Key stress indicators from chlorophyll fluorescence in five desert plant species
Pulse-amplitude modulated chlorophyll fluorescence (ChlF) is widely used to measure environmental stress in plants. Yet, its continuous, long-term usage in situ is challenged due to the lack of appropriate daytime indicators. We investigated the prospect of creating new daytime indicators based on a...
Ausführliche Beschreibung
Autor*in: |
Chuan Jin [verfasserIn] Tianshan Zha [verfasserIn] Charles P.-A. Bourque [verfasserIn] Peng Liu [verfasserIn] Xin Jia [verfasserIn] Yun Tian [verfasserIn] Xinhao Li [verfasserIn] Xinyue Liu [verfasserIn] Xiaonan Guo [verfasserIn] Mingze Xu [verfasserIn] Xiaoyu Kang [verfasserIn] Zifan Guo [verfasserIn] Ning Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Ecological Indicators - Elsevier, 2021, 145(2022), Seite 109679- |
---|---|
Übergeordnetes Werk: |
volume:145 ; year:2022 ; pages:109679- |
Links: |
---|
DOI / URN: |
10.1016/j.ecolind.2022.109679 |
---|
Katalog-ID: |
DOAJ011075678 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ011075678 | ||
003 | DE-627 | ||
005 | 20230307025842.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ecolind.2022.109679 |2 doi | |
035 | |a (DE-627)DOAJ011075678 | ||
035 | |a (DE-599)DOAJ97fa5588dbc141088677f9a6bcb8c464 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH540-549.5 | |
100 | 0 | |a Chuan Jin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Key stress indicators from chlorophyll fluorescence in five desert plant species |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Pulse-amplitude modulated chlorophyll fluorescence (ChlF) is widely used to measure environmental stress in plants. Yet, its continuous, long-term usage in situ is challenged due to the lack of appropriate daytime indicators. We investigated the prospect of creating new daytime indicators based on an application of linear regression on daily measurements of photochemical efficiency (ФPSII) and photosynthetically active radiation acquired in situ at 30-minute intervals. Daily regression parameters, thus generated, were subsequently used in a broader context of desert-plant response to environmental change. Here, we compared parametric and non-parametric methods to test the feasibility of daytime-based regression parameters, i.e., maximal quantum yield of photosystem II photochemistry (Fv/Fm) and daily mean ФPSII, in gauging physiological response in three shrub and two herb species as influenced by eight environmental variables. Results demonstrated that: (i) Random Forest (RF; a non-parametric method) provided the best assessment of interaction between ChlF-based parameters and environmental variables, compared with multiple linear regression (MLR; a conventional parametric method); (ii) variable importance and partial dependence plots indicated that the daily regression parameters of the ФPSII-to- photosynthetic photon flux density relationship (y-intercept and slope) were superior to those of ФPSII and Fv/Fm; and (iii) compared with Fv/Fm, the y-intercept and slope improved discrimination of interspecific differences (p < 0.05). Our research showed that the regression y-intercept and slope can serve as practical daytime indicators of desert-plant photosynthetic physiology in field applications of continuous ChlF measurements. RF is extremely skilled at capturing nonlinearities in eco-environmental interactions compared with standard parametric methods. This new method provides a basis for the collection of key ecological information in assessing desert-plant physiological response to environmental variability. | ||
650 | 4 | |a Chlorophyll fluorescence | |
650 | 4 | |a Desert species | |
650 | 4 | |a Dryland | |
650 | 4 | |a Environmental stress | |
650 | 4 | |a Random forest | |
650 | 4 | |a Photosystem II photochemistry | |
653 | 0 | |a Ecology | |
700 | 0 | |a Tianshan Zha |e verfasserin |4 aut | |
700 | 0 | |a Charles P.-A. Bourque |e verfasserin |4 aut | |
700 | 0 | |a Peng Liu |e verfasserin |4 aut | |
700 | 0 | |a Xin Jia |e verfasserin |4 aut | |
700 | 0 | |a Yun Tian |e verfasserin |4 aut | |
700 | 0 | |a Xinhao Li |e verfasserin |4 aut | |
700 | 0 | |a Xinyue Liu |e verfasserin |4 aut | |
700 | 0 | |a Xiaonan Guo |e verfasserin |4 aut | |
700 | 0 | |a Mingze Xu |e verfasserin |4 aut | |
700 | 0 | |a Xiaoyu Kang |e verfasserin |4 aut | |
700 | 0 | |a Zifan Guo |e verfasserin |4 aut | |
700 | 0 | |a Ning Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Ecological Indicators |d Elsevier, 2021 |g 145(2022), Seite 109679- |w (DE-627)338074163 |w (DE-600)2063587-4 |x 18727034 |7 nnns |
773 | 1 | 8 | |g volume:145 |g year:2022 |g pages:109679- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ecolind.2022.109679 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/97fa5588dbc141088677f9a6bcb8c464 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S1470160X22011529 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1470-160X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 145 |j 2022 |h 109679- |
author_variant |
c j cj t z tz c p a b cpab p l pl x j xj y t yt x l xl x l xl x g xg m x mx x k xk z g zg n w nw |
---|---|
matchkey_str |
article:18727034:2022----::esrsidctrfoclrpylloecneni |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QH |
publishDate |
2022 |
allfields |
10.1016/j.ecolind.2022.109679 doi (DE-627)DOAJ011075678 (DE-599)DOAJ97fa5588dbc141088677f9a6bcb8c464 DE-627 ger DE-627 rakwb eng QH540-549.5 Chuan Jin verfasserin aut Key stress indicators from chlorophyll fluorescence in five desert plant species 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Pulse-amplitude modulated chlorophyll fluorescence (ChlF) is widely used to measure environmental stress in plants. Yet, its continuous, long-term usage in situ is challenged due to the lack of appropriate daytime indicators. We investigated the prospect of creating new daytime indicators based on an application of linear regression on daily measurements of photochemical efficiency (ФPSII) and photosynthetically active radiation acquired in situ at 30-minute intervals. Daily regression parameters, thus generated, were subsequently used in a broader context of desert-plant response to environmental change. Here, we compared parametric and non-parametric methods to test the feasibility of daytime-based regression parameters, i.e., maximal quantum yield of photosystem II photochemistry (Fv/Fm) and daily mean ФPSII, in gauging physiological response in three shrub and two herb species as influenced by eight environmental variables. Results demonstrated that: (i) Random Forest (RF; a non-parametric method) provided the best assessment of interaction between ChlF-based parameters and environmental variables, compared with multiple linear regression (MLR; a conventional parametric method); (ii) variable importance and partial dependence plots indicated that the daily regression parameters of the ФPSII-to- photosynthetic photon flux density relationship (y-intercept and slope) were superior to those of ФPSII and Fv/Fm; and (iii) compared with Fv/Fm, the y-intercept and slope improved discrimination of interspecific differences (p < 0.05). Our research showed that the regression y-intercept and slope can serve as practical daytime indicators of desert-plant photosynthetic physiology in field applications of continuous ChlF measurements. RF is extremely skilled at capturing nonlinearities in eco-environmental interactions compared with standard parametric methods. This new method provides a basis for the collection of key ecological information in assessing desert-plant physiological response to environmental variability. Chlorophyll fluorescence Desert species Dryland Environmental stress Random forest Photosystem II photochemistry Ecology Tianshan Zha verfasserin aut Charles P.-A. Bourque verfasserin aut Peng Liu verfasserin aut Xin Jia verfasserin aut Yun Tian verfasserin aut Xinhao Li verfasserin aut Xinyue Liu verfasserin aut Xiaonan Guo verfasserin aut Mingze Xu verfasserin aut Xiaoyu Kang verfasserin aut Zifan Guo verfasserin aut Ning Wang verfasserin aut In Ecological Indicators Elsevier, 2021 145(2022), Seite 109679- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:145 year:2022 pages:109679- https://doi.org/10.1016/j.ecolind.2022.109679 kostenfrei https://doaj.org/article/97fa5588dbc141088677f9a6bcb8c464 kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X22011529 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 145 2022 109679- |
spelling |
10.1016/j.ecolind.2022.109679 doi (DE-627)DOAJ011075678 (DE-599)DOAJ97fa5588dbc141088677f9a6bcb8c464 DE-627 ger DE-627 rakwb eng QH540-549.5 Chuan Jin verfasserin aut Key stress indicators from chlorophyll fluorescence in five desert plant species 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Pulse-amplitude modulated chlorophyll fluorescence (ChlF) is widely used to measure environmental stress in plants. Yet, its continuous, long-term usage in situ is challenged due to the lack of appropriate daytime indicators. We investigated the prospect of creating new daytime indicators based on an application of linear regression on daily measurements of photochemical efficiency (ФPSII) and photosynthetically active radiation acquired in situ at 30-minute intervals. Daily regression parameters, thus generated, were subsequently used in a broader context of desert-plant response to environmental change. Here, we compared parametric and non-parametric methods to test the feasibility of daytime-based regression parameters, i.e., maximal quantum yield of photosystem II photochemistry (Fv/Fm) and daily mean ФPSII, in gauging physiological response in three shrub and two herb species as influenced by eight environmental variables. Results demonstrated that: (i) Random Forest (RF; a non-parametric method) provided the best assessment of interaction between ChlF-based parameters and environmental variables, compared with multiple linear regression (MLR; a conventional parametric method); (ii) variable importance and partial dependence plots indicated that the daily regression parameters of the ФPSII-to- photosynthetic photon flux density relationship (y-intercept and slope) were superior to those of ФPSII and Fv/Fm; and (iii) compared with Fv/Fm, the y-intercept and slope improved discrimination of interspecific differences (p < 0.05). Our research showed that the regression y-intercept and slope can serve as practical daytime indicators of desert-plant photosynthetic physiology in field applications of continuous ChlF measurements. RF is extremely skilled at capturing nonlinearities in eco-environmental interactions compared with standard parametric methods. This new method provides a basis for the collection of key ecological information in assessing desert-plant physiological response to environmental variability. Chlorophyll fluorescence Desert species Dryland Environmental stress Random forest Photosystem II photochemistry Ecology Tianshan Zha verfasserin aut Charles P.-A. Bourque verfasserin aut Peng Liu verfasserin aut Xin Jia verfasserin aut Yun Tian verfasserin aut Xinhao Li verfasserin aut Xinyue Liu verfasserin aut Xiaonan Guo verfasserin aut Mingze Xu verfasserin aut Xiaoyu Kang verfasserin aut Zifan Guo verfasserin aut Ning Wang verfasserin aut In Ecological Indicators Elsevier, 2021 145(2022), Seite 109679- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:145 year:2022 pages:109679- https://doi.org/10.1016/j.ecolind.2022.109679 kostenfrei https://doaj.org/article/97fa5588dbc141088677f9a6bcb8c464 kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X22011529 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 145 2022 109679- |
allfields_unstemmed |
10.1016/j.ecolind.2022.109679 doi (DE-627)DOAJ011075678 (DE-599)DOAJ97fa5588dbc141088677f9a6bcb8c464 DE-627 ger DE-627 rakwb eng QH540-549.5 Chuan Jin verfasserin aut Key stress indicators from chlorophyll fluorescence in five desert plant species 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Pulse-amplitude modulated chlorophyll fluorescence (ChlF) is widely used to measure environmental stress in plants. Yet, its continuous, long-term usage in situ is challenged due to the lack of appropriate daytime indicators. We investigated the prospect of creating new daytime indicators based on an application of linear regression on daily measurements of photochemical efficiency (ФPSII) and photosynthetically active radiation acquired in situ at 30-minute intervals. Daily regression parameters, thus generated, were subsequently used in a broader context of desert-plant response to environmental change. Here, we compared parametric and non-parametric methods to test the feasibility of daytime-based regression parameters, i.e., maximal quantum yield of photosystem II photochemistry (Fv/Fm) and daily mean ФPSII, in gauging physiological response in three shrub and two herb species as influenced by eight environmental variables. Results demonstrated that: (i) Random Forest (RF; a non-parametric method) provided the best assessment of interaction between ChlF-based parameters and environmental variables, compared with multiple linear regression (MLR; a conventional parametric method); (ii) variable importance and partial dependence plots indicated that the daily regression parameters of the ФPSII-to- photosynthetic photon flux density relationship (y-intercept and slope) were superior to those of ФPSII and Fv/Fm; and (iii) compared with Fv/Fm, the y-intercept and slope improved discrimination of interspecific differences (p < 0.05). Our research showed that the regression y-intercept and slope can serve as practical daytime indicators of desert-plant photosynthetic physiology in field applications of continuous ChlF measurements. RF is extremely skilled at capturing nonlinearities in eco-environmental interactions compared with standard parametric methods. This new method provides a basis for the collection of key ecological information in assessing desert-plant physiological response to environmental variability. Chlorophyll fluorescence Desert species Dryland Environmental stress Random forest Photosystem II photochemistry Ecology Tianshan Zha verfasserin aut Charles P.-A. Bourque verfasserin aut Peng Liu verfasserin aut Xin Jia verfasserin aut Yun Tian verfasserin aut Xinhao Li verfasserin aut Xinyue Liu verfasserin aut Xiaonan Guo verfasserin aut Mingze Xu verfasserin aut Xiaoyu Kang verfasserin aut Zifan Guo verfasserin aut Ning Wang verfasserin aut In Ecological Indicators Elsevier, 2021 145(2022), Seite 109679- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:145 year:2022 pages:109679- https://doi.org/10.1016/j.ecolind.2022.109679 kostenfrei https://doaj.org/article/97fa5588dbc141088677f9a6bcb8c464 kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X22011529 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 145 2022 109679- |
allfieldsGer |
10.1016/j.ecolind.2022.109679 doi (DE-627)DOAJ011075678 (DE-599)DOAJ97fa5588dbc141088677f9a6bcb8c464 DE-627 ger DE-627 rakwb eng QH540-549.5 Chuan Jin verfasserin aut Key stress indicators from chlorophyll fluorescence in five desert plant species 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Pulse-amplitude modulated chlorophyll fluorescence (ChlF) is widely used to measure environmental stress in plants. Yet, its continuous, long-term usage in situ is challenged due to the lack of appropriate daytime indicators. We investigated the prospect of creating new daytime indicators based on an application of linear regression on daily measurements of photochemical efficiency (ФPSII) and photosynthetically active radiation acquired in situ at 30-minute intervals. Daily regression parameters, thus generated, were subsequently used in a broader context of desert-plant response to environmental change. Here, we compared parametric and non-parametric methods to test the feasibility of daytime-based regression parameters, i.e., maximal quantum yield of photosystem II photochemistry (Fv/Fm) and daily mean ФPSII, in gauging physiological response in three shrub and two herb species as influenced by eight environmental variables. Results demonstrated that: (i) Random Forest (RF; a non-parametric method) provided the best assessment of interaction between ChlF-based parameters and environmental variables, compared with multiple linear regression (MLR; a conventional parametric method); (ii) variable importance and partial dependence plots indicated that the daily regression parameters of the ФPSII-to- photosynthetic photon flux density relationship (y-intercept and slope) were superior to those of ФPSII and Fv/Fm; and (iii) compared with Fv/Fm, the y-intercept and slope improved discrimination of interspecific differences (p < 0.05). Our research showed that the regression y-intercept and slope can serve as practical daytime indicators of desert-plant photosynthetic physiology in field applications of continuous ChlF measurements. RF is extremely skilled at capturing nonlinearities in eco-environmental interactions compared with standard parametric methods. This new method provides a basis for the collection of key ecological information in assessing desert-plant physiological response to environmental variability. Chlorophyll fluorescence Desert species Dryland Environmental stress Random forest Photosystem II photochemistry Ecology Tianshan Zha verfasserin aut Charles P.-A. Bourque verfasserin aut Peng Liu verfasserin aut Xin Jia verfasserin aut Yun Tian verfasserin aut Xinhao Li verfasserin aut Xinyue Liu verfasserin aut Xiaonan Guo verfasserin aut Mingze Xu verfasserin aut Xiaoyu Kang verfasserin aut Zifan Guo verfasserin aut Ning Wang verfasserin aut In Ecological Indicators Elsevier, 2021 145(2022), Seite 109679- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:145 year:2022 pages:109679- https://doi.org/10.1016/j.ecolind.2022.109679 kostenfrei https://doaj.org/article/97fa5588dbc141088677f9a6bcb8c464 kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X22011529 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 145 2022 109679- |
allfieldsSound |
10.1016/j.ecolind.2022.109679 doi (DE-627)DOAJ011075678 (DE-599)DOAJ97fa5588dbc141088677f9a6bcb8c464 DE-627 ger DE-627 rakwb eng QH540-549.5 Chuan Jin verfasserin aut Key stress indicators from chlorophyll fluorescence in five desert plant species 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Pulse-amplitude modulated chlorophyll fluorescence (ChlF) is widely used to measure environmental stress in plants. Yet, its continuous, long-term usage in situ is challenged due to the lack of appropriate daytime indicators. We investigated the prospect of creating new daytime indicators based on an application of linear regression on daily measurements of photochemical efficiency (ФPSII) and photosynthetically active radiation acquired in situ at 30-minute intervals. Daily regression parameters, thus generated, were subsequently used in a broader context of desert-plant response to environmental change. Here, we compared parametric and non-parametric methods to test the feasibility of daytime-based regression parameters, i.e., maximal quantum yield of photosystem II photochemistry (Fv/Fm) and daily mean ФPSII, in gauging physiological response in three shrub and two herb species as influenced by eight environmental variables. Results demonstrated that: (i) Random Forest (RF; a non-parametric method) provided the best assessment of interaction between ChlF-based parameters and environmental variables, compared with multiple linear regression (MLR; a conventional parametric method); (ii) variable importance and partial dependence plots indicated that the daily regression parameters of the ФPSII-to- photosynthetic photon flux density relationship (y-intercept and slope) were superior to those of ФPSII and Fv/Fm; and (iii) compared with Fv/Fm, the y-intercept and slope improved discrimination of interspecific differences (p < 0.05). Our research showed that the regression y-intercept and slope can serve as practical daytime indicators of desert-plant photosynthetic physiology in field applications of continuous ChlF measurements. RF is extremely skilled at capturing nonlinearities in eco-environmental interactions compared with standard parametric methods. This new method provides a basis for the collection of key ecological information in assessing desert-plant physiological response to environmental variability. Chlorophyll fluorescence Desert species Dryland Environmental stress Random forest Photosystem II photochemistry Ecology Tianshan Zha verfasserin aut Charles P.-A. Bourque verfasserin aut Peng Liu verfasserin aut Xin Jia verfasserin aut Yun Tian verfasserin aut Xinhao Li verfasserin aut Xinyue Liu verfasserin aut Xiaonan Guo verfasserin aut Mingze Xu verfasserin aut Xiaoyu Kang verfasserin aut Zifan Guo verfasserin aut Ning Wang verfasserin aut In Ecological Indicators Elsevier, 2021 145(2022), Seite 109679- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:145 year:2022 pages:109679- https://doi.org/10.1016/j.ecolind.2022.109679 kostenfrei https://doaj.org/article/97fa5588dbc141088677f9a6bcb8c464 kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X22011529 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 145 2022 109679- |
language |
English |
source |
In Ecological Indicators 145(2022), Seite 109679- volume:145 year:2022 pages:109679- |
sourceStr |
In Ecological Indicators 145(2022), Seite 109679- volume:145 year:2022 pages:109679- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Chlorophyll fluorescence Desert species Dryland Environmental stress Random forest Photosystem II photochemistry Ecology |
isfreeaccess_bool |
true |
container_title |
Ecological Indicators |
authorswithroles_txt_mv |
Chuan Jin @@aut@@ Tianshan Zha @@aut@@ Charles P.-A. Bourque @@aut@@ Peng Liu @@aut@@ Xin Jia @@aut@@ Yun Tian @@aut@@ Xinhao Li @@aut@@ Xinyue Liu @@aut@@ Xiaonan Guo @@aut@@ Mingze Xu @@aut@@ Xiaoyu Kang @@aut@@ Zifan Guo @@aut@@ Ning Wang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
338074163 |
id |
DOAJ011075678 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ011075678</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307025842.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecolind.2022.109679</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ011075678</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ97fa5588dbc141088677f9a6bcb8c464</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH540-549.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chuan Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Key stress indicators from chlorophyll fluorescence in five desert plant species</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Pulse-amplitude modulated chlorophyll fluorescence (ChlF) is widely used to measure environmental stress in plants. Yet, its continuous, long-term usage in situ is challenged due to the lack of appropriate daytime indicators. We investigated the prospect of creating new daytime indicators based on an application of linear regression on daily measurements of photochemical efficiency (ФPSII) and photosynthetically active radiation acquired in situ at 30-minute intervals. Daily regression parameters, thus generated, were subsequently used in a broader context of desert-plant response to environmental change. Here, we compared parametric and non-parametric methods to test the feasibility of daytime-based regression parameters, i.e., maximal quantum yield of photosystem II photochemistry (Fv/Fm) and daily mean ФPSII, in gauging physiological response in three shrub and two herb species as influenced by eight environmental variables. Results demonstrated that: (i) Random Forest (RF; a non-parametric method) provided the best assessment of interaction between ChlF-based parameters and environmental variables, compared with multiple linear regression (MLR; a conventional parametric method); (ii) variable importance and partial dependence plots indicated that the daily regression parameters of the ФPSII-to- photosynthetic photon flux density relationship (y-intercept and slope) were superior to those of ФPSII and Fv/Fm; and (iii) compared with Fv/Fm, the y-intercept and slope improved discrimination of interspecific differences (p < 0.05). Our research showed that the regression y-intercept and slope can serve as practical daytime indicators of desert-plant photosynthetic physiology in field applications of continuous ChlF measurements. RF is extremely skilled at capturing nonlinearities in eco-environmental interactions compared with standard parametric methods. This new method provides a basis for the collection of key ecological information in assessing desert-plant physiological response to environmental variability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chlorophyll fluorescence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Desert species</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dryland</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random forest</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photosystem II photochemistry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tianshan Zha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Charles P.-A. Bourque</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peng Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xin Jia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yun Tian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinhao Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinyue Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaonan Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mingze Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoyu Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zifan Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ning Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecological Indicators</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">145(2022), Seite 109679-</subfield><subfield code="w">(DE-627)338074163</subfield><subfield code="w">(DE-600)2063587-4</subfield><subfield code="x">18727034</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:145</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:109679-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecolind.2022.109679</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/97fa5588dbc141088677f9a6bcb8c464</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1470160X22011529</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1470-160X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">145</subfield><subfield code="j">2022</subfield><subfield code="h">109679-</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Chuan Jin |
spellingShingle |
Chuan Jin misc QH540-549.5 misc Chlorophyll fluorescence misc Desert species misc Dryland misc Environmental stress misc Random forest misc Photosystem II photochemistry misc Ecology Key stress indicators from chlorophyll fluorescence in five desert plant species |
authorStr |
Chuan Jin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)338074163 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH540-549 |
illustrated |
Not Illustrated |
issn |
18727034 |
topic_title |
QH540-549.5 Key stress indicators from chlorophyll fluorescence in five desert plant species Chlorophyll fluorescence Desert species Dryland Environmental stress Random forest Photosystem II photochemistry |
topic |
misc QH540-549.5 misc Chlorophyll fluorescence misc Desert species misc Dryland misc Environmental stress misc Random forest misc Photosystem II photochemistry misc Ecology |
topic_unstemmed |
misc QH540-549.5 misc Chlorophyll fluorescence misc Desert species misc Dryland misc Environmental stress misc Random forest misc Photosystem II photochemistry misc Ecology |
topic_browse |
misc QH540-549.5 misc Chlorophyll fluorescence misc Desert species misc Dryland misc Environmental stress misc Random forest misc Photosystem II photochemistry misc Ecology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ecological Indicators |
hierarchy_parent_id |
338074163 |
hierarchy_top_title |
Ecological Indicators |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)338074163 (DE-600)2063587-4 |
title |
Key stress indicators from chlorophyll fluorescence in five desert plant species |
ctrlnum |
(DE-627)DOAJ011075678 (DE-599)DOAJ97fa5588dbc141088677f9a6bcb8c464 |
title_full |
Key stress indicators from chlorophyll fluorescence in five desert plant species |
author_sort |
Chuan Jin |
journal |
Ecological Indicators |
journalStr |
Ecological Indicators |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
109679 |
author_browse |
Chuan Jin Tianshan Zha Charles P.-A. Bourque Peng Liu Xin Jia Yun Tian Xinhao Li Xinyue Liu Xiaonan Guo Mingze Xu Xiaoyu Kang Zifan Guo Ning Wang |
container_volume |
145 |
class |
QH540-549.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Chuan Jin |
doi_str_mv |
10.1016/j.ecolind.2022.109679 |
author2-role |
verfasserin |
title_sort |
key stress indicators from chlorophyll fluorescence in five desert plant species |
callnumber |
QH540-549.5 |
title_auth |
Key stress indicators from chlorophyll fluorescence in five desert plant species |
abstract |
Pulse-amplitude modulated chlorophyll fluorescence (ChlF) is widely used to measure environmental stress in plants. Yet, its continuous, long-term usage in situ is challenged due to the lack of appropriate daytime indicators. We investigated the prospect of creating new daytime indicators based on an application of linear regression on daily measurements of photochemical efficiency (ФPSII) and photosynthetically active radiation acquired in situ at 30-minute intervals. Daily regression parameters, thus generated, were subsequently used in a broader context of desert-plant response to environmental change. Here, we compared parametric and non-parametric methods to test the feasibility of daytime-based regression parameters, i.e., maximal quantum yield of photosystem II photochemistry (Fv/Fm) and daily mean ФPSII, in gauging physiological response in three shrub and two herb species as influenced by eight environmental variables. Results demonstrated that: (i) Random Forest (RF; a non-parametric method) provided the best assessment of interaction between ChlF-based parameters and environmental variables, compared with multiple linear regression (MLR; a conventional parametric method); (ii) variable importance and partial dependence plots indicated that the daily regression parameters of the ФPSII-to- photosynthetic photon flux density relationship (y-intercept and slope) were superior to those of ФPSII and Fv/Fm; and (iii) compared with Fv/Fm, the y-intercept and slope improved discrimination of interspecific differences (p < 0.05). Our research showed that the regression y-intercept and slope can serve as practical daytime indicators of desert-plant photosynthetic physiology in field applications of continuous ChlF measurements. RF is extremely skilled at capturing nonlinearities in eco-environmental interactions compared with standard parametric methods. This new method provides a basis for the collection of key ecological information in assessing desert-plant physiological response to environmental variability. |
abstractGer |
Pulse-amplitude modulated chlorophyll fluorescence (ChlF) is widely used to measure environmental stress in plants. Yet, its continuous, long-term usage in situ is challenged due to the lack of appropriate daytime indicators. We investigated the prospect of creating new daytime indicators based on an application of linear regression on daily measurements of photochemical efficiency (ФPSII) and photosynthetically active radiation acquired in situ at 30-minute intervals. Daily regression parameters, thus generated, were subsequently used in a broader context of desert-plant response to environmental change. Here, we compared parametric and non-parametric methods to test the feasibility of daytime-based regression parameters, i.e., maximal quantum yield of photosystem II photochemistry (Fv/Fm) and daily mean ФPSII, in gauging physiological response in three shrub and two herb species as influenced by eight environmental variables. Results demonstrated that: (i) Random Forest (RF; a non-parametric method) provided the best assessment of interaction between ChlF-based parameters and environmental variables, compared with multiple linear regression (MLR; a conventional parametric method); (ii) variable importance and partial dependence plots indicated that the daily regression parameters of the ФPSII-to- photosynthetic photon flux density relationship (y-intercept and slope) were superior to those of ФPSII and Fv/Fm; and (iii) compared with Fv/Fm, the y-intercept and slope improved discrimination of interspecific differences (p < 0.05). Our research showed that the regression y-intercept and slope can serve as practical daytime indicators of desert-plant photosynthetic physiology in field applications of continuous ChlF measurements. RF is extremely skilled at capturing nonlinearities in eco-environmental interactions compared with standard parametric methods. This new method provides a basis for the collection of key ecological information in assessing desert-plant physiological response to environmental variability. |
abstract_unstemmed |
Pulse-amplitude modulated chlorophyll fluorescence (ChlF) is widely used to measure environmental stress in plants. Yet, its continuous, long-term usage in situ is challenged due to the lack of appropriate daytime indicators. We investigated the prospect of creating new daytime indicators based on an application of linear regression on daily measurements of photochemical efficiency (ФPSII) and photosynthetically active radiation acquired in situ at 30-minute intervals. Daily regression parameters, thus generated, were subsequently used in a broader context of desert-plant response to environmental change. Here, we compared parametric and non-parametric methods to test the feasibility of daytime-based regression parameters, i.e., maximal quantum yield of photosystem II photochemistry (Fv/Fm) and daily mean ФPSII, in gauging physiological response in three shrub and two herb species as influenced by eight environmental variables. Results demonstrated that: (i) Random Forest (RF; a non-parametric method) provided the best assessment of interaction between ChlF-based parameters and environmental variables, compared with multiple linear regression (MLR; a conventional parametric method); (ii) variable importance and partial dependence plots indicated that the daily regression parameters of the ФPSII-to- photosynthetic photon flux density relationship (y-intercept and slope) were superior to those of ФPSII and Fv/Fm; and (iii) compared with Fv/Fm, the y-intercept and slope improved discrimination of interspecific differences (p < 0.05). Our research showed that the regression y-intercept and slope can serve as practical daytime indicators of desert-plant photosynthetic physiology in field applications of continuous ChlF measurements. RF is extremely skilled at capturing nonlinearities in eco-environmental interactions compared with standard parametric methods. This new method provides a basis for the collection of key ecological information in assessing desert-plant physiological response to environmental variability. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Key stress indicators from chlorophyll fluorescence in five desert plant species |
url |
https://doi.org/10.1016/j.ecolind.2022.109679 https://doaj.org/article/97fa5588dbc141088677f9a6bcb8c464 http://www.sciencedirect.com/science/article/pii/S1470160X22011529 https://doaj.org/toc/1470-160X |
remote_bool |
true |
author2 |
Tianshan Zha Charles P.-A. Bourque Peng Liu Xin Jia Yun Tian Xinhao Li Xinyue Liu Xiaonan Guo Mingze Xu Xiaoyu Kang Zifan Guo Ning Wang |
author2Str |
Tianshan Zha Charles P.-A. Bourque Peng Liu Xin Jia Yun Tian Xinhao Li Xinyue Liu Xiaonan Guo Mingze Xu Xiaoyu Kang Zifan Guo Ning Wang |
ppnlink |
338074163 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ecolind.2022.109679 |
callnumber-a |
QH540-549.5 |
up_date |
2024-07-03T18:21:34.607Z |
_version_ |
1803583115345526784 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ011075678</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307025842.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecolind.2022.109679</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ011075678</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ97fa5588dbc141088677f9a6bcb8c464</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH540-549.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chuan Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Key stress indicators from chlorophyll fluorescence in five desert plant species</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Pulse-amplitude modulated chlorophyll fluorescence (ChlF) is widely used to measure environmental stress in plants. Yet, its continuous, long-term usage in situ is challenged due to the lack of appropriate daytime indicators. We investigated the prospect of creating new daytime indicators based on an application of linear regression on daily measurements of photochemical efficiency (ФPSII) and photosynthetically active radiation acquired in situ at 30-minute intervals. Daily regression parameters, thus generated, were subsequently used in a broader context of desert-plant response to environmental change. Here, we compared parametric and non-parametric methods to test the feasibility of daytime-based regression parameters, i.e., maximal quantum yield of photosystem II photochemistry (Fv/Fm) and daily mean ФPSII, in gauging physiological response in three shrub and two herb species as influenced by eight environmental variables. Results demonstrated that: (i) Random Forest (RF; a non-parametric method) provided the best assessment of interaction between ChlF-based parameters and environmental variables, compared with multiple linear regression (MLR; a conventional parametric method); (ii) variable importance and partial dependence plots indicated that the daily regression parameters of the ФPSII-to- photosynthetic photon flux density relationship (y-intercept and slope) were superior to those of ФPSII and Fv/Fm; and (iii) compared with Fv/Fm, the y-intercept and slope improved discrimination of interspecific differences (p < 0.05). Our research showed that the regression y-intercept and slope can serve as practical daytime indicators of desert-plant photosynthetic physiology in field applications of continuous ChlF measurements. RF is extremely skilled at capturing nonlinearities in eco-environmental interactions compared with standard parametric methods. This new method provides a basis for the collection of key ecological information in assessing desert-plant physiological response to environmental variability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chlorophyll fluorescence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Desert species</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dryland</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random forest</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photosystem II photochemistry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tianshan Zha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Charles P.-A. Bourque</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peng Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xin Jia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yun Tian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinhao Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinyue Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaonan Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mingze Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoyu Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zifan Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ning Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecological Indicators</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">145(2022), Seite 109679-</subfield><subfield code="w">(DE-627)338074163</subfield><subfield code="w">(DE-600)2063587-4</subfield><subfield code="x">18727034</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:145</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:109679-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecolind.2022.109679</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/97fa5588dbc141088677f9a6bcb8c464</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1470160X22011529</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1470-160X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">145</subfield><subfield code="j">2022</subfield><subfield code="h">109679-</subfield></datafield></record></collection>
|
score |
7.402648 |