DE-599)DOAJ6cfb49ca1f2f4fe9b438c67d7e5febe6 DE-627 ger DE-627 rakwb eng QC1-999 QD1-999 O. Wild verfasserin aut Modelling future changes in surface ozone: a parameterized approach 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study describes a simple parameterization to estimate regionally averaged changes in surface ozone due to past or future changes in anthropogenic precursor emissions based on results from 14 global chemistry transport models. The method successfully reproduces the results of full simulations with these models. For a given emission scenario it provides the ensemble mean surface ozone change, a regional source attribution for each change, and an estimate of the associated uncertainty as represented by the variation between models. Using the Representative Concentration Pathway (RCP) emission scenarios as an example, we show how regional surface ozone is likely to respond to emission changes by 2050 and how changes in precursor emissions and atmospheric methane contribute to this. Surface ozone changes are substantially smaller than expected with the SRES A1B, A2 and B2 scenarios, with annual global mean reductions of as much as 2 ppb by 2050 vs. increases of 4–6 ppb under SRES, and this reflects the assumptions of more stringent precursor emission controls under the RCP scenarios. We find an average difference of around 5 ppb between the outlying RCP 2.6 and RCP 8.5 scenarios, about 75% of which can be attributed to differences in methane abundance. The study reveals the increasing importance of limiting atmospheric methane growth as emissions of other precursors are controlled, but highlights differences in modelled ozone responses to methane changes of as much as a factor of two, indicating that this remains a major uncertainty in current models. Physics Chemistry A. M. Fiore verfasserin aut D. T. Shindell verfasserin aut R. M. Doherty verfasserin aut W. J. Collins verfasserin aut F. J. Dentener verfasserin aut M. G. Schultz verfasserin aut S. Gong verfasserin aut I. A. MacKenzie verfasserin aut G. Zeng verfasserin aut P. Hess verfasserin aut B. N. Duncan verfasserin aut D. J. Bergmann verfasserin aut S. Szopa verfasserin aut J. E. Jonson verfasserin aut T. J. Keating verfasserin aut A. Zuber verfasserin aut In Atmospheric Chemistry and Physics Copernicus Publications, 2003 12(2012), 4, Seite 2037-2054 (DE-627)092499996 16807324 nnns volume:12 year:2012 number:4 pages:2037-2054 https://doi.org/10.5194/acp-12-2037-2012 kostenfrei https://doaj.org/article/6cfb49ca1f2f4fe9b438c67d7e5febe6 kostenfrei http://www.atmos-chem-phys.net/12/2037/2012/acp-12-2037-2012.pdf kostenfrei https://doaj.org/toc/1680-7316 Journal toc kostenfrei https://doaj.org/toc/1680-7324 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_381 AR 12 2012 4 2037-2054 |
allfields_unstemmed |
10.5194/acp-12-2037-2012 doi (DE-627)DOAJ010652612 (DE-599)DOAJ6cfb49ca1f2f4fe9b438c67d7e5febe6 DE-627 ger DE-627 rakwb eng QC1-999 QD1-999 O. Wild verfasserin aut Modelling future changes in surface ozone: a parameterized approach 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study describes a simple parameterization to estimate regionally averaged changes in surface ozone due to past or future changes in anthropogenic precursor emissions based on results from 14 global chemistry transport models. The method successfully reproduces the results of full simulations with these models. For a given emission scenario it provides the ensemble mean surface ozone change, a regional source attribution for each change, and an estimate of the associated uncertainty as represented by the variation between models. Using the Representative Concentration Pathway (RCP) emission scenarios as an example, we show how regional surface ozone is likely to respond to emission changes by 2050 and how changes in precursor emissions and atmospheric methane contribute to this. Surface ozone changes are substantially smaller than expected with the SRES A1B, A2 and B2 scenarios, with annual global mean reductions of as much as 2 ppb by 2050 vs. increases of 4–6 ppb under SRES, and this reflects the assumptions of more stringent precursor emission controls under the RCP scenarios. We find an average difference of around 5 ppb between the outlying RCP 2.6 and RCP 8.5 scenarios, about 75% of which can be attributed to differences in methane abundance. The study reveals the increasing importance of limiting atmospheric methane growth as emissions of other precursors are controlled, but highlights differences in modelled ozone responses to methane changes of as much as a factor of two, indicating that this remains a major uncertainty in current models. Physics Chemistry A. M. Fiore verfasserin aut D. T. Shindell verfasserin aut R. M. Doherty verfasserin aut W. J. Collins verfasserin aut F. J. Dentener verfasserin aut M. G. Schultz verfasserin aut S. Gong verfasserin aut I. A. MacKenzie verfasserin aut G. Zeng verfasserin aut P. Hess verfasserin aut B. N. Duncan verfasserin aut D. J. Bergmann verfasserin aut S. Szopa verfasserin aut J. E. Jonson verfasserin aut T. J. Keating verfasserin aut A. Zuber verfasserin aut In Atmospheric Chemistry and Physics Copernicus Publications, 2003 12(2012), 4, Seite 2037-2054 (DE-627)092499996 16807324 nnns volume:12 year:2012 number:4 pages:2037-2054 https://doi.org/10.5194/acp-12-2037-2012 kostenfrei https://doaj.org/article/6cfb49ca1f2f4fe9b438c67d7e5febe6 kostenfrei http://www.atmos-chem-phys.net/12/2037/2012/acp-12-2037-2012.pdf kostenfrei https://doaj.org/toc/1680-7316 Journal toc kostenfrei https://doaj.org/toc/1680-7324 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_381 AR 12 2012 4 2037-2054 |
allfieldsGer |
10.5194/acp-12-2037-2012 doi (DE-627)DOAJ010652612 (DE-599)DOAJ6cfb49ca1f2f4fe9b438c67d7e5febe6 DE-627 ger DE-627 rakwb eng QC1-999 QD1-999 O. Wild verfasserin aut Modelling future changes in surface ozone: a parameterized approach 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study describes a simple parameterization to estimate regionally averaged changes in surface ozone due to past or future changes in anthropogenic precursor emissions based on results from 14 global chemistry transport models. The method successfully reproduces the results of full simulations with these models. For a given emission scenario it provides the ensemble mean surface ozone change, a regional source attribution for each change, and an estimate of the associated uncertainty as represented by the variation between models. Using the Representative Concentration Pathway (RCP) emission scenarios as an example, we show how regional surface ozone is likely to respond to emission changes by 2050 and how changes in precursor emissions and atmospheric methane contribute to this. Surface ozone changes are substantially smaller than expected with the SRES A1B, A2 and B2 scenarios, with annual global mean reductions of as much as 2 ppb by 2050 vs. increases of 4–6 ppb under SRES, and this reflects the assumptions of more stringent precursor emission controls under the RCP scenarios. We find an average difference of around 5 ppb between the outlying RCP 2.6 and RCP 8.5 scenarios, about 75% of which can be attributed to differences in methane abundance. The study reveals the increasing importance of limiting atmospheric methane growth as emissions of other precursors are controlled, but highlights differences in modelled ozone responses to methane changes of as much as a factor of two, indicating that this remains a major uncertainty in current models. Physics Chemistry A. M. Fiore verfasserin aut D. T. Shindell verfasserin aut R. M. Doherty verfasserin aut W. J. Collins verfasserin aut F. J. Dentener verfasserin aut M. G. Schultz verfasserin aut S. Gong verfasserin aut I. A. MacKenzie verfasserin aut G. Zeng verfasserin aut P. Hess verfasserin aut B. N. Duncan verfasserin aut D. J. Bergmann verfasserin aut S. Szopa verfasserin aut J. E. Jonson verfasserin aut T. J. Keating verfasserin aut A. Zuber verfasserin aut In Atmospheric Chemistry and Physics Copernicus Publications, 2003 12(2012), 4, Seite 2037-2054 (DE-627)092499996 16807324 nnns volume:12 year:2012 number:4 pages:2037-2054 https://doi.org/10.5194/acp-12-2037-2012 kostenfrei https://doaj.org/article/6cfb49ca1f2f4fe9b438c67d7e5febe6 kostenfrei http://www.atmos-chem-phys.net/12/2037/2012/acp-12-2037-2012.pdf kostenfrei https://doaj.org/toc/1680-7316 Journal toc kostenfrei https://doaj.org/toc/1680-7324 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_381 AR 12 2012 4 2037-2054 |
allfieldsSound |
10.5194/acp-12-2037-2012 doi (DE-627)DOAJ010652612 (DE-599)DOAJ6cfb49ca1f2f4fe9b438c67d7e5febe6 DE-627 ger DE-627 rakwb eng QC1-999 QD1-999 O. Wild verfasserin aut Modelling future changes in surface ozone: a parameterized approach 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study describes a simple parameterization to estimate regionally averaged changes in surface ozone due to past or future changes in anthropogenic precursor emissions based on results from 14 global chemistry transport models. The method successfully reproduces the results of full simulations with these models. For a given emission scenario it provides the ensemble mean surface ozone change, a regional source attribution for each change, and an estimate of the associated uncertainty as represented by the variation between models. Using the Representative Concentration Pathway (RCP) emission scenarios as an example, we show how regional surface ozone is likely to respond to emission changes by 2050 and how changes in precursor emissions and atmospheric methane contribute to this. Surface ozone changes are substantially smaller than expected with the SRES A1B, A2 and B2 scenarios, with annual global mean reductions of as much as 2 ppb by 2050 vs. increases of 4–6 ppb under SRES, and this reflects the assumptions of more stringent precursor emission controls under the RCP scenarios. We find an average difference of around 5 ppb between the outlying RCP 2.6 and RCP 8.5 scenarios, about 75% of which can be attributed to differences in methane abundance. The study reveals the increasing importance of limiting atmospheric methane growth as emissions of other precursors are controlled, but highlights differences in modelled ozone responses to methane changes of as much as a factor of two, indicating that this remains a major uncertainty in current models. Physics Chemistry A. M. Fiore verfasserin aut D. T. Shindell verfasserin aut R. M. Doherty verfasserin aut W. J. Collins verfasserin aut F. J. Dentener verfasserin aut M. G. Schultz verfasserin aut S. Gong verfasserin aut I. A. MacKenzie verfasserin aut G. Zeng verfasserin aut P. Hess verfasserin aut B. N. Duncan verfasserin aut D. J. Bergmann verfasserin aut S. Szopa verfasserin aut J. E. Jonson verfasserin aut T. J. Keating verfasserin aut A. Zuber verfasserin aut In Atmospheric Chemistry and Physics Copernicus Publications, 2003 12(2012), 4, Seite 2037-2054 (DE-627)092499996 16807324 nnns volume:12 year:2012 number:4 pages:2037-2054 https://doi.org/10.5194/acp-12-2037-2012 kostenfrei https://doaj.org/article/6cfb49ca1f2f4fe9b438c67d7e5febe6 kostenfrei http://www.atmos-chem-phys.net/12/2037/2012/acp-12-2037-2012.pdf kostenfrei https://doaj.org/toc/1680-7316 Journal toc kostenfrei https://doaj.org/toc/1680-7324 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_381 AR 12 2012 4 2037-2054 |
language |
English |
source |
In Atmospheric Chemistry and Physics 12(2012), 4, Seite 2037-2054 volume:12 year:2012 number:4 pages:2037-2054 |
sourceStr |
In Atmospheric Chemistry and Physics 12(2012), 4, Seite 2037-2054 volume:12 year:2012 number:4 pages:2037-2054 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Physics Chemistry |
isfreeaccess_bool |
true |
container_title |
Atmospheric Chemistry and Physics |
authorswithroles_txt_mv |
O. Wild @@aut@@ A. M. Fiore @@aut@@ D. T. Shindell @@aut@@ R. M. Doherty @@aut@@ W. J. Collins @@aut@@ F. J. Dentener @@aut@@ M. G. Schultz @@aut@@ S. Gong @@aut@@ I. A. MacKenzie @@aut@@ G. Zeng @@aut@@ P. Hess @@aut@@ B. N. Duncan @@aut@@ D. J. Bergmann @@aut@@ S. Szopa @@aut@@ J. E. Jonson @@aut@@ T. J. Keating @@aut@@ A. Zuber @@aut@@ |
publishDateDaySort_date |
2012-01-01T00:00:00Z |
hierarchy_top_id |
092499996 |
id |
DOAJ010652612 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ010652612</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310030859.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5194/acp-12-2037-2012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ010652612</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6cfb49ca1f2f4fe9b438c67d7e5febe6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">O. Wild</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modelling future changes in surface ozone: a parameterized approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study describes a simple parameterization to estimate regionally averaged changes in surface ozone due to past or future changes in anthropogenic precursor emissions based on results from 14 global chemistry transport models. The method successfully reproduces the results of full simulations with these models. For a given emission scenario it provides the ensemble mean surface ozone change, a regional source attribution for each change, and an estimate of the associated uncertainty as represented by the variation between models. Using the Representative Concentration Pathway (RCP) emission scenarios as an example, we show how regional surface ozone is likely to respond to emission changes by 2050 and how changes in precursor emissions and atmospheric methane contribute to this. Surface ozone changes are substantially smaller than expected with the SRES A1B, A2 and B2 scenarios, with annual global mean reductions of as much as 2 ppb by 2050 vs. increases of 4–6 ppb under SRES, and this reflects the assumptions of more stringent precursor emission controls under the RCP scenarios. We find an average difference of around 5 ppb between the outlying RCP 2.6 and RCP 8.5 scenarios, about 75% of which can be attributed to differences in methane abundance. The study reveals the increasing importance of limiting atmospheric methane growth as emissions of other precursors are controlled, but highlights differences in modelled ozone responses to methane changes of as much as a factor of two, indicating that this remains a major uncertainty in current models.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A. M. Fiore</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">D. T. Shindell</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">R. M. Doherty</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">W. J. Collins</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">F. J. Dentener</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. G. Schultz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">S. Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">I. A. MacKenzie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">G. Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">P. Hess</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">B. N. Duncan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">D. J. Bergmann</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">S. Szopa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J. E. Jonson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">T. J. Keating</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A. Zuber</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Atmospheric Chemistry and Physics</subfield><subfield code="d">Copernicus Publications, 2003</subfield><subfield code="g">12(2012), 4, Seite 2037-2054</subfield><subfield code="w">(DE-627)092499996</subfield><subfield code="x">16807324</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:2037-2054</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.5194/acp-12-2037-2012</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6cfb49ca1f2f4fe9b438c67d7e5febe6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.atmos-chem-phys.net/12/2037/2012/acp-12-2037-2012.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1680-7316</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1680-7324</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2012</subfield><subfield code="e">4</subfield><subfield code="h">2037-2054</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
O. Wild |
spellingShingle |
O. Wild misc QC1-999 misc QD1-999 misc Physics misc Chemistry Modelling future changes in surface ozone: a parameterized approach |
authorStr |
O. Wild |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)092499996 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC1-999 |
illustrated |
Not Illustrated |
issn |
16807324 |
topic_title |
QC1-999 QD1-999 Modelling future changes in surface ozone: a parameterized approach |
topic |
misc QC1-999 misc QD1-999 misc Physics misc Chemistry |
topic_unstemmed |
misc QC1-999 misc QD1-999 misc Physics misc Chemistry |
topic_browse |
misc QC1-999 misc QD1-999 misc Physics misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Atmospheric Chemistry and Physics |
hierarchy_parent_id |
092499996 |
hierarchy_top_title |
Atmospheric Chemistry and Physics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)092499996 |
title |
Modelling future changes in surface ozone: a parameterized approach |
ctrlnum |
(DE-627)DOAJ010652612 (DE-599)DOAJ6cfb49ca1f2f4fe9b438c67d7e5febe6 |
title_full |
Modelling future changes in surface ozone: a parameterized approach |
author_sort |
O. Wild |
journal |
Atmospheric Chemistry and Physics |
journalStr |
Atmospheric Chemistry and Physics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
2037 |
author_browse |
O. Wild A. M. Fiore D. T. Shindell R. M. Doherty W. J. Collins F. J. Dentener M. G. Schultz S. Gong I. A. MacKenzie G. Zeng P. Hess B. N. Duncan D. J. Bergmann S. Szopa J. E. Jonson T. J. Keating A. Zuber |
container_volume |
12 |
class |
QC1-999 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
O. Wild |
doi_str_mv |
10.5194/acp-12-2037-2012 |
author2-role |
verfasserin |
title_sort |
modelling future changes in surface ozone: a parameterized approach |
callnumber |
QC1-999 |
title_auth |
Modelling future changes in surface ozone: a parameterized approach |
abstract |
This study describes a simple parameterization to estimate regionally averaged changes in surface ozone due to past or future changes in anthropogenic precursor emissions based on results from 14 global chemistry transport models. The method successfully reproduces the results of full simulations with these models. For a given emission scenario it provides the ensemble mean surface ozone change, a regional source attribution for each change, and an estimate of the associated uncertainty as represented by the variation between models. Using the Representative Concentration Pathway (RCP) emission scenarios as an example, we show how regional surface ozone is likely to respond to emission changes by 2050 and how changes in precursor emissions and atmospheric methane contribute to this. Surface ozone changes are substantially smaller than expected with the SRES A1B, A2 and B2 scenarios, with annual global mean reductions of as much as 2 ppb by 2050 vs. increases of 4–6 ppb under SRES, and this reflects the assumptions of more stringent precursor emission controls under the RCP scenarios. We find an average difference of around 5 ppb between the outlying RCP 2.6 and RCP 8.5 scenarios, about 75% of which can be attributed to differences in methane abundance. The study reveals the increasing importance of limiting atmospheric methane growth as emissions of other precursors are controlled, but highlights differences in modelled ozone responses to methane changes of as much as a factor of two, indicating that this remains a major uncertainty in current models. |
abstractGer |
This study describes a simple parameterization to estimate regionally averaged changes in surface ozone due to past or future changes in anthropogenic precursor emissions based on results from 14 global chemistry transport models. The method successfully reproduces the results of full simulations with these models. For a given emission scenario it provides the ensemble mean surface ozone change, a regional source attribution for each change, and an estimate of the associated uncertainty as represented by the variation between models. Using the Representative Concentration Pathway (RCP) emission scenarios as an example, we show how regional surface ozone is likely to respond to emission changes by 2050 and how changes in precursor emissions and atmospheric methane contribute to this. Surface ozone changes are substantially smaller than expected with the SRES A1B, A2 and B2 scenarios, with annual global mean reductions of as much as 2 ppb by 2050 vs. increases of 4–6 ppb under SRES, and this reflects the assumptions of more stringent precursor emission controls under the RCP scenarios. We find an average difference of around 5 ppb between the outlying RCP 2.6 and RCP 8.5 scenarios, about 75% of which can be attributed to differences in methane abundance. The study reveals the increasing importance of limiting atmospheric methane growth as emissions of other precursors are controlled, but highlights differences in modelled ozone responses to methane changes of as much as a factor of two, indicating that this remains a major uncertainty in current models. |
abstract_unstemmed |
This study describes a simple parameterization to estimate regionally averaged changes in surface ozone due to past or future changes in anthropogenic precursor emissions based on results from 14 global chemistry transport models. The method successfully reproduces the results of full simulations with these models. For a given emission scenario it provides the ensemble mean surface ozone change, a regional source attribution for each change, and an estimate of the associated uncertainty as represented by the variation between models. Using the Representative Concentration Pathway (RCP) emission scenarios as an example, we show how regional surface ozone is likely to respond to emission changes by 2050 and how changes in precursor emissions and atmospheric methane contribute to this. Surface ozone changes are substantially smaller than expected with the SRES A1B, A2 and B2 scenarios, with annual global mean reductions of as much as 2 ppb by 2050 vs. increases of 4–6 ppb under SRES, and this reflects the assumptions of more stringent precursor emission controls under the RCP scenarios. We find an average difference of around 5 ppb between the outlying RCP 2.6 and RCP 8.5 scenarios, about 75% of which can be attributed to differences in methane abundance. The study reveals the increasing importance of limiting atmospheric methane growth as emissions of other precursors are controlled, but highlights differences in modelled ozone responses to methane changes of as much as a factor of two, indicating that this remains a major uncertainty in current models. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_381 |
container_issue |
4 |
title_short |
Modelling future changes in surface ozone: a parameterized approach |
url |
https://doi.org/10.5194/acp-12-2037-2012 https://doaj.org/article/6cfb49ca1f2f4fe9b438c67d7e5febe6 http://www.atmos-chem-phys.net/12/2037/2012/acp-12-2037-2012.pdf https://doaj.org/toc/1680-7316 https://doaj.org/toc/1680-7324 |
remote_bool |
true |
author2 |
A. M. Fiore D. T. Shindell R. M. Doherty W. J. Collins F. J. Dentener M. G. Schultz S. Gong I. A. MacKenzie G. Zeng P. Hess B. N. Duncan D. J. Bergmann S. Szopa J. E. Jonson T. J. Keating A. Zuber |
author2Str |
A. M. Fiore D. T. Shindell R. M. Doherty W. J. Collins F. J. Dentener M. G. Schultz S. Gong I. A. MacKenzie G. Zeng P. Hess B. N. Duncan D. J. Bergmann S. Szopa J. E. Jonson T. J. Keating A. Zuber |
ppnlink |
092499996 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.5194/acp-12-2037-2012 |
callnumber-a |
QC1-999 |
up_date |
2024-07-03T16:00:35.378Z |
_version_ |
1803574245196824576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ010652612</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310030859.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5194/acp-12-2037-2012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ010652612</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6cfb49ca1f2f4fe9b438c67d7e5febe6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">O. Wild</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modelling future changes in surface ozone: a parameterized approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study describes a simple parameterization to estimate regionally averaged changes in surface ozone due to past or future changes in anthropogenic precursor emissions based on results from 14 global chemistry transport models. The method successfully reproduces the results of full simulations with these models. For a given emission scenario it provides the ensemble mean surface ozone change, a regional source attribution for each change, and an estimate of the associated uncertainty as represented by the variation between models. Using the Representative Concentration Pathway (RCP) emission scenarios as an example, we show how regional surface ozone is likely to respond to emission changes by 2050 and how changes in precursor emissions and atmospheric methane contribute to this. Surface ozone changes are substantially smaller than expected with the SRES A1B, A2 and B2 scenarios, with annual global mean reductions of as much as 2 ppb by 2050 vs. increases of 4–6 ppb under SRES, and this reflects the assumptions of more stringent precursor emission controls under the RCP scenarios. We find an average difference of around 5 ppb between the outlying RCP 2.6 and RCP 8.5 scenarios, about 75% of which can be attributed to differences in methane abundance. The study reveals the increasing importance of limiting atmospheric methane growth as emissions of other precursors are controlled, but highlights differences in modelled ozone responses to methane changes of as much as a factor of two, indicating that this remains a major uncertainty in current models.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A. M. Fiore</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">D. T. Shindell</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">R. M. Doherty</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">W. J. Collins</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">F. J. Dentener</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. G. Schultz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">S. Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">I. A. MacKenzie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">G. Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">P. Hess</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">B. N. Duncan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">D. J. Bergmann</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">S. Szopa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J. E. Jonson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">T. J. Keating</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A. Zuber</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Atmospheric Chemistry and Physics</subfield><subfield code="d">Copernicus Publications, 2003</subfield><subfield code="g">12(2012), 4, Seite 2037-2054</subfield><subfield code="w">(DE-627)092499996</subfield><subfield code="x">16807324</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:2037-2054</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.5194/acp-12-2037-2012</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6cfb49ca1f2f4fe9b438c67d7e5febe6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.atmos-chem-phys.net/12/2037/2012/acp-12-2037-2012.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1680-7316</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1680-7324</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2012</subfield><subfield code="e">4</subfield><subfield code="h">2037-2054</subfield></datafield></record></collection>
|
score |
7.4025593 |