Cellular, molecular and genomic alterations in the hatchlings of Labeo rohita after exposure to Triclosan
Triclosan 5-chloro-2-(2, 4-dichlorophenoxy) phenol (TCS) is widely used as a biocide in human and veterinary medicines, personal care products and household articles. To obtain biomarkers for the acute stress of Triclosan, the hatchlings of Labeo rohita were exposed for 96 h to 0.06, 0.067 and 0.097...
Ausführliche Beschreibung
Autor*in: |
Sunil Sharma [verfasserIn] Owias Iqbal Dar [verfasserIn] Megha Andotra [verfasserIn] Simran Sharma [verfasserIn] Ankeet Bhagat [verfasserIn] Sharad Thakur [verfasserIn] Anup Kumar Kesavan [verfasserIn] Arvinder Kaur [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Environmental Science - Frontiers Media S.A., 2014, 10(2022) |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 |
Links: |
---|
DOI / URN: |
10.3389/fenvs.2022.992435 |
---|
Katalog-ID: |
DOAJ011118911 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ011118911 | ||
003 | DE-627 | ||
005 | 20230503061753.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230225s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fenvs.2022.992435 |2 doi | |
035 | |a (DE-627)DOAJ011118911 | ||
035 | |a (DE-599)DOAJ209e0b8f29c845f1a5baa6dd6bb1d249 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a GE1-350 | |
100 | 0 | |a Sunil Sharma |e verfasserin |4 aut | |
245 | 1 | 0 | |a Cellular, molecular and genomic alterations in the hatchlings of Labeo rohita after exposure to Triclosan |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Triclosan 5-chloro-2-(2, 4-dichlorophenoxy) phenol (TCS) is widely used as a biocide in human and veterinary medicines, personal care products and household articles. To obtain biomarkers for the acute stress of Triclosan, the hatchlings of Labeo rohita were exposed for 96 h to 0.06, 0.067 and 0.097 mg/L TCS. Morphological deformities, cell viability, frequency of micronucleated and aberrant cells, transcriptomic and biomolecular alterations were recorded after exposure and a depuration period of 10 days. The exposed hatchlings had a pointed head, curved trunk, lean body, deformed caudal fin, haemorrhage, hypopigmentation and tissue degeneration at 0.067 and 0.097 mg/L only. The frequency of viable cells declined but that of necrotic, apoptotic, micronucleated and abnormal cells increased (p ≤ 0.01) in a concentration dependent manner after exposure as well as the depuration period. After recovery, the frequency of viable and micronucleated cells increased, but that of necrotic, apoptotic, and aberrant cells declined in comparison to their respective 96 h values. The mRNA level of HSP47, HSP70, HSc71 and α-tropomyosin increased (p ≤ 0.01), while that of HSP60, HSP90, DHPR, myosin light polypeptide 3, desmin b and lamin b1 declined (p ≤ 0.01) after exposure. Ten days post exposure, a significant increase (p ≤ 0.01) over control was observed in the expression of all the heat shock and cytoskeletal genes and the values (except for HSc71) were higher than the respective 96 h values also. Infrared spectra showed that band area of amide A, amide I, amide II and phospholipids increased significantly (p ≤ 0.01) but peak intensity of lipid, glycogen and nucleic acids decreased after exposure. After recovery, area of the peaks for most of the biomolecules [except lipids (2924–2925, 1455–1457 cm−1) and glycogen (1163–1165 cm−1)] declined significantly over control and 96 h values. Collectively these changes seem to be responsible not only for the onset of paralysis but also for the concentration dependent increase in larval and cellular abnormalities as well as no/sporadic swimming movement in exposed hatchlings. It is evident that HSP60, HSc71, HSP90, α-tropomyosin and DHPR were strongly affected but DHPR can be used as the most sensitive marker for the toxicity of TCS. This is the first study reporting effect of TCS on the selected heat shock and cytoskeletal genes in a single model. | ||
650 | 4 | |a abnormalities | |
650 | 4 | |a cyto-genotoxicity | |
650 | 4 | |a gene expression | |
650 | 4 | |a hatchlings | |
650 | 4 | |a Triclosan | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Owias Iqbal Dar |e verfasserin |4 aut | |
700 | 0 | |a Owias Iqbal Dar |e verfasserin |4 aut | |
700 | 0 | |a Megha Andotra |e verfasserin |4 aut | |
700 | 0 | |a Simran Sharma |e verfasserin |4 aut | |
700 | 0 | |a Ankeet Bhagat |e verfasserin |4 aut | |
700 | 0 | |a Sharad Thakur |e verfasserin |4 aut | |
700 | 0 | |a Anup Kumar Kesavan |e verfasserin |4 aut | |
700 | 0 | |a Arvinder Kaur |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Environmental Science |d Frontiers Media S.A., 2014 |g 10(2022) |w (DE-627)771401604 |w (DE-600)2741535-1 |x 2296665X |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |
856 | 4 | 0 | |u https://doi.org/10.3389/fenvs.2022.992435 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/209e0b8f29c845f1a5baa6dd6bb1d249 |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/fenvs.2022.992435/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2296-665X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |
author_variant |
s s ss o i d oid o i d oid m a ma s s ss a b ab s t st a k k akk a k ak |
---|---|
matchkey_str |
article:2296665X:2022----::ellroeuaadeoiatrtosnhhthigolbooia |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
GE |
publishDate |
2022 |
allfields |
10.3389/fenvs.2022.992435 doi (DE-627)DOAJ011118911 (DE-599)DOAJ209e0b8f29c845f1a5baa6dd6bb1d249 DE-627 ger DE-627 rakwb eng GE1-350 Sunil Sharma verfasserin aut Cellular, molecular and genomic alterations in the hatchlings of Labeo rohita after exposure to Triclosan 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Triclosan 5-chloro-2-(2, 4-dichlorophenoxy) phenol (TCS) is widely used as a biocide in human and veterinary medicines, personal care products and household articles. To obtain biomarkers for the acute stress of Triclosan, the hatchlings of Labeo rohita were exposed for 96 h to 0.06, 0.067 and 0.097 mg/L TCS. Morphological deformities, cell viability, frequency of micronucleated and aberrant cells, transcriptomic and biomolecular alterations were recorded after exposure and a depuration period of 10 days. The exposed hatchlings had a pointed head, curved trunk, lean body, deformed caudal fin, haemorrhage, hypopigmentation and tissue degeneration at 0.067 and 0.097 mg/L only. The frequency of viable cells declined but that of necrotic, apoptotic, micronucleated and abnormal cells increased (p ≤ 0.01) in a concentration dependent manner after exposure as well as the depuration period. After recovery, the frequency of viable and micronucleated cells increased, but that of necrotic, apoptotic, and aberrant cells declined in comparison to their respective 96 h values. The mRNA level of HSP47, HSP70, HSc71 and α-tropomyosin increased (p ≤ 0.01), while that of HSP60, HSP90, DHPR, myosin light polypeptide 3, desmin b and lamin b1 declined (p ≤ 0.01) after exposure. Ten days post exposure, a significant increase (p ≤ 0.01) over control was observed in the expression of all the heat shock and cytoskeletal genes and the values (except for HSc71) were higher than the respective 96 h values also. Infrared spectra showed that band area of amide A, amide I, amide II and phospholipids increased significantly (p ≤ 0.01) but peak intensity of lipid, glycogen and nucleic acids decreased after exposure. After recovery, area of the peaks for most of the biomolecules [except lipids (2924–2925, 1455–1457 cm−1) and glycogen (1163–1165 cm−1)] declined significantly over control and 96 h values. Collectively these changes seem to be responsible not only for the onset of paralysis but also for the concentration dependent increase in larval and cellular abnormalities as well as no/sporadic swimming movement in exposed hatchlings. It is evident that HSP60, HSc71, HSP90, α-tropomyosin and DHPR were strongly affected but DHPR can be used as the most sensitive marker for the toxicity of TCS. This is the first study reporting effect of TCS on the selected heat shock and cytoskeletal genes in a single model. abnormalities cyto-genotoxicity gene expression hatchlings Triclosan Environmental sciences Owias Iqbal Dar verfasserin aut Owias Iqbal Dar verfasserin aut Megha Andotra verfasserin aut Simran Sharma verfasserin aut Ankeet Bhagat verfasserin aut Sharad Thakur verfasserin aut Anup Kumar Kesavan verfasserin aut Arvinder Kaur verfasserin aut In Frontiers in Environmental Science Frontiers Media S.A., 2014 10(2022) (DE-627)771401604 (DE-600)2741535-1 2296665X nnns volume:10 year:2022 https://doi.org/10.3389/fenvs.2022.992435 kostenfrei https://doaj.org/article/209e0b8f29c845f1a5baa6dd6bb1d249 kostenfrei https://www.frontiersin.org/articles/10.3389/fenvs.2022.992435/full kostenfrei https://doaj.org/toc/2296-665X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
spelling |
10.3389/fenvs.2022.992435 doi (DE-627)DOAJ011118911 (DE-599)DOAJ209e0b8f29c845f1a5baa6dd6bb1d249 DE-627 ger DE-627 rakwb eng GE1-350 Sunil Sharma verfasserin aut Cellular, molecular and genomic alterations in the hatchlings of Labeo rohita after exposure to Triclosan 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Triclosan 5-chloro-2-(2, 4-dichlorophenoxy) phenol (TCS) is widely used as a biocide in human and veterinary medicines, personal care products and household articles. To obtain biomarkers for the acute stress of Triclosan, the hatchlings of Labeo rohita were exposed for 96 h to 0.06, 0.067 and 0.097 mg/L TCS. Morphological deformities, cell viability, frequency of micronucleated and aberrant cells, transcriptomic and biomolecular alterations were recorded after exposure and a depuration period of 10 days. The exposed hatchlings had a pointed head, curved trunk, lean body, deformed caudal fin, haemorrhage, hypopigmentation and tissue degeneration at 0.067 and 0.097 mg/L only. The frequency of viable cells declined but that of necrotic, apoptotic, micronucleated and abnormal cells increased (p ≤ 0.01) in a concentration dependent manner after exposure as well as the depuration period. After recovery, the frequency of viable and micronucleated cells increased, but that of necrotic, apoptotic, and aberrant cells declined in comparison to their respective 96 h values. The mRNA level of HSP47, HSP70, HSc71 and α-tropomyosin increased (p ≤ 0.01), while that of HSP60, HSP90, DHPR, myosin light polypeptide 3, desmin b and lamin b1 declined (p ≤ 0.01) after exposure. Ten days post exposure, a significant increase (p ≤ 0.01) over control was observed in the expression of all the heat shock and cytoskeletal genes and the values (except for HSc71) were higher than the respective 96 h values also. Infrared spectra showed that band area of amide A, amide I, amide II and phospholipids increased significantly (p ≤ 0.01) but peak intensity of lipid, glycogen and nucleic acids decreased after exposure. After recovery, area of the peaks for most of the biomolecules [except lipids (2924–2925, 1455–1457 cm−1) and glycogen (1163–1165 cm−1)] declined significantly over control and 96 h values. Collectively these changes seem to be responsible not only for the onset of paralysis but also for the concentration dependent increase in larval and cellular abnormalities as well as no/sporadic swimming movement in exposed hatchlings. It is evident that HSP60, HSc71, HSP90, α-tropomyosin and DHPR were strongly affected but DHPR can be used as the most sensitive marker for the toxicity of TCS. This is the first study reporting effect of TCS on the selected heat shock and cytoskeletal genes in a single model. abnormalities cyto-genotoxicity gene expression hatchlings Triclosan Environmental sciences Owias Iqbal Dar verfasserin aut Owias Iqbal Dar verfasserin aut Megha Andotra verfasserin aut Simran Sharma verfasserin aut Ankeet Bhagat verfasserin aut Sharad Thakur verfasserin aut Anup Kumar Kesavan verfasserin aut Arvinder Kaur verfasserin aut In Frontiers in Environmental Science Frontiers Media S.A., 2014 10(2022) (DE-627)771401604 (DE-600)2741535-1 2296665X nnns volume:10 year:2022 https://doi.org/10.3389/fenvs.2022.992435 kostenfrei https://doaj.org/article/209e0b8f29c845f1a5baa6dd6bb1d249 kostenfrei https://www.frontiersin.org/articles/10.3389/fenvs.2022.992435/full kostenfrei https://doaj.org/toc/2296-665X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
allfields_unstemmed |
10.3389/fenvs.2022.992435 doi (DE-627)DOAJ011118911 (DE-599)DOAJ209e0b8f29c845f1a5baa6dd6bb1d249 DE-627 ger DE-627 rakwb eng GE1-350 Sunil Sharma verfasserin aut Cellular, molecular and genomic alterations in the hatchlings of Labeo rohita after exposure to Triclosan 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Triclosan 5-chloro-2-(2, 4-dichlorophenoxy) phenol (TCS) is widely used as a biocide in human and veterinary medicines, personal care products and household articles. To obtain biomarkers for the acute stress of Triclosan, the hatchlings of Labeo rohita were exposed for 96 h to 0.06, 0.067 and 0.097 mg/L TCS. Morphological deformities, cell viability, frequency of micronucleated and aberrant cells, transcriptomic and biomolecular alterations were recorded after exposure and a depuration period of 10 days. The exposed hatchlings had a pointed head, curved trunk, lean body, deformed caudal fin, haemorrhage, hypopigmentation and tissue degeneration at 0.067 and 0.097 mg/L only. The frequency of viable cells declined but that of necrotic, apoptotic, micronucleated and abnormal cells increased (p ≤ 0.01) in a concentration dependent manner after exposure as well as the depuration period. After recovery, the frequency of viable and micronucleated cells increased, but that of necrotic, apoptotic, and aberrant cells declined in comparison to their respective 96 h values. The mRNA level of HSP47, HSP70, HSc71 and α-tropomyosin increased (p ≤ 0.01), while that of HSP60, HSP90, DHPR, myosin light polypeptide 3, desmin b and lamin b1 declined (p ≤ 0.01) after exposure. Ten days post exposure, a significant increase (p ≤ 0.01) over control was observed in the expression of all the heat shock and cytoskeletal genes and the values (except for HSc71) were higher than the respective 96 h values also. Infrared spectra showed that band area of amide A, amide I, amide II and phospholipids increased significantly (p ≤ 0.01) but peak intensity of lipid, glycogen and nucleic acids decreased after exposure. After recovery, area of the peaks for most of the biomolecules [except lipids (2924–2925, 1455–1457 cm−1) and glycogen (1163–1165 cm−1)] declined significantly over control and 96 h values. Collectively these changes seem to be responsible not only for the onset of paralysis but also for the concentration dependent increase in larval and cellular abnormalities as well as no/sporadic swimming movement in exposed hatchlings. It is evident that HSP60, HSc71, HSP90, α-tropomyosin and DHPR were strongly affected but DHPR can be used as the most sensitive marker for the toxicity of TCS. This is the first study reporting effect of TCS on the selected heat shock and cytoskeletal genes in a single model. abnormalities cyto-genotoxicity gene expression hatchlings Triclosan Environmental sciences Owias Iqbal Dar verfasserin aut Owias Iqbal Dar verfasserin aut Megha Andotra verfasserin aut Simran Sharma verfasserin aut Ankeet Bhagat verfasserin aut Sharad Thakur verfasserin aut Anup Kumar Kesavan verfasserin aut Arvinder Kaur verfasserin aut In Frontiers in Environmental Science Frontiers Media S.A., 2014 10(2022) (DE-627)771401604 (DE-600)2741535-1 2296665X nnns volume:10 year:2022 https://doi.org/10.3389/fenvs.2022.992435 kostenfrei https://doaj.org/article/209e0b8f29c845f1a5baa6dd6bb1d249 kostenfrei https://www.frontiersin.org/articles/10.3389/fenvs.2022.992435/full kostenfrei https://doaj.org/toc/2296-665X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
allfieldsGer |
10.3389/fenvs.2022.992435 doi (DE-627)DOAJ011118911 (DE-599)DOAJ209e0b8f29c845f1a5baa6dd6bb1d249 DE-627 ger DE-627 rakwb eng GE1-350 Sunil Sharma verfasserin aut Cellular, molecular and genomic alterations in the hatchlings of Labeo rohita after exposure to Triclosan 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Triclosan 5-chloro-2-(2, 4-dichlorophenoxy) phenol (TCS) is widely used as a biocide in human and veterinary medicines, personal care products and household articles. To obtain biomarkers for the acute stress of Triclosan, the hatchlings of Labeo rohita were exposed for 96 h to 0.06, 0.067 and 0.097 mg/L TCS. Morphological deformities, cell viability, frequency of micronucleated and aberrant cells, transcriptomic and biomolecular alterations were recorded after exposure and a depuration period of 10 days. The exposed hatchlings had a pointed head, curved trunk, lean body, deformed caudal fin, haemorrhage, hypopigmentation and tissue degeneration at 0.067 and 0.097 mg/L only. The frequency of viable cells declined but that of necrotic, apoptotic, micronucleated and abnormal cells increased (p ≤ 0.01) in a concentration dependent manner after exposure as well as the depuration period. After recovery, the frequency of viable and micronucleated cells increased, but that of necrotic, apoptotic, and aberrant cells declined in comparison to their respective 96 h values. The mRNA level of HSP47, HSP70, HSc71 and α-tropomyosin increased (p ≤ 0.01), while that of HSP60, HSP90, DHPR, myosin light polypeptide 3, desmin b and lamin b1 declined (p ≤ 0.01) after exposure. Ten days post exposure, a significant increase (p ≤ 0.01) over control was observed in the expression of all the heat shock and cytoskeletal genes and the values (except for HSc71) were higher than the respective 96 h values also. Infrared spectra showed that band area of amide A, amide I, amide II and phospholipids increased significantly (p ≤ 0.01) but peak intensity of lipid, glycogen and nucleic acids decreased after exposure. After recovery, area of the peaks for most of the biomolecules [except lipids (2924–2925, 1455–1457 cm−1) and glycogen (1163–1165 cm−1)] declined significantly over control and 96 h values. Collectively these changes seem to be responsible not only for the onset of paralysis but also for the concentration dependent increase in larval and cellular abnormalities as well as no/sporadic swimming movement in exposed hatchlings. It is evident that HSP60, HSc71, HSP90, α-tropomyosin and DHPR were strongly affected but DHPR can be used as the most sensitive marker for the toxicity of TCS. This is the first study reporting effect of TCS on the selected heat shock and cytoskeletal genes in a single model. abnormalities cyto-genotoxicity gene expression hatchlings Triclosan Environmental sciences Owias Iqbal Dar verfasserin aut Owias Iqbal Dar verfasserin aut Megha Andotra verfasserin aut Simran Sharma verfasserin aut Ankeet Bhagat verfasserin aut Sharad Thakur verfasserin aut Anup Kumar Kesavan verfasserin aut Arvinder Kaur verfasserin aut In Frontiers in Environmental Science Frontiers Media S.A., 2014 10(2022) (DE-627)771401604 (DE-600)2741535-1 2296665X nnns volume:10 year:2022 https://doi.org/10.3389/fenvs.2022.992435 kostenfrei https://doaj.org/article/209e0b8f29c845f1a5baa6dd6bb1d249 kostenfrei https://www.frontiersin.org/articles/10.3389/fenvs.2022.992435/full kostenfrei https://doaj.org/toc/2296-665X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
allfieldsSound |
10.3389/fenvs.2022.992435 doi (DE-627)DOAJ011118911 (DE-599)DOAJ209e0b8f29c845f1a5baa6dd6bb1d249 DE-627 ger DE-627 rakwb eng GE1-350 Sunil Sharma verfasserin aut Cellular, molecular and genomic alterations in the hatchlings of Labeo rohita after exposure to Triclosan 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Triclosan 5-chloro-2-(2, 4-dichlorophenoxy) phenol (TCS) is widely used as a biocide in human and veterinary medicines, personal care products and household articles. To obtain biomarkers for the acute stress of Triclosan, the hatchlings of Labeo rohita were exposed for 96 h to 0.06, 0.067 and 0.097 mg/L TCS. Morphological deformities, cell viability, frequency of micronucleated and aberrant cells, transcriptomic and biomolecular alterations were recorded after exposure and a depuration period of 10 days. The exposed hatchlings had a pointed head, curved trunk, lean body, deformed caudal fin, haemorrhage, hypopigmentation and tissue degeneration at 0.067 and 0.097 mg/L only. The frequency of viable cells declined but that of necrotic, apoptotic, micronucleated and abnormal cells increased (p ≤ 0.01) in a concentration dependent manner after exposure as well as the depuration period. After recovery, the frequency of viable and micronucleated cells increased, but that of necrotic, apoptotic, and aberrant cells declined in comparison to their respective 96 h values. The mRNA level of HSP47, HSP70, HSc71 and α-tropomyosin increased (p ≤ 0.01), while that of HSP60, HSP90, DHPR, myosin light polypeptide 3, desmin b and lamin b1 declined (p ≤ 0.01) after exposure. Ten days post exposure, a significant increase (p ≤ 0.01) over control was observed in the expression of all the heat shock and cytoskeletal genes and the values (except for HSc71) were higher than the respective 96 h values also. Infrared spectra showed that band area of amide A, amide I, amide II and phospholipids increased significantly (p ≤ 0.01) but peak intensity of lipid, glycogen and nucleic acids decreased after exposure. After recovery, area of the peaks for most of the biomolecules [except lipids (2924–2925, 1455–1457 cm−1) and glycogen (1163–1165 cm−1)] declined significantly over control and 96 h values. Collectively these changes seem to be responsible not only for the onset of paralysis but also for the concentration dependent increase in larval and cellular abnormalities as well as no/sporadic swimming movement in exposed hatchlings. It is evident that HSP60, HSc71, HSP90, α-tropomyosin and DHPR were strongly affected but DHPR can be used as the most sensitive marker for the toxicity of TCS. This is the first study reporting effect of TCS on the selected heat shock and cytoskeletal genes in a single model. abnormalities cyto-genotoxicity gene expression hatchlings Triclosan Environmental sciences Owias Iqbal Dar verfasserin aut Owias Iqbal Dar verfasserin aut Megha Andotra verfasserin aut Simran Sharma verfasserin aut Ankeet Bhagat verfasserin aut Sharad Thakur verfasserin aut Anup Kumar Kesavan verfasserin aut Arvinder Kaur verfasserin aut In Frontiers in Environmental Science Frontiers Media S.A., 2014 10(2022) (DE-627)771401604 (DE-600)2741535-1 2296665X nnns volume:10 year:2022 https://doi.org/10.3389/fenvs.2022.992435 kostenfrei https://doaj.org/article/209e0b8f29c845f1a5baa6dd6bb1d249 kostenfrei https://www.frontiersin.org/articles/10.3389/fenvs.2022.992435/full kostenfrei https://doaj.org/toc/2296-665X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
language |
English |
source |
In Frontiers in Environmental Science 10(2022) volume:10 year:2022 |
sourceStr |
In Frontiers in Environmental Science 10(2022) volume:10 year:2022 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
abnormalities cyto-genotoxicity gene expression hatchlings Triclosan Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Frontiers in Environmental Science |
authorswithroles_txt_mv |
Sunil Sharma @@aut@@ Owias Iqbal Dar @@aut@@ Megha Andotra @@aut@@ Simran Sharma @@aut@@ Ankeet Bhagat @@aut@@ Sharad Thakur @@aut@@ Anup Kumar Kesavan @@aut@@ Arvinder Kaur @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
771401604 |
id |
DOAJ011118911 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ011118911</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503061753.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fenvs.2022.992435</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ011118911</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ209e0b8f29c845f1a5baa6dd6bb1d249</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sunil Sharma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cellular, molecular and genomic alterations in the hatchlings of Labeo rohita after exposure to Triclosan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Triclosan 5-chloro-2-(2, 4-dichlorophenoxy) phenol (TCS) is widely used as a biocide in human and veterinary medicines, personal care products and household articles. To obtain biomarkers for the acute stress of Triclosan, the hatchlings of Labeo rohita were exposed for 96 h to 0.06, 0.067 and 0.097 mg/L TCS. Morphological deformities, cell viability, frequency of micronucleated and aberrant cells, transcriptomic and biomolecular alterations were recorded after exposure and a depuration period of 10 days. The exposed hatchlings had a pointed head, curved trunk, lean body, deformed caudal fin, haemorrhage, hypopigmentation and tissue degeneration at 0.067 and 0.097 mg/L only. The frequency of viable cells declined but that of necrotic, apoptotic, micronucleated and abnormal cells increased (p ≤ 0.01) in a concentration dependent manner after exposure as well as the depuration period. After recovery, the frequency of viable and micronucleated cells increased, but that of necrotic, apoptotic, and aberrant cells declined in comparison to their respective 96 h values. The mRNA level of HSP47, HSP70, HSc71 and α-tropomyosin increased (p ≤ 0.01), while that of HSP60, HSP90, DHPR, myosin light polypeptide 3, desmin b and lamin b1 declined (p ≤ 0.01) after exposure. Ten days post exposure, a significant increase (p ≤ 0.01) over control was observed in the expression of all the heat shock and cytoskeletal genes and the values (except for HSc71) were higher than the respective 96 h values also. Infrared spectra showed that band area of amide A, amide I, amide II and phospholipids increased significantly (p ≤ 0.01) but peak intensity of lipid, glycogen and nucleic acids decreased after exposure. After recovery, area of the peaks for most of the biomolecules [except lipids (2924–2925, 1455–1457 cm−1) and glycogen (1163–1165 cm−1)] declined significantly over control and 96 h values. Collectively these changes seem to be responsible not only for the onset of paralysis but also for the concentration dependent increase in larval and cellular abnormalities as well as no/sporadic swimming movement in exposed hatchlings. It is evident that HSP60, HSc71, HSP90, α-tropomyosin and DHPR were strongly affected but DHPR can be used as the most sensitive marker for the toxicity of TCS. This is the first study reporting effect of TCS on the selected heat shock and cytoskeletal genes in a single model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">abnormalities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cyto-genotoxicity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gene expression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hatchlings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Triclosan</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Owias Iqbal Dar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Owias Iqbal Dar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Megha Andotra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simran Sharma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ankeet Bhagat</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sharad Thakur</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anup Kumar Kesavan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arvinder Kaur</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Environmental Science</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">10(2022)</subfield><subfield code="w">(DE-627)771401604</subfield><subfield code="w">(DE-600)2741535-1</subfield><subfield code="x">2296665X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fenvs.2022.992435</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/209e0b8f29c845f1a5baa6dd6bb1d249</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fenvs.2022.992435/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-665X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
callnumber-first |
G - Geography, Anthropology, Recreation |
author |
Sunil Sharma |
spellingShingle |
Sunil Sharma misc GE1-350 misc abnormalities misc cyto-genotoxicity misc gene expression misc hatchlings misc Triclosan misc Environmental sciences Cellular, molecular and genomic alterations in the hatchlings of Labeo rohita after exposure to Triclosan |
authorStr |
Sunil Sharma |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)771401604 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
GE1-350 |
illustrated |
Not Illustrated |
issn |
2296665X |
topic_title |
GE1-350 Cellular, molecular and genomic alterations in the hatchlings of Labeo rohita after exposure to Triclosan abnormalities cyto-genotoxicity gene expression hatchlings Triclosan |
topic |
misc GE1-350 misc abnormalities misc cyto-genotoxicity misc gene expression misc hatchlings misc Triclosan misc Environmental sciences |
topic_unstemmed |
misc GE1-350 misc abnormalities misc cyto-genotoxicity misc gene expression misc hatchlings misc Triclosan misc Environmental sciences |
topic_browse |
misc GE1-350 misc abnormalities misc cyto-genotoxicity misc gene expression misc hatchlings misc Triclosan misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Environmental Science |
hierarchy_parent_id |
771401604 |
hierarchy_top_title |
Frontiers in Environmental Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)771401604 (DE-600)2741535-1 |
title |
Cellular, molecular and genomic alterations in the hatchlings of Labeo rohita after exposure to Triclosan |
ctrlnum |
(DE-627)DOAJ011118911 (DE-599)DOAJ209e0b8f29c845f1a5baa6dd6bb1d249 |
title_full |
Cellular, molecular and genomic alterations in the hatchlings of Labeo rohita after exposure to Triclosan |
author_sort |
Sunil Sharma |
journal |
Frontiers in Environmental Science |
journalStr |
Frontiers in Environmental Science |
callnumber-first-code |
G |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Sunil Sharma Owias Iqbal Dar Megha Andotra Simran Sharma Ankeet Bhagat Sharad Thakur Anup Kumar Kesavan Arvinder Kaur |
container_volume |
10 |
class |
GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Sunil Sharma |
doi_str_mv |
10.3389/fenvs.2022.992435 |
author2-role |
verfasserin |
title_sort |
cellular, molecular and genomic alterations in the hatchlings of labeo rohita after exposure to triclosan |
callnumber |
GE1-350 |
title_auth |
Cellular, molecular and genomic alterations in the hatchlings of Labeo rohita after exposure to Triclosan |
abstract |
Triclosan 5-chloro-2-(2, 4-dichlorophenoxy) phenol (TCS) is widely used as a biocide in human and veterinary medicines, personal care products and household articles. To obtain biomarkers for the acute stress of Triclosan, the hatchlings of Labeo rohita were exposed for 96 h to 0.06, 0.067 and 0.097 mg/L TCS. Morphological deformities, cell viability, frequency of micronucleated and aberrant cells, transcriptomic and biomolecular alterations were recorded after exposure and a depuration period of 10 days. The exposed hatchlings had a pointed head, curved trunk, lean body, deformed caudal fin, haemorrhage, hypopigmentation and tissue degeneration at 0.067 and 0.097 mg/L only. The frequency of viable cells declined but that of necrotic, apoptotic, micronucleated and abnormal cells increased (p ≤ 0.01) in a concentration dependent manner after exposure as well as the depuration period. After recovery, the frequency of viable and micronucleated cells increased, but that of necrotic, apoptotic, and aberrant cells declined in comparison to their respective 96 h values. The mRNA level of HSP47, HSP70, HSc71 and α-tropomyosin increased (p ≤ 0.01), while that of HSP60, HSP90, DHPR, myosin light polypeptide 3, desmin b and lamin b1 declined (p ≤ 0.01) after exposure. Ten days post exposure, a significant increase (p ≤ 0.01) over control was observed in the expression of all the heat shock and cytoskeletal genes and the values (except for HSc71) were higher than the respective 96 h values also. Infrared spectra showed that band area of amide A, amide I, amide II and phospholipids increased significantly (p ≤ 0.01) but peak intensity of lipid, glycogen and nucleic acids decreased after exposure. After recovery, area of the peaks for most of the biomolecules [except lipids (2924–2925, 1455–1457 cm−1) and glycogen (1163–1165 cm−1)] declined significantly over control and 96 h values. Collectively these changes seem to be responsible not only for the onset of paralysis but also for the concentration dependent increase in larval and cellular abnormalities as well as no/sporadic swimming movement in exposed hatchlings. It is evident that HSP60, HSc71, HSP90, α-tropomyosin and DHPR were strongly affected but DHPR can be used as the most sensitive marker for the toxicity of TCS. This is the first study reporting effect of TCS on the selected heat shock and cytoskeletal genes in a single model. |
abstractGer |
Triclosan 5-chloro-2-(2, 4-dichlorophenoxy) phenol (TCS) is widely used as a biocide in human and veterinary medicines, personal care products and household articles. To obtain biomarkers for the acute stress of Triclosan, the hatchlings of Labeo rohita were exposed for 96 h to 0.06, 0.067 and 0.097 mg/L TCS. Morphological deformities, cell viability, frequency of micronucleated and aberrant cells, transcriptomic and biomolecular alterations were recorded after exposure and a depuration period of 10 days. The exposed hatchlings had a pointed head, curved trunk, lean body, deformed caudal fin, haemorrhage, hypopigmentation and tissue degeneration at 0.067 and 0.097 mg/L only. The frequency of viable cells declined but that of necrotic, apoptotic, micronucleated and abnormal cells increased (p ≤ 0.01) in a concentration dependent manner after exposure as well as the depuration period. After recovery, the frequency of viable and micronucleated cells increased, but that of necrotic, apoptotic, and aberrant cells declined in comparison to their respective 96 h values. The mRNA level of HSP47, HSP70, HSc71 and α-tropomyosin increased (p ≤ 0.01), while that of HSP60, HSP90, DHPR, myosin light polypeptide 3, desmin b and lamin b1 declined (p ≤ 0.01) after exposure. Ten days post exposure, a significant increase (p ≤ 0.01) over control was observed in the expression of all the heat shock and cytoskeletal genes and the values (except for HSc71) were higher than the respective 96 h values also. Infrared spectra showed that band area of amide A, amide I, amide II and phospholipids increased significantly (p ≤ 0.01) but peak intensity of lipid, glycogen and nucleic acids decreased after exposure. After recovery, area of the peaks for most of the biomolecules [except lipids (2924–2925, 1455–1457 cm−1) and glycogen (1163–1165 cm−1)] declined significantly over control and 96 h values. Collectively these changes seem to be responsible not only for the onset of paralysis but also for the concentration dependent increase in larval and cellular abnormalities as well as no/sporadic swimming movement in exposed hatchlings. It is evident that HSP60, HSc71, HSP90, α-tropomyosin and DHPR were strongly affected but DHPR can be used as the most sensitive marker for the toxicity of TCS. This is the first study reporting effect of TCS on the selected heat shock and cytoskeletal genes in a single model. |
abstract_unstemmed |
Triclosan 5-chloro-2-(2, 4-dichlorophenoxy) phenol (TCS) is widely used as a biocide in human and veterinary medicines, personal care products and household articles. To obtain biomarkers for the acute stress of Triclosan, the hatchlings of Labeo rohita were exposed for 96 h to 0.06, 0.067 and 0.097 mg/L TCS. Morphological deformities, cell viability, frequency of micronucleated and aberrant cells, transcriptomic and biomolecular alterations were recorded after exposure and a depuration period of 10 days. The exposed hatchlings had a pointed head, curved trunk, lean body, deformed caudal fin, haemorrhage, hypopigmentation and tissue degeneration at 0.067 and 0.097 mg/L only. The frequency of viable cells declined but that of necrotic, apoptotic, micronucleated and abnormal cells increased (p ≤ 0.01) in a concentration dependent manner after exposure as well as the depuration period. After recovery, the frequency of viable and micronucleated cells increased, but that of necrotic, apoptotic, and aberrant cells declined in comparison to their respective 96 h values. The mRNA level of HSP47, HSP70, HSc71 and α-tropomyosin increased (p ≤ 0.01), while that of HSP60, HSP90, DHPR, myosin light polypeptide 3, desmin b and lamin b1 declined (p ≤ 0.01) after exposure. Ten days post exposure, a significant increase (p ≤ 0.01) over control was observed in the expression of all the heat shock and cytoskeletal genes and the values (except for HSc71) were higher than the respective 96 h values also. Infrared spectra showed that band area of amide A, amide I, amide II and phospholipids increased significantly (p ≤ 0.01) but peak intensity of lipid, glycogen and nucleic acids decreased after exposure. After recovery, area of the peaks for most of the biomolecules [except lipids (2924–2925, 1455–1457 cm−1) and glycogen (1163–1165 cm−1)] declined significantly over control and 96 h values. Collectively these changes seem to be responsible not only for the onset of paralysis but also for the concentration dependent increase in larval and cellular abnormalities as well as no/sporadic swimming movement in exposed hatchlings. It is evident that HSP60, HSc71, HSP90, α-tropomyosin and DHPR were strongly affected but DHPR can be used as the most sensitive marker for the toxicity of TCS. This is the first study reporting effect of TCS on the selected heat shock and cytoskeletal genes in a single model. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Cellular, molecular and genomic alterations in the hatchlings of Labeo rohita after exposure to Triclosan |
url |
https://doi.org/10.3389/fenvs.2022.992435 https://doaj.org/article/209e0b8f29c845f1a5baa6dd6bb1d249 https://www.frontiersin.org/articles/10.3389/fenvs.2022.992435/full https://doaj.org/toc/2296-665X |
remote_bool |
true |
author2 |
Owias Iqbal Dar Megha Andotra Simran Sharma Ankeet Bhagat Sharad Thakur Anup Kumar Kesavan Arvinder Kaur |
author2Str |
Owias Iqbal Dar Megha Andotra Simran Sharma Ankeet Bhagat Sharad Thakur Anup Kumar Kesavan Arvinder Kaur |
ppnlink |
771401604 |
callnumber-subject |
GE - Environmental Sciences |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fenvs.2022.992435 |
callnumber-a |
GE1-350 |
up_date |
2024-07-03T18:36:00.273Z |
_version_ |
1803584023063166976 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ011118911</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503061753.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230225s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fenvs.2022.992435</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ011118911</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ209e0b8f29c845f1a5baa6dd6bb1d249</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sunil Sharma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cellular, molecular and genomic alterations in the hatchlings of Labeo rohita after exposure to Triclosan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Triclosan 5-chloro-2-(2, 4-dichlorophenoxy) phenol (TCS) is widely used as a biocide in human and veterinary medicines, personal care products and household articles. To obtain biomarkers for the acute stress of Triclosan, the hatchlings of Labeo rohita were exposed for 96 h to 0.06, 0.067 and 0.097 mg/L TCS. Morphological deformities, cell viability, frequency of micronucleated and aberrant cells, transcriptomic and biomolecular alterations were recorded after exposure and a depuration period of 10 days. The exposed hatchlings had a pointed head, curved trunk, lean body, deformed caudal fin, haemorrhage, hypopigmentation and tissue degeneration at 0.067 and 0.097 mg/L only. The frequency of viable cells declined but that of necrotic, apoptotic, micronucleated and abnormal cells increased (p ≤ 0.01) in a concentration dependent manner after exposure as well as the depuration period. After recovery, the frequency of viable and micronucleated cells increased, but that of necrotic, apoptotic, and aberrant cells declined in comparison to their respective 96 h values. The mRNA level of HSP47, HSP70, HSc71 and α-tropomyosin increased (p ≤ 0.01), while that of HSP60, HSP90, DHPR, myosin light polypeptide 3, desmin b and lamin b1 declined (p ≤ 0.01) after exposure. Ten days post exposure, a significant increase (p ≤ 0.01) over control was observed in the expression of all the heat shock and cytoskeletal genes and the values (except for HSc71) were higher than the respective 96 h values also. Infrared spectra showed that band area of amide A, amide I, amide II and phospholipids increased significantly (p ≤ 0.01) but peak intensity of lipid, glycogen and nucleic acids decreased after exposure. After recovery, area of the peaks for most of the biomolecules [except lipids (2924–2925, 1455–1457 cm−1) and glycogen (1163–1165 cm−1)] declined significantly over control and 96 h values. Collectively these changes seem to be responsible not only for the onset of paralysis but also for the concentration dependent increase in larval and cellular abnormalities as well as no/sporadic swimming movement in exposed hatchlings. It is evident that HSP60, HSc71, HSP90, α-tropomyosin and DHPR were strongly affected but DHPR can be used as the most sensitive marker for the toxicity of TCS. This is the first study reporting effect of TCS on the selected heat shock and cytoskeletal genes in a single model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">abnormalities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cyto-genotoxicity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gene expression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hatchlings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Triclosan</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Owias Iqbal Dar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Owias Iqbal Dar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Megha Andotra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simran Sharma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ankeet Bhagat</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sharad Thakur</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anup Kumar Kesavan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arvinder Kaur</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Environmental Science</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">10(2022)</subfield><subfield code="w">(DE-627)771401604</subfield><subfield code="w">(DE-600)2741535-1</subfield><subfield code="x">2296665X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fenvs.2022.992435</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/209e0b8f29c845f1a5baa6dd6bb1d249</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fenvs.2022.992435/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-665X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
score |
7.3997 |