The Use of Conductive Polymers Embedded Macro Porous Pei and Ionic Liquid Form of Pei Cryogels for Potential Conductometric Sensor Application to CO<sub<2</sub<
Polyethyleneimine (PEI) cryogels with interconnected superporous morphology were synthesized via the cryopolymerization technique. Then, conductive polymers, poly(Aniline) (PANi), poly(Pyrrole) (PPy), and poly(Thiophene) (PTh) were prepared within these PEI cryogels. Then, the conductive polymer emb...
Ausführliche Beschreibung
Autor*in: |
Sahin Demirci [verfasserIn] Nurettin Sahiner [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
polymeric ionic liquid cryogel |
---|
Übergeordnetes Werk: |
In: Journal of Composites Science - MDPI AG, 2018, 4(2020), 1, p 27 |
---|---|
Übergeordnetes Werk: |
volume:4 ; year:2020 ; number:1, p 27 |
Links: |
---|
DOI / URN: |
10.3390/jcs4010027 |
---|
Katalog-ID: |
DOAJ010774386 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ010774386 | ||
003 | DE-627 | ||
005 | 20230310031605.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/jcs4010027 |2 doi | |
035 | |a (DE-627)DOAJ010774386 | ||
035 | |a (DE-599)DOAJefa97518742f4ccead6646075372ce3d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Sahin Demirci |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Use of Conductive Polymers Embedded Macro Porous Pei and Ionic Liquid Form of Pei Cryogels for Potential Conductometric Sensor Application to CO<sub<2</sub< |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Polyethyleneimine (PEI) cryogels with interconnected superporous morphology were synthesized via the cryopolymerization technique. Then, conductive polymers, poly(Aniline) (PANi), poly(Pyrrole) (PPy), and poly(Thiophene) (PTh) were prepared within these PEI cryogels. Then, the conductive polymer embedding PEI composites’ characterization was carried morphologically using scanning electron microscope (SEM) by means of Fourier Transform Infrared Radiation (FT-IR) spectrometer, and by means of electrical conductivity measurements using an electrometer. Among all the prepared cryogel conductive polymer composites, the highest value in terms of conductivity was determined for PEI/PANi cryogel composites with 4.80 × 10<sup<−3</sup< S.cm<sup<−1</sup<. Afterward, to prepare polymeric ionic liquid (PIL) forms of PEI and PEI/PANi composites. To assess the effect of anions on the conductivities of the prepared composites, PEI-based cryogels were anion ex-changed after protonation with HCl by treatment of aqueous solutions of sodium dicyanamide (Na<sup<+</sup<[N(CN)<sub<2</sub<]<sup<−</sup<), ammonium hexafluorophosphate (NH<sub<4</sub<<sup<+</sup<[PF<sub<6</sub<]<sup<−</sup<), sodium tetrafluoroborate (Na<sup<+</sup<[BF<sub<4</sub<]<sup<−</sup<), and potassium thiocyanate (K<sup<+</sup<[SCN]<sup<−</sup<), separately. Furthermore, PEI-based cryogel composites and their PIL forms were tested as a sensor for CO<sub<2</sub< gas. The higher conductivity changes were observed on bare PEI cryogel and PEI<sup<+</sup<[BF4]<sup<−</sup< PIL cryogels with 1000-fold decrease on conductivity upon 240 min CO<sub<2</sub< exposure. The sensitivity and recovery percent of bare PEI and PEI<sup<+</sup<[BF<sub<4</sub<]<sup<−</sup< PIL cryogels were shown almost the same with a two-fold decrease in the presence of 0.009 mole of CO<sub<2</sub< gas, and approximately 30% recovery after the fifth consecutive reuse. | ||
650 | 4 | |a pei cryogel | |
650 | 4 | |a polymeric ionic liquid cryogel | |
650 | 4 | |a cryogel/conductive polymer composite | |
650 | 4 | |a polymeric co<sub<2</sub< sensor | |
650 | 4 | |a conductometric sensor | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Nurettin Sahiner |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Composites Science |d MDPI AG, 2018 |g 4(2020), 1, p 27 |w (DE-627)1004949367 |x 2504477X |7 nnns |
773 | 1 | 8 | |g volume:4 |g year:2020 |g number:1, p 27 |
856 | 4 | 0 | |u https://doi.org/10.3390/jcs4010027 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/efa97518742f4ccead6646075372ce3d |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2504-477X/4/1/27 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2504-477X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 4 |j 2020 |e 1, p 27 |
author_variant |
s d sd n s ns |
---|---|
matchkey_str |
article:2504477X:2020----::huefodcieoyesmeddarprupininciudomfecyglfroetacnut |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.3390/jcs4010027 doi (DE-627)DOAJ010774386 (DE-599)DOAJefa97518742f4ccead6646075372ce3d DE-627 ger DE-627 rakwb eng Sahin Demirci verfasserin aut The Use of Conductive Polymers Embedded Macro Porous Pei and Ionic Liquid Form of Pei Cryogels for Potential Conductometric Sensor Application to CO<sub<2</sub< 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Polyethyleneimine (PEI) cryogels with interconnected superporous morphology were synthesized via the cryopolymerization technique. Then, conductive polymers, poly(Aniline) (PANi), poly(Pyrrole) (PPy), and poly(Thiophene) (PTh) were prepared within these PEI cryogels. Then, the conductive polymer embedding PEI composites’ characterization was carried morphologically using scanning electron microscope (SEM) by means of Fourier Transform Infrared Radiation (FT-IR) spectrometer, and by means of electrical conductivity measurements using an electrometer. Among all the prepared cryogel conductive polymer composites, the highest value in terms of conductivity was determined for PEI/PANi cryogel composites with 4.80 × 10<sup<−3</sup< S.cm<sup<−1</sup<. Afterward, to prepare polymeric ionic liquid (PIL) forms of PEI and PEI/PANi composites. To assess the effect of anions on the conductivities of the prepared composites, PEI-based cryogels were anion ex-changed after protonation with HCl by treatment of aqueous solutions of sodium dicyanamide (Na<sup<+</sup<[N(CN)<sub<2</sub<]<sup<−</sup<), ammonium hexafluorophosphate (NH<sub<4</sub<<sup<+</sup<[PF<sub<6</sub<]<sup<−</sup<), sodium tetrafluoroborate (Na<sup<+</sup<[BF<sub<4</sub<]<sup<−</sup<), and potassium thiocyanate (K<sup<+</sup<[SCN]<sup<−</sup<), separately. Furthermore, PEI-based cryogel composites and their PIL forms were tested as a sensor for CO<sub<2</sub< gas. The higher conductivity changes were observed on bare PEI cryogel and PEI<sup<+</sup<[BF4]<sup<−</sup< PIL cryogels with 1000-fold decrease on conductivity upon 240 min CO<sub<2</sub< exposure. The sensitivity and recovery percent of bare PEI and PEI<sup<+</sup<[BF<sub<4</sub<]<sup<−</sup< PIL cryogels were shown almost the same with a two-fold decrease in the presence of 0.009 mole of CO<sub<2</sub< gas, and approximately 30% recovery after the fifth consecutive reuse. pei cryogel polymeric ionic liquid cryogel cryogel/conductive polymer composite polymeric co<sub<2</sub< sensor conductometric sensor Technology T Science Q Nurettin Sahiner verfasserin aut In Journal of Composites Science MDPI AG, 2018 4(2020), 1, p 27 (DE-627)1004949367 2504477X nnns volume:4 year:2020 number:1, p 27 https://doi.org/10.3390/jcs4010027 kostenfrei https://doaj.org/article/efa97518742f4ccead6646075372ce3d kostenfrei https://www.mdpi.com/2504-477X/4/1/27 kostenfrei https://doaj.org/toc/2504-477X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2020 1, p 27 |
spelling |
10.3390/jcs4010027 doi (DE-627)DOAJ010774386 (DE-599)DOAJefa97518742f4ccead6646075372ce3d DE-627 ger DE-627 rakwb eng Sahin Demirci verfasserin aut The Use of Conductive Polymers Embedded Macro Porous Pei and Ionic Liquid Form of Pei Cryogels for Potential Conductometric Sensor Application to CO<sub<2</sub< 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Polyethyleneimine (PEI) cryogels with interconnected superporous morphology were synthesized via the cryopolymerization technique. Then, conductive polymers, poly(Aniline) (PANi), poly(Pyrrole) (PPy), and poly(Thiophene) (PTh) were prepared within these PEI cryogels. Then, the conductive polymer embedding PEI composites’ characterization was carried morphologically using scanning electron microscope (SEM) by means of Fourier Transform Infrared Radiation (FT-IR) spectrometer, and by means of electrical conductivity measurements using an electrometer. Among all the prepared cryogel conductive polymer composites, the highest value in terms of conductivity was determined for PEI/PANi cryogel composites with 4.80 × 10<sup<−3</sup< S.cm<sup<−1</sup<. Afterward, to prepare polymeric ionic liquid (PIL) forms of PEI and PEI/PANi composites. To assess the effect of anions on the conductivities of the prepared composites, PEI-based cryogels were anion ex-changed after protonation with HCl by treatment of aqueous solutions of sodium dicyanamide (Na<sup<+</sup<[N(CN)<sub<2</sub<]<sup<−</sup<), ammonium hexafluorophosphate (NH<sub<4</sub<<sup<+</sup<[PF<sub<6</sub<]<sup<−</sup<), sodium tetrafluoroborate (Na<sup<+</sup<[BF<sub<4</sub<]<sup<−</sup<), and potassium thiocyanate (K<sup<+</sup<[SCN]<sup<−</sup<), separately. Furthermore, PEI-based cryogel composites and their PIL forms were tested as a sensor for CO<sub<2</sub< gas. The higher conductivity changes were observed on bare PEI cryogel and PEI<sup<+</sup<[BF4]<sup<−</sup< PIL cryogels with 1000-fold decrease on conductivity upon 240 min CO<sub<2</sub< exposure. The sensitivity and recovery percent of bare PEI and PEI<sup<+</sup<[BF<sub<4</sub<]<sup<−</sup< PIL cryogels were shown almost the same with a two-fold decrease in the presence of 0.009 mole of CO<sub<2</sub< gas, and approximately 30% recovery after the fifth consecutive reuse. pei cryogel polymeric ionic liquid cryogel cryogel/conductive polymer composite polymeric co<sub<2</sub< sensor conductometric sensor Technology T Science Q Nurettin Sahiner verfasserin aut In Journal of Composites Science MDPI AG, 2018 4(2020), 1, p 27 (DE-627)1004949367 2504477X nnns volume:4 year:2020 number:1, p 27 https://doi.org/10.3390/jcs4010027 kostenfrei https://doaj.org/article/efa97518742f4ccead6646075372ce3d kostenfrei https://www.mdpi.com/2504-477X/4/1/27 kostenfrei https://doaj.org/toc/2504-477X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2020 1, p 27 |
allfields_unstemmed |
10.3390/jcs4010027 doi (DE-627)DOAJ010774386 (DE-599)DOAJefa97518742f4ccead6646075372ce3d DE-627 ger DE-627 rakwb eng Sahin Demirci verfasserin aut The Use of Conductive Polymers Embedded Macro Porous Pei and Ionic Liquid Form of Pei Cryogels for Potential Conductometric Sensor Application to CO<sub<2</sub< 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Polyethyleneimine (PEI) cryogels with interconnected superporous morphology were synthesized via the cryopolymerization technique. Then, conductive polymers, poly(Aniline) (PANi), poly(Pyrrole) (PPy), and poly(Thiophene) (PTh) were prepared within these PEI cryogels. Then, the conductive polymer embedding PEI composites’ characterization was carried morphologically using scanning electron microscope (SEM) by means of Fourier Transform Infrared Radiation (FT-IR) spectrometer, and by means of electrical conductivity measurements using an electrometer. Among all the prepared cryogel conductive polymer composites, the highest value in terms of conductivity was determined for PEI/PANi cryogel composites with 4.80 × 10<sup<−3</sup< S.cm<sup<−1</sup<. Afterward, to prepare polymeric ionic liquid (PIL) forms of PEI and PEI/PANi composites. To assess the effect of anions on the conductivities of the prepared composites, PEI-based cryogels were anion ex-changed after protonation with HCl by treatment of aqueous solutions of sodium dicyanamide (Na<sup<+</sup<[N(CN)<sub<2</sub<]<sup<−</sup<), ammonium hexafluorophosphate (NH<sub<4</sub<<sup<+</sup<[PF<sub<6</sub<]<sup<−</sup<), sodium tetrafluoroborate (Na<sup<+</sup<[BF<sub<4</sub<]<sup<−</sup<), and potassium thiocyanate (K<sup<+</sup<[SCN]<sup<−</sup<), separately. Furthermore, PEI-based cryogel composites and their PIL forms were tested as a sensor for CO<sub<2</sub< gas. The higher conductivity changes were observed on bare PEI cryogel and PEI<sup<+</sup<[BF4]<sup<−</sup< PIL cryogels with 1000-fold decrease on conductivity upon 240 min CO<sub<2</sub< exposure. The sensitivity and recovery percent of bare PEI and PEI<sup<+</sup<[BF<sub<4</sub<]<sup<−</sup< PIL cryogels were shown almost the same with a two-fold decrease in the presence of 0.009 mole of CO<sub<2</sub< gas, and approximately 30% recovery after the fifth consecutive reuse. pei cryogel polymeric ionic liquid cryogel cryogel/conductive polymer composite polymeric co<sub<2</sub< sensor conductometric sensor Technology T Science Q Nurettin Sahiner verfasserin aut In Journal of Composites Science MDPI AG, 2018 4(2020), 1, p 27 (DE-627)1004949367 2504477X nnns volume:4 year:2020 number:1, p 27 https://doi.org/10.3390/jcs4010027 kostenfrei https://doaj.org/article/efa97518742f4ccead6646075372ce3d kostenfrei https://www.mdpi.com/2504-477X/4/1/27 kostenfrei https://doaj.org/toc/2504-477X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2020 1, p 27 |
allfieldsGer |
10.3390/jcs4010027 doi (DE-627)DOAJ010774386 (DE-599)DOAJefa97518742f4ccead6646075372ce3d DE-627 ger DE-627 rakwb eng Sahin Demirci verfasserin aut The Use of Conductive Polymers Embedded Macro Porous Pei and Ionic Liquid Form of Pei Cryogels for Potential Conductometric Sensor Application to CO<sub<2</sub< 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Polyethyleneimine (PEI) cryogels with interconnected superporous morphology were synthesized via the cryopolymerization technique. Then, conductive polymers, poly(Aniline) (PANi), poly(Pyrrole) (PPy), and poly(Thiophene) (PTh) were prepared within these PEI cryogels. Then, the conductive polymer embedding PEI composites’ characterization was carried morphologically using scanning electron microscope (SEM) by means of Fourier Transform Infrared Radiation (FT-IR) spectrometer, and by means of electrical conductivity measurements using an electrometer. Among all the prepared cryogel conductive polymer composites, the highest value in terms of conductivity was determined for PEI/PANi cryogel composites with 4.80 × 10<sup<−3</sup< S.cm<sup<−1</sup<. Afterward, to prepare polymeric ionic liquid (PIL) forms of PEI and PEI/PANi composites. To assess the effect of anions on the conductivities of the prepared composites, PEI-based cryogels were anion ex-changed after protonation with HCl by treatment of aqueous solutions of sodium dicyanamide (Na<sup<+</sup<[N(CN)<sub<2</sub<]<sup<−</sup<), ammonium hexafluorophosphate (NH<sub<4</sub<<sup<+</sup<[PF<sub<6</sub<]<sup<−</sup<), sodium tetrafluoroborate (Na<sup<+</sup<[BF<sub<4</sub<]<sup<−</sup<), and potassium thiocyanate (K<sup<+</sup<[SCN]<sup<−</sup<), separately. Furthermore, PEI-based cryogel composites and their PIL forms were tested as a sensor for CO<sub<2</sub< gas. The higher conductivity changes were observed on bare PEI cryogel and PEI<sup<+</sup<[BF4]<sup<−</sup< PIL cryogels with 1000-fold decrease on conductivity upon 240 min CO<sub<2</sub< exposure. The sensitivity and recovery percent of bare PEI and PEI<sup<+</sup<[BF<sub<4</sub<]<sup<−</sup< PIL cryogels were shown almost the same with a two-fold decrease in the presence of 0.009 mole of CO<sub<2</sub< gas, and approximately 30% recovery after the fifth consecutive reuse. pei cryogel polymeric ionic liquid cryogel cryogel/conductive polymer composite polymeric co<sub<2</sub< sensor conductometric sensor Technology T Science Q Nurettin Sahiner verfasserin aut In Journal of Composites Science MDPI AG, 2018 4(2020), 1, p 27 (DE-627)1004949367 2504477X nnns volume:4 year:2020 number:1, p 27 https://doi.org/10.3390/jcs4010027 kostenfrei https://doaj.org/article/efa97518742f4ccead6646075372ce3d kostenfrei https://www.mdpi.com/2504-477X/4/1/27 kostenfrei https://doaj.org/toc/2504-477X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2020 1, p 27 |
allfieldsSound |
10.3390/jcs4010027 doi (DE-627)DOAJ010774386 (DE-599)DOAJefa97518742f4ccead6646075372ce3d DE-627 ger DE-627 rakwb eng Sahin Demirci verfasserin aut The Use of Conductive Polymers Embedded Macro Porous Pei and Ionic Liquid Form of Pei Cryogels for Potential Conductometric Sensor Application to CO<sub<2</sub< 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Polyethyleneimine (PEI) cryogels with interconnected superporous morphology were synthesized via the cryopolymerization technique. Then, conductive polymers, poly(Aniline) (PANi), poly(Pyrrole) (PPy), and poly(Thiophene) (PTh) were prepared within these PEI cryogels. Then, the conductive polymer embedding PEI composites’ characterization was carried morphologically using scanning electron microscope (SEM) by means of Fourier Transform Infrared Radiation (FT-IR) spectrometer, and by means of electrical conductivity measurements using an electrometer. Among all the prepared cryogel conductive polymer composites, the highest value in terms of conductivity was determined for PEI/PANi cryogel composites with 4.80 × 10<sup<−3</sup< S.cm<sup<−1</sup<. Afterward, to prepare polymeric ionic liquid (PIL) forms of PEI and PEI/PANi composites. To assess the effect of anions on the conductivities of the prepared composites, PEI-based cryogels were anion ex-changed after protonation with HCl by treatment of aqueous solutions of sodium dicyanamide (Na<sup<+</sup<[N(CN)<sub<2</sub<]<sup<−</sup<), ammonium hexafluorophosphate (NH<sub<4</sub<<sup<+</sup<[PF<sub<6</sub<]<sup<−</sup<), sodium tetrafluoroborate (Na<sup<+</sup<[BF<sub<4</sub<]<sup<−</sup<), and potassium thiocyanate (K<sup<+</sup<[SCN]<sup<−</sup<), separately. Furthermore, PEI-based cryogel composites and their PIL forms were tested as a sensor for CO<sub<2</sub< gas. The higher conductivity changes were observed on bare PEI cryogel and PEI<sup<+</sup<[BF4]<sup<−</sup< PIL cryogels with 1000-fold decrease on conductivity upon 240 min CO<sub<2</sub< exposure. The sensitivity and recovery percent of bare PEI and PEI<sup<+</sup<[BF<sub<4</sub<]<sup<−</sup< PIL cryogels were shown almost the same with a two-fold decrease in the presence of 0.009 mole of CO<sub<2</sub< gas, and approximately 30% recovery after the fifth consecutive reuse. pei cryogel polymeric ionic liquid cryogel cryogel/conductive polymer composite polymeric co<sub<2</sub< sensor conductometric sensor Technology T Science Q Nurettin Sahiner verfasserin aut In Journal of Composites Science MDPI AG, 2018 4(2020), 1, p 27 (DE-627)1004949367 2504477X nnns volume:4 year:2020 number:1, p 27 https://doi.org/10.3390/jcs4010027 kostenfrei https://doaj.org/article/efa97518742f4ccead6646075372ce3d kostenfrei https://www.mdpi.com/2504-477X/4/1/27 kostenfrei https://doaj.org/toc/2504-477X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2020 1, p 27 |
language |
English |
source |
In Journal of Composites Science 4(2020), 1, p 27 volume:4 year:2020 number:1, p 27 |
sourceStr |
In Journal of Composites Science 4(2020), 1, p 27 volume:4 year:2020 number:1, p 27 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
pei cryogel polymeric ionic liquid cryogel cryogel/conductive polymer composite polymeric co<sub<2</sub< sensor conductometric sensor Technology T Science Q |
isfreeaccess_bool |
true |
container_title |
Journal of Composites Science |
authorswithroles_txt_mv |
Sahin Demirci @@aut@@ Nurettin Sahiner @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
1004949367 |
id |
DOAJ010774386 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ010774386</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310031605.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jcs4010027</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ010774386</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJefa97518742f4ccead6646075372ce3d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sahin Demirci</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Use of Conductive Polymers Embedded Macro Porous Pei and Ionic Liquid Form of Pei Cryogels for Potential Conductometric Sensor Application to CO<sub<2</sub<</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Polyethyleneimine (PEI) cryogels with interconnected superporous morphology were synthesized via the cryopolymerization technique. Then, conductive polymers, poly(Aniline) (PANi), poly(Pyrrole) (PPy), and poly(Thiophene) (PTh) were prepared within these PEI cryogels. Then, the conductive polymer embedding PEI composites’ characterization was carried morphologically using scanning electron microscope (SEM) by means of Fourier Transform Infrared Radiation (FT-IR) spectrometer, and by means of electrical conductivity measurements using an electrometer. Among all the prepared cryogel conductive polymer composites, the highest value in terms of conductivity was determined for PEI/PANi cryogel composites with 4.80 × 10<sup<−3</sup< S.cm<sup<−1</sup<. Afterward, to prepare polymeric ionic liquid (PIL) forms of PEI and PEI/PANi composites. To assess the effect of anions on the conductivities of the prepared composites, PEI-based cryogels were anion ex-changed after protonation with HCl by treatment of aqueous solutions of sodium dicyanamide (Na<sup<+</sup<[N(CN)<sub<2</sub<]<sup<−</sup<), ammonium hexafluorophosphate (NH<sub<4</sub<<sup<+</sup<[PF<sub<6</sub<]<sup<−</sup<), sodium tetrafluoroborate (Na<sup<+</sup<[BF<sub<4</sub<]<sup<−</sup<), and potassium thiocyanate (K<sup<+</sup<[SCN]<sup<−</sup<), separately. Furthermore, PEI-based cryogel composites and their PIL forms were tested as a sensor for CO<sub<2</sub< gas. The higher conductivity changes were observed on bare PEI cryogel and PEI<sup<+</sup<[BF4]<sup<−</sup< PIL cryogels with 1000-fold decrease on conductivity upon 240 min CO<sub<2</sub< exposure. The sensitivity and recovery percent of bare PEI and PEI<sup<+</sup<[BF<sub<4</sub<]<sup<−</sup< PIL cryogels were shown almost the same with a two-fold decrease in the presence of 0.009 mole of CO<sub<2</sub< gas, and approximately 30% recovery after the fifth consecutive reuse.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pei cryogel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polymeric ionic liquid cryogel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cryogel/conductive polymer composite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polymeric co<sub<2</sub< sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">conductometric sensor</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nurettin Sahiner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Composites Science</subfield><subfield code="d">MDPI AG, 2018</subfield><subfield code="g">4(2020), 1, p 27</subfield><subfield code="w">(DE-627)1004949367</subfield><subfield code="x">2504477X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1, p 27</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jcs4010027</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/efa97518742f4ccead6646075372ce3d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2504-477X/4/1/27</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2504-477X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2020</subfield><subfield code="e">1, p 27</subfield></datafield></record></collection>
|
author |
Sahin Demirci |
spellingShingle |
Sahin Demirci misc pei cryogel misc polymeric ionic liquid cryogel misc cryogel/conductive polymer composite misc polymeric co<sub<2</sub< sensor misc conductometric sensor misc Technology misc T misc Science misc Q The Use of Conductive Polymers Embedded Macro Porous Pei and Ionic Liquid Form of Pei Cryogels for Potential Conductometric Sensor Application to CO<sub<2</sub< |
authorStr |
Sahin Demirci |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1004949367 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2504477X |
topic_title |
The Use of Conductive Polymers Embedded Macro Porous Pei and Ionic Liquid Form of Pei Cryogels for Potential Conductometric Sensor Application to CO<sub<2</sub< pei cryogel polymeric ionic liquid cryogel cryogel/conductive polymer composite polymeric co<sub<2</sub< sensor conductometric sensor |
topic |
misc pei cryogel misc polymeric ionic liquid cryogel misc cryogel/conductive polymer composite misc polymeric co<sub<2</sub< sensor misc conductometric sensor misc Technology misc T misc Science misc Q |
topic_unstemmed |
misc pei cryogel misc polymeric ionic liquid cryogel misc cryogel/conductive polymer composite misc polymeric co<sub<2</sub< sensor misc conductometric sensor misc Technology misc T misc Science misc Q |
topic_browse |
misc pei cryogel misc polymeric ionic liquid cryogel misc cryogel/conductive polymer composite misc polymeric co<sub<2</sub< sensor misc conductometric sensor misc Technology misc T misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Composites Science |
hierarchy_parent_id |
1004949367 |
hierarchy_top_title |
Journal of Composites Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1004949367 |
title |
The Use of Conductive Polymers Embedded Macro Porous Pei and Ionic Liquid Form of Pei Cryogels for Potential Conductometric Sensor Application to CO<sub<2</sub< |
ctrlnum |
(DE-627)DOAJ010774386 (DE-599)DOAJefa97518742f4ccead6646075372ce3d |
title_full |
The Use of Conductive Polymers Embedded Macro Porous Pei and Ionic Liquid Form of Pei Cryogels for Potential Conductometric Sensor Application to CO<sub<2</sub< |
author_sort |
Sahin Demirci |
journal |
Journal of Composites Science |
journalStr |
Journal of Composites Science |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Sahin Demirci Nurettin Sahiner |
container_volume |
4 |
format_se |
Elektronische Aufsätze |
author-letter |
Sahin Demirci |
doi_str_mv |
10.3390/jcs4010027 |
author2-role |
verfasserin |
title_sort |
use of conductive polymers embedded macro porous pei and ionic liquid form of pei cryogels for potential conductometric sensor application to co<sub<2</sub< |
title_auth |
The Use of Conductive Polymers Embedded Macro Porous Pei and Ionic Liquid Form of Pei Cryogels for Potential Conductometric Sensor Application to CO<sub<2</sub< |
abstract |
Polyethyleneimine (PEI) cryogels with interconnected superporous morphology were synthesized via the cryopolymerization technique. Then, conductive polymers, poly(Aniline) (PANi), poly(Pyrrole) (PPy), and poly(Thiophene) (PTh) were prepared within these PEI cryogels. Then, the conductive polymer embedding PEI composites’ characterization was carried morphologically using scanning electron microscope (SEM) by means of Fourier Transform Infrared Radiation (FT-IR) spectrometer, and by means of electrical conductivity measurements using an electrometer. Among all the prepared cryogel conductive polymer composites, the highest value in terms of conductivity was determined for PEI/PANi cryogel composites with 4.80 × 10<sup<−3</sup< S.cm<sup<−1</sup<. Afterward, to prepare polymeric ionic liquid (PIL) forms of PEI and PEI/PANi composites. To assess the effect of anions on the conductivities of the prepared composites, PEI-based cryogels were anion ex-changed after protonation with HCl by treatment of aqueous solutions of sodium dicyanamide (Na<sup<+</sup<[N(CN)<sub<2</sub<]<sup<−</sup<), ammonium hexafluorophosphate (NH<sub<4</sub<<sup<+</sup<[PF<sub<6</sub<]<sup<−</sup<), sodium tetrafluoroborate (Na<sup<+</sup<[BF<sub<4</sub<]<sup<−</sup<), and potassium thiocyanate (K<sup<+</sup<[SCN]<sup<−</sup<), separately. Furthermore, PEI-based cryogel composites and their PIL forms were tested as a sensor for CO<sub<2</sub< gas. The higher conductivity changes were observed on bare PEI cryogel and PEI<sup<+</sup<[BF4]<sup<−</sup< PIL cryogels with 1000-fold decrease on conductivity upon 240 min CO<sub<2</sub< exposure. The sensitivity and recovery percent of bare PEI and PEI<sup<+</sup<[BF<sub<4</sub<]<sup<−</sup< PIL cryogels were shown almost the same with a two-fold decrease in the presence of 0.009 mole of CO<sub<2</sub< gas, and approximately 30% recovery after the fifth consecutive reuse. |
abstractGer |
Polyethyleneimine (PEI) cryogels with interconnected superporous morphology were synthesized via the cryopolymerization technique. Then, conductive polymers, poly(Aniline) (PANi), poly(Pyrrole) (PPy), and poly(Thiophene) (PTh) were prepared within these PEI cryogels. Then, the conductive polymer embedding PEI composites’ characterization was carried morphologically using scanning electron microscope (SEM) by means of Fourier Transform Infrared Radiation (FT-IR) spectrometer, and by means of electrical conductivity measurements using an electrometer. Among all the prepared cryogel conductive polymer composites, the highest value in terms of conductivity was determined for PEI/PANi cryogel composites with 4.80 × 10<sup<−3</sup< S.cm<sup<−1</sup<. Afterward, to prepare polymeric ionic liquid (PIL) forms of PEI and PEI/PANi composites. To assess the effect of anions on the conductivities of the prepared composites, PEI-based cryogels were anion ex-changed after protonation with HCl by treatment of aqueous solutions of sodium dicyanamide (Na<sup<+</sup<[N(CN)<sub<2</sub<]<sup<−</sup<), ammonium hexafluorophosphate (NH<sub<4</sub<<sup<+</sup<[PF<sub<6</sub<]<sup<−</sup<), sodium tetrafluoroborate (Na<sup<+</sup<[BF<sub<4</sub<]<sup<−</sup<), and potassium thiocyanate (K<sup<+</sup<[SCN]<sup<−</sup<), separately. Furthermore, PEI-based cryogel composites and their PIL forms were tested as a sensor for CO<sub<2</sub< gas. The higher conductivity changes were observed on bare PEI cryogel and PEI<sup<+</sup<[BF4]<sup<−</sup< PIL cryogels with 1000-fold decrease on conductivity upon 240 min CO<sub<2</sub< exposure. The sensitivity and recovery percent of bare PEI and PEI<sup<+</sup<[BF<sub<4</sub<]<sup<−</sup< PIL cryogels were shown almost the same with a two-fold decrease in the presence of 0.009 mole of CO<sub<2</sub< gas, and approximately 30% recovery after the fifth consecutive reuse. |
abstract_unstemmed |
Polyethyleneimine (PEI) cryogels with interconnected superporous morphology were synthesized via the cryopolymerization technique. Then, conductive polymers, poly(Aniline) (PANi), poly(Pyrrole) (PPy), and poly(Thiophene) (PTh) were prepared within these PEI cryogels. Then, the conductive polymer embedding PEI composites’ characterization was carried morphologically using scanning electron microscope (SEM) by means of Fourier Transform Infrared Radiation (FT-IR) spectrometer, and by means of electrical conductivity measurements using an electrometer. Among all the prepared cryogel conductive polymer composites, the highest value in terms of conductivity was determined for PEI/PANi cryogel composites with 4.80 × 10<sup<−3</sup< S.cm<sup<−1</sup<. Afterward, to prepare polymeric ionic liquid (PIL) forms of PEI and PEI/PANi composites. To assess the effect of anions on the conductivities of the prepared composites, PEI-based cryogels were anion ex-changed after protonation with HCl by treatment of aqueous solutions of sodium dicyanamide (Na<sup<+</sup<[N(CN)<sub<2</sub<]<sup<−</sup<), ammonium hexafluorophosphate (NH<sub<4</sub<<sup<+</sup<[PF<sub<6</sub<]<sup<−</sup<), sodium tetrafluoroborate (Na<sup<+</sup<[BF<sub<4</sub<]<sup<−</sup<), and potassium thiocyanate (K<sup<+</sup<[SCN]<sup<−</sup<), separately. Furthermore, PEI-based cryogel composites and their PIL forms were tested as a sensor for CO<sub<2</sub< gas. The higher conductivity changes were observed on bare PEI cryogel and PEI<sup<+</sup<[BF4]<sup<−</sup< PIL cryogels with 1000-fold decrease on conductivity upon 240 min CO<sub<2</sub< exposure. The sensitivity and recovery percent of bare PEI and PEI<sup<+</sup<[BF<sub<4</sub<]<sup<−</sup< PIL cryogels were shown almost the same with a two-fold decrease in the presence of 0.009 mole of CO<sub<2</sub< gas, and approximately 30% recovery after the fifth consecutive reuse. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 27 |
title_short |
The Use of Conductive Polymers Embedded Macro Porous Pei and Ionic Liquid Form of Pei Cryogels for Potential Conductometric Sensor Application to CO<sub<2</sub< |
url |
https://doi.org/10.3390/jcs4010027 https://doaj.org/article/efa97518742f4ccead6646075372ce3d https://www.mdpi.com/2504-477X/4/1/27 https://doaj.org/toc/2504-477X |
remote_bool |
true |
author2 |
Nurettin Sahiner |
author2Str |
Nurettin Sahiner |
ppnlink |
1004949367 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/jcs4010027 |
up_date |
2024-07-03T16:41:44.967Z |
_version_ |
1803576834756968448 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ010774386</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310031605.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jcs4010027</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ010774386</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJefa97518742f4ccead6646075372ce3d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sahin Demirci</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Use of Conductive Polymers Embedded Macro Porous Pei and Ionic Liquid Form of Pei Cryogels for Potential Conductometric Sensor Application to CO<sub<2</sub<</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Polyethyleneimine (PEI) cryogels with interconnected superporous morphology were synthesized via the cryopolymerization technique. Then, conductive polymers, poly(Aniline) (PANi), poly(Pyrrole) (PPy), and poly(Thiophene) (PTh) were prepared within these PEI cryogels. Then, the conductive polymer embedding PEI composites’ characterization was carried morphologically using scanning electron microscope (SEM) by means of Fourier Transform Infrared Radiation (FT-IR) spectrometer, and by means of electrical conductivity measurements using an electrometer. Among all the prepared cryogel conductive polymer composites, the highest value in terms of conductivity was determined for PEI/PANi cryogel composites with 4.80 × 10<sup<−3</sup< S.cm<sup<−1</sup<. Afterward, to prepare polymeric ionic liquid (PIL) forms of PEI and PEI/PANi composites. To assess the effect of anions on the conductivities of the prepared composites, PEI-based cryogels were anion ex-changed after protonation with HCl by treatment of aqueous solutions of sodium dicyanamide (Na<sup<+</sup<[N(CN)<sub<2</sub<]<sup<−</sup<), ammonium hexafluorophosphate (NH<sub<4</sub<<sup<+</sup<[PF<sub<6</sub<]<sup<−</sup<), sodium tetrafluoroborate (Na<sup<+</sup<[BF<sub<4</sub<]<sup<−</sup<), and potassium thiocyanate (K<sup<+</sup<[SCN]<sup<−</sup<), separately. Furthermore, PEI-based cryogel composites and their PIL forms were tested as a sensor for CO<sub<2</sub< gas. The higher conductivity changes were observed on bare PEI cryogel and PEI<sup<+</sup<[BF4]<sup<−</sup< PIL cryogels with 1000-fold decrease on conductivity upon 240 min CO<sub<2</sub< exposure. The sensitivity and recovery percent of bare PEI and PEI<sup<+</sup<[BF<sub<4</sub<]<sup<−</sup< PIL cryogels were shown almost the same with a two-fold decrease in the presence of 0.009 mole of CO<sub<2</sub< gas, and approximately 30% recovery after the fifth consecutive reuse.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pei cryogel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polymeric ionic liquid cryogel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cryogel/conductive polymer composite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polymeric co<sub<2</sub< sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">conductometric sensor</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nurettin Sahiner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Composites Science</subfield><subfield code="d">MDPI AG, 2018</subfield><subfield code="g">4(2020), 1, p 27</subfield><subfield code="w">(DE-627)1004949367</subfield><subfield code="x">2504477X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1, p 27</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jcs4010027</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/efa97518742f4ccead6646075372ce3d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2504-477X/4/1/27</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2504-477X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2020</subfield><subfield code="e">1, p 27</subfield></datafield></record></collection>
|
score |
7.402128 |