Coupled Hygro-Mechanical Finite Element Method on Determination of the Interlaminar Shear Modulus of Glass Fiber-Reinforced Polymer Laminates in Bridge Decks under Hygrothermal Aging Effects
To investigate the mechanical degradation of the shear properties of glass fiber-reinforced polymer (GFRP) laminates in bridge decks under hygrothermal aging effects, short-beam shear tests were performed following the ASTM test standard (ASTM D790-10A). Based on the coupled hygro-mechanical finite...
Ausführliche Beschreibung
Autor*in: |
Xu Jiang [verfasserIn] Chengwei Luo [verfasserIn] Xuhong Qiang [verfasserIn] Qilin Zhang [verfasserIn] Henk Kolstein [verfasserIn] Frans Bijlaard [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Polymers - MDPI AG, 2011, 10(2018), 8, p 845 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2018 ; number:8, p 845 |
Links: |
---|
DOI / URN: |
10.3390/polym10080845 |
---|
Katalog-ID: |
DOAJ010704272 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ010704272 | ||
003 | DE-627 | ||
005 | 20230310031219.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/polym10080845 |2 doi | |
035 | |a (DE-627)DOAJ010704272 | ||
035 | |a (DE-599)DOAJd38b9aa800c54406b6edc7c60aa7fc4e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD241-441 | |
100 | 0 | |a Xu Jiang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Coupled Hygro-Mechanical Finite Element Method on Determination of the Interlaminar Shear Modulus of Glass Fiber-Reinforced Polymer Laminates in Bridge Decks under Hygrothermal Aging Effects |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a To investigate the mechanical degradation of the shear properties of glass fiber-reinforced polymer (GFRP) laminates in bridge decks under hygrothermal aging effects, short-beam shear tests were performed following the ASTM test standard (ASTM D790-10A). Based on the coupled hygro-mechanical finite element (FE) analysis method, an inverse parameter identification approach based on short-beam shear tests was developed and then employed to determine the environment-dependent interlaminar shear modulus of GFRP laminates. Subsequently, the shear strength and modulus of dry (0% Mt/M∞), moisture unsaturated (30% Mt/M∞ and 50% Mt/M∞), and moisture saturated (100% Mt/M∞) specimens at test temperatures of both 20 °C and 40 °C were compared. One cycle of the moisture absorption–desorption process was also investigated to address how the moisture-induced residual damage degrades the shear properties of GFRP laminates. The results revealed that the shear strength and modulus of moisture-saturated GFRP laminates decreased significantly, and the elevated testing temperature (40 °C) aggravated moisture-induced mechanical degradation. Moreover, an unrecoverable loss of shear properties for the GFRP laminates enduring one cycle of the moisture absorption–desorption process was evident. | ||
650 | 4 | |a fiber-reinforced polymer composite | |
650 | 4 | |a interlaminar shear modulus | |
650 | 4 | |a hygrothermal aging effect | |
650 | 4 | |a mechanical degradation | |
650 | 4 | |a short-beam test | |
650 | 4 | |a finite element method | |
653 | 0 | |a Organic chemistry | |
700 | 0 | |a Chengwei Luo |e verfasserin |4 aut | |
700 | 0 | |a Xuhong Qiang |e verfasserin |4 aut | |
700 | 0 | |a Qilin Zhang |e verfasserin |4 aut | |
700 | 0 | |a Henk Kolstein |e verfasserin |4 aut | |
700 | 0 | |a Frans Bijlaard |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Polymers |d MDPI AG, 2011 |g 10(2018), 8, p 845 |w (DE-627)61409612X |w (DE-600)2527146-5 |x 20734360 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2018 |g number:8, p 845 |
856 | 4 | 0 | |u https://doi.org/10.3390/polym10080845 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/d38b9aa800c54406b6edc7c60aa7fc4e |z kostenfrei |
856 | 4 | 0 | |u http://www.mdpi.com/2073-4360/10/8/845 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4360 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2018 |e 8, p 845 |
author_variant |
x j xj c l cl x q xq q z qz h k hk f b fb |
---|---|
matchkey_str |
article:20734360:2018----::opehgoehncliielmnmtoodtriainfhitraiaserouuogasierifreplmraiae |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
QD |
publishDate |
2018 |
allfields |
10.3390/polym10080845 doi (DE-627)DOAJ010704272 (DE-599)DOAJd38b9aa800c54406b6edc7c60aa7fc4e DE-627 ger DE-627 rakwb eng QD241-441 Xu Jiang verfasserin aut Coupled Hygro-Mechanical Finite Element Method on Determination of the Interlaminar Shear Modulus of Glass Fiber-Reinforced Polymer Laminates in Bridge Decks under Hygrothermal Aging Effects 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To investigate the mechanical degradation of the shear properties of glass fiber-reinforced polymer (GFRP) laminates in bridge decks under hygrothermal aging effects, short-beam shear tests were performed following the ASTM test standard (ASTM D790-10A). Based on the coupled hygro-mechanical finite element (FE) analysis method, an inverse parameter identification approach based on short-beam shear tests was developed and then employed to determine the environment-dependent interlaminar shear modulus of GFRP laminates. Subsequently, the shear strength and modulus of dry (0% Mt/M∞), moisture unsaturated (30% Mt/M∞ and 50% Mt/M∞), and moisture saturated (100% Mt/M∞) specimens at test temperatures of both 20 °C and 40 °C were compared. One cycle of the moisture absorption–desorption process was also investigated to address how the moisture-induced residual damage degrades the shear properties of GFRP laminates. The results revealed that the shear strength and modulus of moisture-saturated GFRP laminates decreased significantly, and the elevated testing temperature (40 °C) aggravated moisture-induced mechanical degradation. Moreover, an unrecoverable loss of shear properties for the GFRP laminates enduring one cycle of the moisture absorption–desorption process was evident. fiber-reinforced polymer composite interlaminar shear modulus hygrothermal aging effect mechanical degradation short-beam test finite element method Organic chemistry Chengwei Luo verfasserin aut Xuhong Qiang verfasserin aut Qilin Zhang verfasserin aut Henk Kolstein verfasserin aut Frans Bijlaard verfasserin aut In Polymers MDPI AG, 2011 10(2018), 8, p 845 (DE-627)61409612X (DE-600)2527146-5 20734360 nnns volume:10 year:2018 number:8, p 845 https://doi.org/10.3390/polym10080845 kostenfrei https://doaj.org/article/d38b9aa800c54406b6edc7c60aa7fc4e kostenfrei http://www.mdpi.com/2073-4360/10/8/845 kostenfrei https://doaj.org/toc/2073-4360 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2018 8, p 845 |
spelling |
10.3390/polym10080845 doi (DE-627)DOAJ010704272 (DE-599)DOAJd38b9aa800c54406b6edc7c60aa7fc4e DE-627 ger DE-627 rakwb eng QD241-441 Xu Jiang verfasserin aut Coupled Hygro-Mechanical Finite Element Method on Determination of the Interlaminar Shear Modulus of Glass Fiber-Reinforced Polymer Laminates in Bridge Decks under Hygrothermal Aging Effects 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To investigate the mechanical degradation of the shear properties of glass fiber-reinforced polymer (GFRP) laminates in bridge decks under hygrothermal aging effects, short-beam shear tests were performed following the ASTM test standard (ASTM D790-10A). Based on the coupled hygro-mechanical finite element (FE) analysis method, an inverse parameter identification approach based on short-beam shear tests was developed and then employed to determine the environment-dependent interlaminar shear modulus of GFRP laminates. Subsequently, the shear strength and modulus of dry (0% Mt/M∞), moisture unsaturated (30% Mt/M∞ and 50% Mt/M∞), and moisture saturated (100% Mt/M∞) specimens at test temperatures of both 20 °C and 40 °C were compared. One cycle of the moisture absorption–desorption process was also investigated to address how the moisture-induced residual damage degrades the shear properties of GFRP laminates. The results revealed that the shear strength and modulus of moisture-saturated GFRP laminates decreased significantly, and the elevated testing temperature (40 °C) aggravated moisture-induced mechanical degradation. Moreover, an unrecoverable loss of shear properties for the GFRP laminates enduring one cycle of the moisture absorption–desorption process was evident. fiber-reinforced polymer composite interlaminar shear modulus hygrothermal aging effect mechanical degradation short-beam test finite element method Organic chemistry Chengwei Luo verfasserin aut Xuhong Qiang verfasserin aut Qilin Zhang verfasserin aut Henk Kolstein verfasserin aut Frans Bijlaard verfasserin aut In Polymers MDPI AG, 2011 10(2018), 8, p 845 (DE-627)61409612X (DE-600)2527146-5 20734360 nnns volume:10 year:2018 number:8, p 845 https://doi.org/10.3390/polym10080845 kostenfrei https://doaj.org/article/d38b9aa800c54406b6edc7c60aa7fc4e kostenfrei http://www.mdpi.com/2073-4360/10/8/845 kostenfrei https://doaj.org/toc/2073-4360 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2018 8, p 845 |
allfields_unstemmed |
10.3390/polym10080845 doi (DE-627)DOAJ010704272 (DE-599)DOAJd38b9aa800c54406b6edc7c60aa7fc4e DE-627 ger DE-627 rakwb eng QD241-441 Xu Jiang verfasserin aut Coupled Hygro-Mechanical Finite Element Method on Determination of the Interlaminar Shear Modulus of Glass Fiber-Reinforced Polymer Laminates in Bridge Decks under Hygrothermal Aging Effects 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To investigate the mechanical degradation of the shear properties of glass fiber-reinforced polymer (GFRP) laminates in bridge decks under hygrothermal aging effects, short-beam shear tests were performed following the ASTM test standard (ASTM D790-10A). Based on the coupled hygro-mechanical finite element (FE) analysis method, an inverse parameter identification approach based on short-beam shear tests was developed and then employed to determine the environment-dependent interlaminar shear modulus of GFRP laminates. Subsequently, the shear strength and modulus of dry (0% Mt/M∞), moisture unsaturated (30% Mt/M∞ and 50% Mt/M∞), and moisture saturated (100% Mt/M∞) specimens at test temperatures of both 20 °C and 40 °C were compared. One cycle of the moisture absorption–desorption process was also investigated to address how the moisture-induced residual damage degrades the shear properties of GFRP laminates. The results revealed that the shear strength and modulus of moisture-saturated GFRP laminates decreased significantly, and the elevated testing temperature (40 °C) aggravated moisture-induced mechanical degradation. Moreover, an unrecoverable loss of shear properties for the GFRP laminates enduring one cycle of the moisture absorption–desorption process was evident. fiber-reinforced polymer composite interlaminar shear modulus hygrothermal aging effect mechanical degradation short-beam test finite element method Organic chemistry Chengwei Luo verfasserin aut Xuhong Qiang verfasserin aut Qilin Zhang verfasserin aut Henk Kolstein verfasserin aut Frans Bijlaard verfasserin aut In Polymers MDPI AG, 2011 10(2018), 8, p 845 (DE-627)61409612X (DE-600)2527146-5 20734360 nnns volume:10 year:2018 number:8, p 845 https://doi.org/10.3390/polym10080845 kostenfrei https://doaj.org/article/d38b9aa800c54406b6edc7c60aa7fc4e kostenfrei http://www.mdpi.com/2073-4360/10/8/845 kostenfrei https://doaj.org/toc/2073-4360 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2018 8, p 845 |
allfieldsGer |
10.3390/polym10080845 doi (DE-627)DOAJ010704272 (DE-599)DOAJd38b9aa800c54406b6edc7c60aa7fc4e DE-627 ger DE-627 rakwb eng QD241-441 Xu Jiang verfasserin aut Coupled Hygro-Mechanical Finite Element Method on Determination of the Interlaminar Shear Modulus of Glass Fiber-Reinforced Polymer Laminates in Bridge Decks under Hygrothermal Aging Effects 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To investigate the mechanical degradation of the shear properties of glass fiber-reinforced polymer (GFRP) laminates in bridge decks under hygrothermal aging effects, short-beam shear tests were performed following the ASTM test standard (ASTM D790-10A). Based on the coupled hygro-mechanical finite element (FE) analysis method, an inverse parameter identification approach based on short-beam shear tests was developed and then employed to determine the environment-dependent interlaminar shear modulus of GFRP laminates. Subsequently, the shear strength and modulus of dry (0% Mt/M∞), moisture unsaturated (30% Mt/M∞ and 50% Mt/M∞), and moisture saturated (100% Mt/M∞) specimens at test temperatures of both 20 °C and 40 °C were compared. One cycle of the moisture absorption–desorption process was also investigated to address how the moisture-induced residual damage degrades the shear properties of GFRP laminates. The results revealed that the shear strength and modulus of moisture-saturated GFRP laminates decreased significantly, and the elevated testing temperature (40 °C) aggravated moisture-induced mechanical degradation. Moreover, an unrecoverable loss of shear properties for the GFRP laminates enduring one cycle of the moisture absorption–desorption process was evident. fiber-reinforced polymer composite interlaminar shear modulus hygrothermal aging effect mechanical degradation short-beam test finite element method Organic chemistry Chengwei Luo verfasserin aut Xuhong Qiang verfasserin aut Qilin Zhang verfasserin aut Henk Kolstein verfasserin aut Frans Bijlaard verfasserin aut In Polymers MDPI AG, 2011 10(2018), 8, p 845 (DE-627)61409612X (DE-600)2527146-5 20734360 nnns volume:10 year:2018 number:8, p 845 https://doi.org/10.3390/polym10080845 kostenfrei https://doaj.org/article/d38b9aa800c54406b6edc7c60aa7fc4e kostenfrei http://www.mdpi.com/2073-4360/10/8/845 kostenfrei https://doaj.org/toc/2073-4360 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2018 8, p 845 |
allfieldsSound |
10.3390/polym10080845 doi (DE-627)DOAJ010704272 (DE-599)DOAJd38b9aa800c54406b6edc7c60aa7fc4e DE-627 ger DE-627 rakwb eng QD241-441 Xu Jiang verfasserin aut Coupled Hygro-Mechanical Finite Element Method on Determination of the Interlaminar Shear Modulus of Glass Fiber-Reinforced Polymer Laminates in Bridge Decks under Hygrothermal Aging Effects 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To investigate the mechanical degradation of the shear properties of glass fiber-reinforced polymer (GFRP) laminates in bridge decks under hygrothermal aging effects, short-beam shear tests were performed following the ASTM test standard (ASTM D790-10A). Based on the coupled hygro-mechanical finite element (FE) analysis method, an inverse parameter identification approach based on short-beam shear tests was developed and then employed to determine the environment-dependent interlaminar shear modulus of GFRP laminates. Subsequently, the shear strength and modulus of dry (0% Mt/M∞), moisture unsaturated (30% Mt/M∞ and 50% Mt/M∞), and moisture saturated (100% Mt/M∞) specimens at test temperatures of both 20 °C and 40 °C were compared. One cycle of the moisture absorption–desorption process was also investigated to address how the moisture-induced residual damage degrades the shear properties of GFRP laminates. The results revealed that the shear strength and modulus of moisture-saturated GFRP laminates decreased significantly, and the elevated testing temperature (40 °C) aggravated moisture-induced mechanical degradation. Moreover, an unrecoverable loss of shear properties for the GFRP laminates enduring one cycle of the moisture absorption–desorption process was evident. fiber-reinforced polymer composite interlaminar shear modulus hygrothermal aging effect mechanical degradation short-beam test finite element method Organic chemistry Chengwei Luo verfasserin aut Xuhong Qiang verfasserin aut Qilin Zhang verfasserin aut Henk Kolstein verfasserin aut Frans Bijlaard verfasserin aut In Polymers MDPI AG, 2011 10(2018), 8, p 845 (DE-627)61409612X (DE-600)2527146-5 20734360 nnns volume:10 year:2018 number:8, p 845 https://doi.org/10.3390/polym10080845 kostenfrei https://doaj.org/article/d38b9aa800c54406b6edc7c60aa7fc4e kostenfrei http://www.mdpi.com/2073-4360/10/8/845 kostenfrei https://doaj.org/toc/2073-4360 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2018 8, p 845 |
language |
English |
source |
In Polymers 10(2018), 8, p 845 volume:10 year:2018 number:8, p 845 |
sourceStr |
In Polymers 10(2018), 8, p 845 volume:10 year:2018 number:8, p 845 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
fiber-reinforced polymer composite interlaminar shear modulus hygrothermal aging effect mechanical degradation short-beam test finite element method Organic chemistry |
isfreeaccess_bool |
true |
container_title |
Polymers |
authorswithroles_txt_mv |
Xu Jiang @@aut@@ Chengwei Luo @@aut@@ Xuhong Qiang @@aut@@ Qilin Zhang @@aut@@ Henk Kolstein @@aut@@ Frans Bijlaard @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
61409612X |
id |
DOAJ010704272 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ010704272</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310031219.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/polym10080845</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ010704272</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd38b9aa800c54406b6edc7c60aa7fc4e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD241-441</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xu Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Coupled Hygro-Mechanical Finite Element Method on Determination of the Interlaminar Shear Modulus of Glass Fiber-Reinforced Polymer Laminates in Bridge Decks under Hygrothermal Aging Effects</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To investigate the mechanical degradation of the shear properties of glass fiber-reinforced polymer (GFRP) laminates in bridge decks under hygrothermal aging effects, short-beam shear tests were performed following the ASTM test standard (ASTM D790-10A). Based on the coupled hygro-mechanical finite element (FE) analysis method, an inverse parameter identification approach based on short-beam shear tests was developed and then employed to determine the environment-dependent interlaminar shear modulus of GFRP laminates. Subsequently, the shear strength and modulus of dry (0% Mt/M&infin;), moisture unsaturated (30% Mt/M&infin; and 50% Mt/M&infin;), and moisture saturated (100% Mt/M&infin;) specimens at test temperatures of both 20 &deg;C and 40 &deg;C were compared. One cycle of the moisture absorption&ndash;desorption process was also investigated to address how the moisture-induced residual damage degrades the shear properties of GFRP laminates. The results revealed that the shear strength and modulus of moisture-saturated GFRP laminates decreased significantly, and the elevated testing temperature (40 &deg;C) aggravated moisture-induced mechanical degradation. Moreover, an unrecoverable loss of shear properties for the GFRP laminates enduring one cycle of the moisture absorption&ndash;desorption process was evident.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fiber-reinforced polymer composite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">interlaminar shear modulus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hygrothermal aging effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mechanical degradation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">short-beam test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite element method</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Organic chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengwei Luo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuhong Qiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qilin Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Henk Kolstein</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Frans Bijlaard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Polymers</subfield><subfield code="d">MDPI AG, 2011</subfield><subfield code="g">10(2018), 8, p 845</subfield><subfield code="w">(DE-627)61409612X</subfield><subfield code="w">(DE-600)2527146-5</subfield><subfield code="x">20734360</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:8, p 845</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/polym10080845</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d38b9aa800c54406b6edc7c60aa7fc4e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2073-4360/10/8/845</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4360</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2018</subfield><subfield code="e">8, p 845</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Xu Jiang |
spellingShingle |
Xu Jiang misc QD241-441 misc fiber-reinforced polymer composite misc interlaminar shear modulus misc hygrothermal aging effect misc mechanical degradation misc short-beam test misc finite element method misc Organic chemistry Coupled Hygro-Mechanical Finite Element Method on Determination of the Interlaminar Shear Modulus of Glass Fiber-Reinforced Polymer Laminates in Bridge Decks under Hygrothermal Aging Effects |
authorStr |
Xu Jiang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)61409612X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD241-441 |
illustrated |
Not Illustrated |
issn |
20734360 |
topic_title |
QD241-441 Coupled Hygro-Mechanical Finite Element Method on Determination of the Interlaminar Shear Modulus of Glass Fiber-Reinforced Polymer Laminates in Bridge Decks under Hygrothermal Aging Effects fiber-reinforced polymer composite interlaminar shear modulus hygrothermal aging effect mechanical degradation short-beam test finite element method |
topic |
misc QD241-441 misc fiber-reinforced polymer composite misc interlaminar shear modulus misc hygrothermal aging effect misc mechanical degradation misc short-beam test misc finite element method misc Organic chemistry |
topic_unstemmed |
misc QD241-441 misc fiber-reinforced polymer composite misc interlaminar shear modulus misc hygrothermal aging effect misc mechanical degradation misc short-beam test misc finite element method misc Organic chemistry |
topic_browse |
misc QD241-441 misc fiber-reinforced polymer composite misc interlaminar shear modulus misc hygrothermal aging effect misc mechanical degradation misc short-beam test misc finite element method misc Organic chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Polymers |
hierarchy_parent_id |
61409612X |
hierarchy_top_title |
Polymers |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)61409612X (DE-600)2527146-5 |
title |
Coupled Hygro-Mechanical Finite Element Method on Determination of the Interlaminar Shear Modulus of Glass Fiber-Reinforced Polymer Laminates in Bridge Decks under Hygrothermal Aging Effects |
ctrlnum |
(DE-627)DOAJ010704272 (DE-599)DOAJd38b9aa800c54406b6edc7c60aa7fc4e |
title_full |
Coupled Hygro-Mechanical Finite Element Method on Determination of the Interlaminar Shear Modulus of Glass Fiber-Reinforced Polymer Laminates in Bridge Decks under Hygrothermal Aging Effects |
author_sort |
Xu Jiang |
journal |
Polymers |
journalStr |
Polymers |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Xu Jiang Chengwei Luo Xuhong Qiang Qilin Zhang Henk Kolstein Frans Bijlaard |
container_volume |
10 |
class |
QD241-441 |
format_se |
Elektronische Aufsätze |
author-letter |
Xu Jiang |
doi_str_mv |
10.3390/polym10080845 |
author2-role |
verfasserin |
title_sort |
coupled hygro-mechanical finite element method on determination of the interlaminar shear modulus of glass fiber-reinforced polymer laminates in bridge decks under hygrothermal aging effects |
callnumber |
QD241-441 |
title_auth |
Coupled Hygro-Mechanical Finite Element Method on Determination of the Interlaminar Shear Modulus of Glass Fiber-Reinforced Polymer Laminates in Bridge Decks under Hygrothermal Aging Effects |
abstract |
To investigate the mechanical degradation of the shear properties of glass fiber-reinforced polymer (GFRP) laminates in bridge decks under hygrothermal aging effects, short-beam shear tests were performed following the ASTM test standard (ASTM D790-10A). Based on the coupled hygro-mechanical finite element (FE) analysis method, an inverse parameter identification approach based on short-beam shear tests was developed and then employed to determine the environment-dependent interlaminar shear modulus of GFRP laminates. Subsequently, the shear strength and modulus of dry (0% Mt/M∞), moisture unsaturated (30% Mt/M∞ and 50% Mt/M∞), and moisture saturated (100% Mt/M∞) specimens at test temperatures of both 20 °C and 40 °C were compared. One cycle of the moisture absorption–desorption process was also investigated to address how the moisture-induced residual damage degrades the shear properties of GFRP laminates. The results revealed that the shear strength and modulus of moisture-saturated GFRP laminates decreased significantly, and the elevated testing temperature (40 °C) aggravated moisture-induced mechanical degradation. Moreover, an unrecoverable loss of shear properties for the GFRP laminates enduring one cycle of the moisture absorption–desorption process was evident. |
abstractGer |
To investigate the mechanical degradation of the shear properties of glass fiber-reinforced polymer (GFRP) laminates in bridge decks under hygrothermal aging effects, short-beam shear tests were performed following the ASTM test standard (ASTM D790-10A). Based on the coupled hygro-mechanical finite element (FE) analysis method, an inverse parameter identification approach based on short-beam shear tests was developed and then employed to determine the environment-dependent interlaminar shear modulus of GFRP laminates. Subsequently, the shear strength and modulus of dry (0% Mt/M∞), moisture unsaturated (30% Mt/M∞ and 50% Mt/M∞), and moisture saturated (100% Mt/M∞) specimens at test temperatures of both 20 °C and 40 °C were compared. One cycle of the moisture absorption–desorption process was also investigated to address how the moisture-induced residual damage degrades the shear properties of GFRP laminates. The results revealed that the shear strength and modulus of moisture-saturated GFRP laminates decreased significantly, and the elevated testing temperature (40 °C) aggravated moisture-induced mechanical degradation. Moreover, an unrecoverable loss of shear properties for the GFRP laminates enduring one cycle of the moisture absorption–desorption process was evident. |
abstract_unstemmed |
To investigate the mechanical degradation of the shear properties of glass fiber-reinforced polymer (GFRP) laminates in bridge decks under hygrothermal aging effects, short-beam shear tests were performed following the ASTM test standard (ASTM D790-10A). Based on the coupled hygro-mechanical finite element (FE) analysis method, an inverse parameter identification approach based on short-beam shear tests was developed and then employed to determine the environment-dependent interlaminar shear modulus of GFRP laminates. Subsequently, the shear strength and modulus of dry (0% Mt/M∞), moisture unsaturated (30% Mt/M∞ and 50% Mt/M∞), and moisture saturated (100% Mt/M∞) specimens at test temperatures of both 20 °C and 40 °C were compared. One cycle of the moisture absorption–desorption process was also investigated to address how the moisture-induced residual damage degrades the shear properties of GFRP laminates. The results revealed that the shear strength and modulus of moisture-saturated GFRP laminates decreased significantly, and the elevated testing temperature (40 °C) aggravated moisture-induced mechanical degradation. Moreover, an unrecoverable loss of shear properties for the GFRP laminates enduring one cycle of the moisture absorption–desorption process was evident. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8, p 845 |
title_short |
Coupled Hygro-Mechanical Finite Element Method on Determination of the Interlaminar Shear Modulus of Glass Fiber-Reinforced Polymer Laminates in Bridge Decks under Hygrothermal Aging Effects |
url |
https://doi.org/10.3390/polym10080845 https://doaj.org/article/d38b9aa800c54406b6edc7c60aa7fc4e http://www.mdpi.com/2073-4360/10/8/845 https://doaj.org/toc/2073-4360 |
remote_bool |
true |
author2 |
Chengwei Luo Xuhong Qiang Qilin Zhang Henk Kolstein Frans Bijlaard |
author2Str |
Chengwei Luo Xuhong Qiang Qilin Zhang Henk Kolstein Frans Bijlaard |
ppnlink |
61409612X |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/polym10080845 |
callnumber-a |
QD241-441 |
up_date |
2024-07-03T16:18:10.004Z |
_version_ |
1803575351055482881 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ010704272</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310031219.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/polym10080845</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ010704272</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd38b9aa800c54406b6edc7c60aa7fc4e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD241-441</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xu Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Coupled Hygro-Mechanical Finite Element Method on Determination of the Interlaminar Shear Modulus of Glass Fiber-Reinforced Polymer Laminates in Bridge Decks under Hygrothermal Aging Effects</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To investigate the mechanical degradation of the shear properties of glass fiber-reinforced polymer (GFRP) laminates in bridge decks under hygrothermal aging effects, short-beam shear tests were performed following the ASTM test standard (ASTM D790-10A). Based on the coupled hygro-mechanical finite element (FE) analysis method, an inverse parameter identification approach based on short-beam shear tests was developed and then employed to determine the environment-dependent interlaminar shear modulus of GFRP laminates. Subsequently, the shear strength and modulus of dry (0% Mt/M&infin;), moisture unsaturated (30% Mt/M&infin; and 50% Mt/M&infin;), and moisture saturated (100% Mt/M&infin;) specimens at test temperatures of both 20 &deg;C and 40 &deg;C were compared. One cycle of the moisture absorption&ndash;desorption process was also investigated to address how the moisture-induced residual damage degrades the shear properties of GFRP laminates. The results revealed that the shear strength and modulus of moisture-saturated GFRP laminates decreased significantly, and the elevated testing temperature (40 &deg;C) aggravated moisture-induced mechanical degradation. Moreover, an unrecoverable loss of shear properties for the GFRP laminates enduring one cycle of the moisture absorption&ndash;desorption process was evident.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fiber-reinforced polymer composite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">interlaminar shear modulus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hygrothermal aging effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mechanical degradation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">short-beam test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite element method</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Organic chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengwei Luo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuhong Qiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qilin Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Henk Kolstein</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Frans Bijlaard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Polymers</subfield><subfield code="d">MDPI AG, 2011</subfield><subfield code="g">10(2018), 8, p 845</subfield><subfield code="w">(DE-627)61409612X</subfield><subfield code="w">(DE-600)2527146-5</subfield><subfield code="x">20734360</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:8, p 845</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/polym10080845</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d38b9aa800c54406b6edc7c60aa7fc4e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2073-4360/10/8/845</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4360</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2018</subfield><subfield code="e">8, p 845</subfield></datafield></record></collection>
|
score |
7.4019136 |